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A B S T R A C T

This study presents a deep learning-based framework for predicting the load-carrying capacity of polyvinyl
chloride (PVC) tube-confined concrete columns under various loading conditions. A comprehensive dataset of
200 samples was generated using finite element modeling, incorporating key parameters such as PVC tube
thickness, concrete strength, and load eccentricity. Several machine learning algorithms, including Linear
Regression (LR), Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF), Gradient Boosting
(GB), and a novel hybrid Transformer-Convolutional Neural Network (Transformer-CNN) model, were employed
for the prediction task. The results demonstrate that the proposed Transformer-CNN model outperforms tradi-
tional methods, achieving the lowest root mean squared error of 27.15 kN and the highest coefficient of
determination value of 0.9875. The model’s robustness was further validated using cross-validation techniques,
ensuring its reliability for practical applications. To facilitate usability, a Python-based graphical user interface
(GUI) was developed, enabling engineers to apply the model efficiently in real-world scenarios. This study
highlights the potential of deep learning in advancing the design and analysis of PVC-confined concrete columns,
offering a more accurate and efficient alternative to conventional methods.

1. Introductions

The integration of various materials into concrete has been a focal
point in enhancing the mechanical properties and durability of infra-
structure. Traditionally, steel tubes have been utilized for their high
strength and rigidity, particularly in the construction of concrete-filled
steel tubes (CFSTs). These structures are valued for combining the
compressive strength of concrete with the tensile strength of steel, of-
fering superior mechanical properties and ease of construction, espe-
cially in high-rise buildings and long-span bridges (Xu et al., 2021;
Eilbeigi et al., 2022). However, steel’s susceptibility to corrosion and
high maintenance costs poses significant challenges, particularly in
harsh environmental conditions (Han et al., 2014; Fakharifar and Chen,
2016).
To address these issues, alternatives such as Fiber Reinforced Poly-

mer (FRP) tubes and polyvinyl chloride (PVC) have been explored. FRP
tubes offer high strength and corrosion resistance but are limited by
their brittleness and higher costs, complicating their adoption in certain

applications (Ozbakkaloglu and Xie, 2016; Li et al., 2018; Jiang et al.,
2019; Berg et al., 2006; Wang and Yang, 2012). Conversely, PVC pro-
vides a compelling alternative due to its superior corrosion resistance,
lower cost, and enhanced performance in seismic conditions. PVC’s
non-metallic, thermoplastic nature, comprising a blend of polymer resin,
lubricants, plasticizers, stabilizers, fillers, and pigments, allows for
customization to meet specific needs (Wu et al., 2021; Raheemah and
Resan, 2019). This material substitution not only mitigates
corrosion-related issues but also reduces maintenance costs, making
PVC a viable and economical choice for large-scale infrastructure
projects.
The incorporation of hollow tubes in concrete structures has been a

significant development in enhancing the mechanical properties of these
materials. This method, which includes using tubes like PVC to confine
concrete, provides notable benefits such as increased strength, stiffness,
and ductility. These advantages are particularly valuable in densely built
urban environments where reducing the size of structural elements
without compromising performance is crucial.
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The use of PVC tubes, in particular, has garnered attention due to
their ability to synergistically interact with the concrete core. This
interaction creates a composite material that exhibits enhanced ultimate
strength, surpassing the combined strengths of the individual compo-
nents. This improvement is primarily attributed to the triaxial stress
state induced within the concrete core by the confining effect of the PVC
tube, which significantly enhances the longitudinal compressive
strength of the concrete (Isleem et al., 2022a; Abbas, 2023).
Over the past four decades, extensive research has focused on

assessing the static performance of PVC tube-confined concrete. Find-
ings have demonstrated that increasing the thickness of PVC tubes can
substantially enhance the fracture energy of the composite material.
Furthermore, studies have shown that reinforced concrete-filled PVC
tubes maintain their structural integrity and ductility even under harsh
environmental conditions, such as prolonged exposure to seawater,
highlighting PVC’s suitability for use in marine and saline environments
(Gupta and Verma, 2016). This durability and resistance to environ-
mental degradation make PVC a promising alternative to traditional
materials like steel, particularly in applications requiring long-term
durability and low maintenance. Moreover, the use of PVC tubes
significantly enhances the ultimate strength and lateral resistance of
concrete cores. The confinement provided by the PVC tube not only
increases the longitudinal compressive strength of the concrete but also
helps manage the stress distributions within the structure. This
improved stress management leads to better overall performance of the
PVC-concrete composite system under various loading conditions
(Sharma et al., 2022; Abdulla, 2017; Isleem et al., 2024a). Further
studies have also explored the influence of geometric factors on the
performance of PVC-concrete columns under axial loads. The
thickness-to-diameter ratio of PVC tubes is a critical parameter, with
lower ratios being more susceptible to failure, while higher ratios tend to
result in more ductile failure modes, such as bulging and buckling,
rather than rupture (Sharma et al., 2022). Additionally, the slenderness
ratio, defined by the column’s height-to-diameter ratio, significantly
affects failure modes; columns with low slenderness ratios may experi-
ence sudden fractures in the PVC tubes, while those with higher slen-
derness ratios are more likely to develop shear cracks (Osman and
Soliman, 2015). These findings underscore the importance of consid-
ering both loading conditions and geometric design in the structural
analysis and design of PVC-confined concrete columns.
Most existing research has focused on the behavior of PVC-concrete

columns under concentric axial loads, a scenario that, while simplifying
the analysis, does not fully represent the conditions these structures
encounter in practice. In reality, concrete columns often experience
eccentric loads, which can introduce significant bending moments and
lead to instability, especially in slender columns (Christianto et al.,
2019). The introduction of eccentricity alters the stress and strain dis-
tribution within the column, potentially diminishing the effectiveness of
the confinement provided by the PVC tube. According to Eurocode 4, to
maintain the beneficial effects of confinement, the ratio of load eccen-
tricity to the outer diameter (e/d) should be less than 0.1 for circular
sections (Piscesa et al., 2017). Exceeding this limit can compromise the
structural integrity and effectiveness of the confinement, particularly
under high eccentric loading conditions.
Given the practical difficulties in obtaining experimental data under

large eccentric load conditions, numerical methods have become
invaluable in predicting the behavior of PVC-concrete columns. Using
advanced finite element software like Abaqus, researchers can simulate
various loading conditions and assess the structural response of these
columns with high accuracy. The concrete damage plasticity model is
typically employed to represent the behavior of the concrete under
compression, while the Von Mises model is used for the PVC tube,
capturing the material’s response to stress and strain (Isleem et al.,
2024a). These numerical models are crucial for understanding the fail-
ure mechanisms, load-carrying capacities, and overall structural per-
formance of PVC-concrete columns, providing insights that guide the

design and optimization of such systems.
Several scholars have explored methods for predicting the bearing

capacity or strength of PVC-concrete columns, primarily through
experimental research and theoretical analysis (Sharma et al., 2022;
Saadoon and Jasim, 2017). However, these existing models predomi-
nantly focus on the behavior of columns under axial compression with
concentric loading. As a result, they tend to be conservative, lacking the
flexibility to accommodate the effects of varying loading conditions.
This conservativeness stems from the models’ failure to consider the
complexities introduced by eccentric loading. Consequently, there is a
pressing need for the development of more sophisticated and reliable
models that can accurately predict the axial compressive load-carrying
capacity of PVC-concrete columns under a range of eccentric loading
conditions. Addressing this gap is crucial for enhancing the precision
and applicability of these predictive models in practical engineering
scenarios.
Machine learning (ML) has proven highly effective in addressing

various structural engineering challenges, including structural health
monitoring, damage detection, performance evaluation, and structural
parameter identification (Wang et al., 2024; Cury and Crémona, 2012;
Shahin et al., 2023, 2024; Zhang and Burton, 2019; Elshaarawy et al.,
2024; Feng et al., 2020). These techniques have also shown significant
success in estimating the compressive strength of composite columns.
The development of predictive models for these systems has increasingly
incorporated advanced computational techniques. Specifically, ML al-
gorithms such as Artificial Neural Networks (ANN) and Support Vector
Regression (SVR) have been employed to predict key structural behav-
iors, including the compressive strength and stress-strain response of
composite columns (Isleem et al., 2022b, 2022c, 2023; Naderpour et al.,
2010; Abdulla, 2020; Oreta and Kawashima, 2003; Chen et al., 2022;
Hamed et al., 2025). Many studies have employed ML techniques to
estimate the axial load capacity of CFST (Asteris et al., 2021a, 2021b,
2024; Bardhan et al., 2022; Liao et al., 2021; Isleem et al., 2024b; Wang
and Chan, 2023; Zhou et al., 2023; Lyu et al., 2021; Zarringol et al.,
2023; Ma et al., 2022; Xu et al., 2024a).
In recent years, ML techniques have advanced further, leveraging

sophisticated models such as Convolutional Neural Networks (CNNs),
Long Short-Term Memory (LSTM) networks, and Graph Neural Net-
works (GNNs) to predict the behavior of concrete columns. For instance,
LSTM networks have been integrated with Kolmogorov–Arnold Net-
works (KANs) to predict the deformation of concrete dams, demon-
strating their potential in capturing complex temporal dependencies in
structural behavior (Xu et al., 2024b). Hybrid models have also gained
attention in structural engineering due to their ability to combine the
strengths of different algorithms. For example, a hybrid stackedmachine
learning model that integrates SVM, Decision Trees (DT), Random For-
ests (RF), Gradient Boosting (GB), and Extreme Gradient Boosting
(XGBoost) has been developed to predict the compressive strength of
high-performance concrete (Tipu et al., 2023). These ML-based models
offer superior accuracy and versatility over traditional analytical
methods, particularly in managing complex, multi-factorial problems
without the need for simplifying assumptions.

2. Research significance

In recent studies, existing analytical models for predicting the load-
carrying capacity of PVC-concrete columns have been found to lack
accuracy, primarily due to their oversimplified assumptions and limited
consideration of variables. While analytical models have been devel-
oped for PVC-concrete columns, they predominantly focus on concentric
loading conditions, with limited attention given to eccentric loading
scenarios. These conditions introduce additional complexities that
analytical models often fail to address, such as nonlinear stress distri-
butions and the interaction effects between PVC tubes and concrete
cores. The scarcity of analytical models tailored for eccentric loading
highlights a critical gap in the existing research. To address these
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limitations, precise models that account for all relevant factors are
essential for accurate predictions. While ML approaches have demon-
strated promising results across various disciplines, their application in
estimating the load-carrying capacity of PVC-concrete columns, partic-
ularly under different eccentric loading conditions, remains unexplored.
This gap highlights the necessity for further investigation and refine-
ment of ML techniques in this domain.
In this research, a comprehensive dataset consisting of 200 samples

was generated using finite element modeling. The dataset includes
critical features influencing the load-carrying capacity of composite
columns, such as the thickness of the PVC tube, tensile strength of the
PVC tube, standard cylinder concrete strength, concrete core diameter,
specimen height, longitudinal and transverse reinforcement ratios, and
eccentricity. To develop a robust predictive model, several ML algo-
rithms were employed, including Linear Regression (LR), SVR, DT, RF,
GB, and a newly proposed hybrid Transformer-Convolutional Neural
Network (CNN) model. The ultimate goal is to create practical ML tools
that can be readily applied in the field, reducing the need for costly and
time-consuming experimental testing.

3. Methodology

The methodology adopted in this study encompasses several critical
steps, starting with data collection and preprocessing. This is followed
by the design and implementation of the hybrid Transformer-CNN
model, which is then trained and validated using a rigorous cross-
validation approach to ensure reliable performance.

3.1. Data collection and preprocessing

In this study, the dataset comprises 200 samples produced using
finite element modeling by Isleem et al., as detailed in reference (Isleem
et al., 2024a). Appendix A provides the specific characteristics of
PVC-concrete columns under different eccentric loading conditions.
These data were used to develop an efficient and robust predictive deep
learning model for predicting the load carrying capacity of composite
columns. The dataset includes several critical features that influence the
load carrying capacity, denoted as Y. These features, designated as X1
through X8, are as follows:

• X1: Thickness of PVC tube (mm)
• X2: Tensile strength of PVC tube (MPa)
• X3: Standard cylinder concrete strength (MPa)
• X4: Concrete core diameter (mm)
• X5: Height of the tested specimen (mm)
• X6: Longitudinal reinforcement ratio multiplied by the tensile
strength of the longitudinal steel rebras (MPa)

• X7: Transverse reinforcement ratio multiplied by the tensile strength
of the transverse steel rebras (MPa)

• X8: Eccentricity (mm)

The target variable Y is the load carrying capacity (Pcc) measured in

kilonewtons (kN).
The statistical descriptive analysis, as summarized in Table 1, pro-

vided comprehensive insights into the dataset’s central tendency,
dispersion, and overall distribution. This analysis is critical for under-
standing the characteristics of the data and identifying any anomalies or
outliers that could impact the performance of the predictive model.
The mean values of the features indicate the central tendency, with

X1 averaging 3.54 mm and X2 averaging 46.25 MPa. The Y has a mean
of 352.5 kN, indicating a wide range of capacities among the samples.
The standard deviation values highlight the variability in the data.

For instance, X5 exhibits significant variability with a standard devia-
tion of 293.89 mm, reflecting a wide range of specimen heights in the
dataset. Similarly, the Y also shows high variability, with a standard
deviation of 255.20 kN.
Theminimum andmaximum values provide the range of the data. X4

ranges from 58.00 mm to 184.40 mm, while X8 varies from 0.00 mm to
50.00 mm. The Y spans from 27.71 kN to 1210.56 kN, indicating a broad
range of structural capacities.
The skewness and kurtosis values offer insights into the distribution

shape. Most features exhibit skewness values close to zero, suggesting
that the data is fairly symmetrical. However, features such as X1 and X5
have skewness values of 1.71 and 0.82, respectively, indicating a right-
skewed distribution. Kurtosis values close to zero indicate that most
features have a relatively normal distribution, except for X1 and X3,
which have higher kurtosis values, indicating a more peaked
distribution.
The interquartile range (IQR), which measures the spread of the

middle 50% of the data, highlights the dispersion of each feature. For
instance, X4 has an IQR of 58.60 mm, suggesting significant variability
within the middle range of concrete core diameters. The IQR for the load
carrying capacity (Y) is 409.34 kN, reflecting substantial variability in
the structural capacities of the samples.
Following the descriptive analysis, the dataset underwent normali-

zation to scale the input features. This process, known as standard
scaling, transforms the features such that they have a mean of zero and a
standard deviation of one. Normalization is essential in deep learning
models as it ensures that the features contribute equally to the model’s
learning process and prevents any single feature from dominating due to
its scale.
To visualize the data distribution, a histogram of normality tests for

the entire dataset was generated, as shown in Fig. 1. This histogram
helps in assessing whether the data follows a Gaussian distribution,
which is often a desirable property for many machine learning algo-
rithms. The plots for each feature (X1 to X8) and the target variable Y are
displayed, providing insights into their individual distributions.
The statistical descriptive analysis, as summarized in Table 1, com-

plements these visual findings by offering detailed numerical insights
into each feature’s distribution. For instance, the histogram for X1 re-
veals a right-skewed distribution, which is supported by the skewness
value of 1.71 in the statistical analysis. Similarly, X3 shows a moderate
skewness of 0.81 and a peaked distribution indicated by a kurtosis of
1.95, both reflected in the histogram.

Table 1
Statistical descriptive analysis of the dataset.

Variable Mean Standard
Deviation

Minimum Median Maximum Variance Skewness Kurtosis 1st Quartile
(Q1)

3rd Quartile
(Q3)

Interquartile Range
(Q3 - Q1)

X1 3.54 1.35 2.00 3.00 7.80 1.81 1.71 2.77 3.00 3.90 0.90
X2 46.25 7.38 33.40 49.74 62.00 54.41 0.13 − 0.41 39.79 49.74 9.95
X3 23.00 8.14 10.50 25.04 51.50 66.34 0.81 1.95 16.89 28.50 11.61
X4 123.4 36.64 58.00 134.00 184.40 1342.37 − 0.45 − 1.00 94.00 152.60 58.60
X5 441 293.89 126.00 280.00 1000.00 86371.21 0.82 − 0.62 220.00 544.00 324.00
X6 4.06 5.93 0.00 0.00 13.48 35.22 0.81 − 1.32 0.00 12.42 12.42
X7 1.39 2.07 0.00 0.00 4.98 4.30 0.87 − 1.22 0.00 4.31 4.31
X8 25.80 16.54 0.00 30.00 50.00 273.73 − 0.33 − 1.00 20.00 40.00 20.00
Y 352.5 255.20 27.71 287.33 1210.56 65125.17 0.74 − 0.18 129.11 538.46 409.34
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The histogram for X5 indicates a high degree of variability, which is
consistent with the large standard deviation of 293.89 mm and a wide
IQR of 324.00 mm observed in the statistical analysis. This high vari-
ability is also evident in the histogram’s spread and the presence of
multiple peaks.
The target variable Y shows a right-skewed distribution in the his-

togram, with a skewness of 0.74. The wide range of values, from 27.71
kN to 1210.56 kN, and the large standard deviation of 255.20 kN are
visually confirmed by the histogram’s long tail to the right.
Features such as X6 and X7 exhibit significant skewness and kurtosis

values in the statistical table, which are mirrored in their respective
histograms. X6 has a skewness of 0.81 and a kurtosis of − 1.32, indi-
cating a right-skewed but less peaked distribution, while X7 shows
similar characteristics with a skewness of 0.87 and a kurtosis of − 1.22.
To further understand the interaction between the features and the

target variable Y, 3D histograms were generated to display the fre-
quency distribution of the features in relation to Y.
Fig. 2 presents the 3D histogram displaying the frequency distribu-

tion of features X1 to X8 with the target variable Y. Each subplot
highlights how different ranges of the feature values correlate with the
load carrying capacity:

• X1: The histogram shows a concentration of higher counts in lower Y
values, indicating that thinner PVC tubes are more common in the
samples with lower load carrying capacities.

• X2: There is a noticeable peak where the tensile strength is around
45–50 MPa, correlating with a mid-range Y. This suggests a signifi-
cant number of samples within this strength range and their corre-
sponding load capacities.

• X3: The distribution shows higher counts at lower to mid-range
concrete strengths, with a gradual decrease as the strength increases.

• X4: Most samples fall within the lower to mid-range diameters, with
a higher count observed for specimens with smaller diameters.

• X5: There is a concentration of counts at lower heights, with these
samples predominantly having lower Y values. This suggests that

shorter specimens are more common in the dataset and are associ-
ated with lower load carrying capacities.

• X6: The distribution indicates a higher frequency of samples with
low to moderate reinforcement ratios, correlating with a wide range
of Y values, but with a noticeable concentration at lower capacities.

• X7: Similar to X6, this feature shows a concentration of samples with
lower reinforcement ratios, primarily associated with lower to
moderate load capacities.

• X8: The histogram shows that most samples have low to moderate
eccentricity, with higher frequencies at lower Y values.

Through careful data collection and preprocessing, study have
established a robust foundation for developing a high-performing pre-
dictive model. The normalized and well-understood dataset is now ready
for the subsequent phases of model architecture design and training,
ensuring that the deep learning model can achieve optimal results in
predicting the load carrying capacity of composite columns.
Fig. 3 presents the pair plot matrix of all variables (X1 to X8 and the

target variable Y). This matrix is instrumental in visually examining the
relationships and potential correlations between each pair of variables.
The diagonal plots show the distribution of each individual feature,

indicating their spread and central tendency. For instance, the distri-
bution of X1 shows a skewed pattern, aligning with previous observa-
tions from the statistical analysis.
The off-diagonal scatter plots provide a visual representation of the

relationships between pairs of variables. Each scatter plot helps identify
linear and non-linear relationships, clusters, and potential outliers. For
example, there is a clear positive linear relationship between X4 and X5,
as well as between X4 and Y. These relationships are indicated by the
upward trend in the scatter plots.
The scatter plot between X3 and Y shows a moderate positive cor-

relation, with data points forming a loosely aligned pattern along the
positive slope. Similarly, X6 and X7 exhibit a clustered pattern, sug-
gesting certain values of reinforcement ratios are more common.
In contrast, variables such as X2 and X7 show no clear pattern,

Fig. 1. Histogram showing the distribution of each feature and the target variable.
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indicating a lack of strong correlation. The distribution and scatter plots
for X8 reveal a more scattered relationship with Y, suggesting that
higher eccentricities do not strongly predict the load carrying capacity.
Principal Component Analysis (PCA) (Abdi and Williams, 2010) is a

dimensionality reduction technique that transforms a large set of vari-
ables into a smaller one that still contains most of the information in the
large set. PCA achieves this by identifying the principal components,
which are the directions of maximum variance in the dataset. These
principal components are orthogonal to each other, ensuring that the

new features (principal components) are uncorrelated.
Fig. 4 illustrates the PCA plot, where the first three principal com-

ponents (PC1, PC2, and PC3) are shown. The red dots represent the
scores of the samples on the principal components, and the blue arrows
represent the loadings, which indicate the direction and magnitude of
each original feature’s contribution to the principal components. The
95% confidence ellipse provides a visual boundary within which most of
the data points are expected to lie, indicating the overall data distribu-
tion in the reduced dimension space.

Fig. 2. 3D histogram displaying the frequency distribution of features X1-X4 with Y.
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From the PCA plot, it can observe that certain features, such as X8
and X5, have longer loading vectors, suggesting they contribute signif-
icantly to the variation captured by the principal components. In
contrast, features with shorter loading vectors contribute less to the
overall variance.
The PCA plot is valuable for visualizing the underlying structure of

the data, identifying patterns, and detecting potential outliers. By
reducing the dimensionality, PCA simplifies the complexity of the data
while retaining the essential information, which is crucial for efficient
and effective predictive modeling.

3.2. Correlation analysis

The Pearson correlation coefficient (Pearson, 1920), which ranges
between − 1 and 1, measures the linear correlation between two vari-
ables. A positive number indicates a positive correlation, while a nega-
tive number indicates a negative correlation. The closer the absolute
value is to 1, the stronger the linear relationship, assuming the normality
is significant. An absolute value of 0 denotes no linear relationship,
while an absolute value of 1 represents a perfect linear correlation. For
the Pearson correlation coefficient to be accurate, the variables must
follow a Gaussian distribution.
The Pearson correlation coefficient between variable X and variable

Y is calculated using Eq. (1).

rxy=Corr(X,Y)=
Cov(X,Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(X).Var(Y)

√ =

∑n

i=1
(xi − X)(yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − X)2.

∑n

i=1
(yi − Y)2

√ (1)

where Cov(X,Y) is the covariance of X and Y; Var(X) and Var(Y) are the
variances of X and Y, respectively; and X and Y are the means of X and Y,
respectively.
In contrast, Spearman’s rank correlation coefficient (Zar, 2005)

evaluates the correlation between two statistical variables using a
monotonic equation. If there are no repeated values in the data, the two
variables are perfectly monotonically positively or negatively corre-
lated, making the Spearman’s rank correlation coefficient equal to+1 or
− 1. This coefficient is parameter-free and relies solely on the ranking of
values rather than their specific magnitudes. Spearman’s rank correla-
tion coefficient between variable X and variable Y can be expressed
using Eq. (2):

ρxy =

∑n

i=1
(R(xi) − R(X))(R(yi) − R(Y))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(R(xi) − R(X))2

∑n

i=1
(R(yi) − R(Y))2

√ =1 −
6
∑n

i=1
d2i

n(n2 − 1)
(2)

where R(xi) and R
(
yi
)
are the rank orders of the variables xi and yi,

Fig. 3. Pair plot matrix of correlation of all variables.
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Fig. 4. Principal component analysis (PCA) plot.

Fig. 5. Polar Pearson correlation coefficient heatmap.

L. Shang et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110217 

7 



respectively; R(X) and R(Y) are the average rank orders of the variables
xi and yi, respectively; n is the total number of variables; and di =⃒
⃒R(xi) − R

(
yi
)⃒
⃒.

Fig. 5 illustrates the Polar Pearson correlation coefficient heatmap, a
visual representation of the Pearson correlation coefficients between
each pair of variables. The plot uses a polar coordinate system to display
the strength and direction of the linear relationships between variables.
In the polar heatmap, each axis represents a different variable, and

the lines connecting the variables indicate the Pearson correlation co-
efficients. The values are plotted along the radii, where positive corre-
lations are shown closer to the outer edge, and negative correlations are
plotted towards the center. The magnitude of the correlation is indicated
by the distance from the origin: the further from the center, the stronger
the correlation.
Several key observations can be made from the polar heatmap.

Strong positive correlations are evident between variables such as X4
and X5, as well as X4 and Y, which align with the observations from
previous analyses. These variables have lines that extend far from the
center, indicating a strong positive linear relationship.
Conversely, negative correlations are represented by lines closer to

the center. For instance, X6 shows a negative correlation with X2,
indicating an inverse relationship between these variables.
The polar Pearson correlation coefficient heatmap provides a clear

and concise way to visualize and interpret the linear relationships be-
tween multiple variables simultaneously. This visualization is particu-
larly useful for identifying which variables are most strongly associated
with the target variable, guiding the feature selection process for
building predictive models.
Fig. 6 illustrates the Spearman rank correlation heatmap of all the

variables (X1 to X8 and the target variable Y). This heatmap is crucial for
understanding the monotonic relationships between the features and the
target variable.
The heatmap reveals several key insights. Strong positive correla-

tions are observed between X4 and X5 with Y, showing correlation co-
efficients of 0.89 and 0.87, respectively. This indicates that as the
concrete core diameter and specimen height increase, the load carrying
capacity tends to increase as well. Additionally, X6 and X3 display
moderate positive correlations with Y, with coefficients of 0.65 and
0.64, respectively, suggesting that higher reinforcement ratios and

concrete strengths are generally associated with higher load carrying
capacities.
The analysis also highlights negative correlations, particularly be-

tween X6 and X7 with X2, having coefficients of − 0.52 each. These
negative relationships indicate that higher reinforcement ratios corre-
spond to lower tensile strengths of the PVC tube. Furthermore, X8 shows
a slight negative correlation with Y (− 0.16), suggesting that higher
eccentricities might slightly decrease the load carrying capacity.

4. Methodology

The overall methodology of this study encompasses several key steps
to develop an efficient and robust predictive model for estimating the
load carrying capacity of composite columns. The process begins with
data collection and preprocessing, followed by the design and imple-
mentation of a sophisticated hybrid Transformer-CNNs model. The
model is then trained and validated using a robust cross-validation
approach, and its performance is evaluated. Hyperparameter tuning is
performed to optimize the model, and finally, the model is deployed for
practical applications.

4.1. Model architecture design

The proposed predictive model for estimating the load carrying ca-
pacity of composite columns employs a sophisticated hybrid architec-
ture that combines CNNs (Gu et al., 2018; Li et al., 2022; O’Shea and
Nash, 2015; Vedaldi and Lenc, 2014) and Transformer models. This
hybrid approach is designed to leverage the strengths of both CNNs for
effective local feature extraction and Transformers for capturing com-
plex dependencies between features. The following sections provide a
detailed explanation of each component of the model architecture,
including the CNN feature extractor, Transformer encoder, fully con-
nected layers, and the output layer.

4.1.1. Detailed architecture of the hybrid Transformer-CNN model
The architecture of the proposed predictive model for estimating the

load carrying capacity of composite columns is a sophisticated hybrid
design that integrates CNNs and Transformer models. This hybrid ar-
chitecture leverages the unique strengths of both CNNs and

Fig. 6. Spearman rank correlation heatmap of all the variables.
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Transformers to achieve accurate and reliable predictions. Here, we
provide a detailed explanation of each component of the model,
describing how they work together to process the input data and
generate the final prediction. The architecture integrates CNNs to
extract local patterns from the input features and Transformers to model
long-range dependencies and interactions. The main components of the
model are depicted in Fig. 7, which illustrates the flow from the input
layer through the CNN and Transformer components to the fully con-
nected layers and the output layer.
The CNN feature extractor is the first major component of the model.

It begins with a convolutional layer that employs 32 filters with a kernel
size of 3x3. This layer scans through the input features to extract local
patterns, a process that is crucial for understanding the detailed struc-
tural properties of the columns. The ReLU (Rectified Linear Unit) acti-
vation function (Dahl et al., 2013) is applied here to introduce
non-linearity into the model, enabling it to learn more complex patterns.
The mathematical expression for the ReLU function is given by Eq. (3).

ReLU(x)=max(0, x) (3)

Following this, aMaxPooling layer with a pool size of 2x2 is used to
reduce the dimensionality of the feature maps. This layer effectively
down-samples the input representation, preserving the most significant
information while reducing the computational complexity. This is fol-
lowed by a second convolutional layer with 64 filters and a 3x3 kernel
size, further refining the extracted features. Again, the ReLU activation
function is applied to introduce non-linearity. Another MaxPooling
layer with a 2x2 pool size is then applied, further reducing the dimen-
sionality of the feature maps. The output of these layers is a set of 2D
feature maps, which are then flattened into a 1D feature vector, making
them suitable for input into the subsequent Transformer encoder. The
2D feature maps produced by these layers are then flattened into a 1D
feature vector, as illustrated in Table 2.
Next, the Transformer encoder processes the flattened feature vector.

This component begins with positional encoding, which provides
sequence information to the model. This step is critical because it allows
the Transformer to understand the order of the features, which is
important for capturing the dependencies between them. The positional

encoding is computed using sine (Eq. (4)) and cosine functions (Eq. (5))
of different frequencies.

PE(pos,2i) = sin
(

pos
100002i/d

)

(4)

PE(pos,2i+1) = cos
(

pos
100002i/d

)

(5)

The core of the Transformer encoder is the multi-head self-attention
mechanism. This mechanism applies eight attention heads to capture
complex dependencies between the features, allowing the model to
focus on different parts of the input simultaneously. The attention
mechanism is mathematically represented using Eq. (6).

Attention(Q,K,V)= softmax
(
QKT
̅̅̅̅̅
dk

√

)

V (6)

where Q, K, and V are the query, key, and value matrices, respectively,
and dk is the dimension of the key vectors.
Following the self-attentionmechanism, the output is passed through

a feed-forward network using Eq. (7), which consists of a fully connected
layer followed by a ReLU activation function. This network introduces
additional non-linearity and allows the model to learn complex repre-
sentations of the input data.

FFN(x)=max(0, xW1 + b1)+W2 + b2 (7)

To stabilize training and improve convergence, layer normalization
and residual connections are implemented within the Transformer

Fig. 7. Schematic diagram of the hybrid Transformer-CNN model architecture.

Table 2
Dimensions of feature maps through CNN layers.

Layer Output Shape

Input Layer (8)
Conv Layer 1 (32, 6, 6)
Pool Layer 1 (32, 3, 3)
Conv Layer 2 (64, 1, 1)
Pool Layer 2 (64, 1, 1)
Flatten Layer (64)
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encoder. Layer normalization helps maintain consistent learning rates
across different layers, and residual connections facilitate the flow of
gradients during backpropagation, preventing vanishing or exploding
gradient problems.
After processing through the Transformer encoder, the transformed

features are fed into a series of fully connected layers. The first dense
layer consists of 128 neurons and applies the ReLU activation function as
given by Eq. (8).

Dense1(x)=ReLU(W1x+b1) (8)

This is followed by a dropout layer with a dropout rate of 0.5 to
prevent overfitting by randomly disabling a fraction of neurons during
training. Another dense layer with 64 neurons, also using the ReLU
activation function, further refines the learned features as calculated
using Eq. (9).

Dense2(x)=ReLU(W2x+b2) (9)

Another dropout layer with a 0.5 dropout rate is applied for addi-
tional regularization.
The final component of the model is the output layer, which consists

of a single neuron with a linear activation function. This layer generates
the final prediction of the Load Carrying Capacity (Pcc), which is a
continuous value appropriate for the regression task at hand

Output(x)=Woutx+ bout (10)

In brief, the hybrid Transformer-CNN model is accurately designed to
leverage the strengths of CNNs for effective feature extraction and
Transformers for capturing complex dependencies. This comprehensive
architecture ensures that the model can learn from the input features
and make accurate predictions of the load carrying capacity of com-
posite columns, thereby achieving high reliability and performance. By
combining these advanced techniques, the model is capable of learning
from the input features and making robust predictions. The complete
pseudocode for the research methodology is presented in Algorithm 1.

Algorithm 1. Pseudocode of the research methodology.
1: Data Collection and Preprocessing
2: Collect dataset with features X1 to X8 and target Y
3: Normalize the input features (X1 to X8)
4: Model Architecture Design
5: Define input layer to accept 8 numerical features
6: Design CNN Feature Extractor
7: Convolutional Layer 1: 32 filters, kernel size 3x3, ReLU activation
8: MaxPooling Layer 1: pool size 2x2
9: Convolutional Layer 2: 64 filters, kernel size 3x3, ReLU activation
10: MaxPooling Layer 2: pool size 2x2
11: Flatten the feature maps to 1D vector
12: Design Transformer Encoder
13: Add positional encoding
14: Apply multi-head self-attention: 8 attention heads
15: Feed-Forward Network with ReLU activation
16: Layer Normalization and Residual Connections
17: Design Fully Connected Layers
18: Dense Layer 1: 128 neurons, ReLU activation
19: Dropout Layer 1: dropout rate 0.5
20: Dense Layer 2: 64 neurons, ReLU activation
21: Dropout Layer 2: dropout rate 0.5
22: Output Layer: 1 neuron, linear activation
23: Model Training and Cross-Validation
24: Use 5-Fold Cross-Validation
25: for each fold do
26: Split data into training and validation sets
27: Train the model for defined epochs (e.g., 100) and batch size (e.g., 32)
28: Validate the model on validation set
29: Record performance metrics for each fold
30: end for
31: Model Evaluation
32: Calculate average performance metrics across all folds
33: Analyze prediction errors
34: Hyperparameter Tuning
35: Perform grid search within cross-validation framework

(continued on next column)

(continued )

36: Optimize hyperparameters: number of filters, kernel size, number of attention
heads, dropout rates

37: Use k-fold cross-validation for robustness
38: Model GUI Development
39: Develop the GUI of developed model to predict load carrying capacity
40: Host the GUI at GitHub

4.2. Model training and cross-validation

The model training and validation process is a critical phase in the
development of the predictive model for estimating the load carrying
capacity of composite columns. This section details the methodology for
training the model, including the use of K-Fold cross-validation (Berrar,
2019; Refaeilzadeh et al., 2009) and the metrics used to evaluate
performance.

K-Fold cross-validation is a robust method for evaluating the per-
formance of a predictive model by dividing the dataset into K equally
sized folds. In this study, a 5-Fold cross-validation approach is
employed, as illustrated in Fig. 8. The dataset is split into five subsets,
and the model is trained and validated five times, each time using a
different fold as the validation set and the remaining folds as the training
set. This process ensures that every data point is used for both training
and validation, providing a comprehensive evaluation of the model’s
performance.
To prevent overfitting in the optimal developed Transformer-CNN

model, several strategies were employed (Benzaamia et al., 2024).
Firstly, the 5-Fold cross-validation approach inherently reduces over-
fitting by ensuring that the model is validated on multiple subsets of the
data. Additionally, early stopping was implemented to terminate
training when the validation performance no longer improved, pre-
venting the model from becoming excessively tailored to the training
data. Regularization techniques, including L2 regularization, were
applied to penalize large weights, promoting simpler and more gener-
alizable models. Furthermore, dropout layers were incorporated into the
network architecture to randomly deactivate neurons during training,
thereby enhancing the model’s robustness and reducing reliance on
specific pathways. By carefully managing model complexity and incor-
porating these regularization methods, we ensure that the model
maintains high predictive accuracy on unseen data without overfitting
the training dataset.
The key steps in the 5-Fold cross-validation process are as follows.

1. Split the dataset into 5 equal-sized folds.
2. For each fold, train the model using the data from the other 4 folds
and validate it using the data from the remaining fold.

3. Rotate the validation fold and repeat the process until each fold has
been used as the validation set once.

4. Aggregate the performance metrics from each fold to obtain an
overall assessment of the model’s efficacy.

During each fold of the cross-validation process, the model un-
dergoes a rigorous training phase followed by validation using the
reserved fold. The training process involves optimizing the model pa-
rameters to minimize the loss function, the Mean Squared Error (MSE)
for regression tasks:

MSE=

∑n

i=1
(yi − ŷi)2

n
(11)

where yi is the actual value and ŷi is the predicted value.
To ensure the model’s reliability and accuracy, various performance

metrics are calculated during the validation phase. These metrics
include.
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• Coefficient of Determination (R2): This metric measures the pro-
portion of the variance in the dependent variable that is predictable
from the independent variables. It indicates how well the data points
fit the statistical model. An R2 value close to 1 implies that the model
explains a large portion of the variance in the output variable. R2 is
given by Eq. (12).

R2=1 −

∑n

i=1
(yi − ŷi)2

∑n

i=1
(yi − y)2

(12)

where y is the mean of the actual values.

• Root Mean Square Error (RMSE): RMSE provides the square root of
the average squared differences between predicted and actual
values, indicating the magnitude of the prediction errors. It is sen-
sitive to outliers and gives a higher weight to larger errors, given by
Eq. (13).

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)2

n

√
√
√
√
√

(13)

• Mean Absolute Error (MAE): This metric measures the average
magnitude of the errors in a set of predictions, without considering
their direction as calculated by Eq. (14). It is less sensitive to outliers
compared to RMSE.

MAE=

∑n

i=1

⌊

yi − ŷi
⌋

n
(14)

• Mean Absolute Percentage Error (MAPE): MAPE expresses the
prediction accuracy as a percentage of the actual values, calculated
using Eq. (15). It provides an intuitive measure of the prediction
accuracy relative to the magnitude of the actual values.

MAPE=
100%
n

∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi
yi

⃒
⃒
⃒
⃒ (15)

• Mean Squared Logarithmic Error (MSLE): MSLE measures the
ratio between the true and predicted values using logarithmic scale
differences. It is particularly useful when the values span several
orders of magnitude, as it penalizes underestimations more than
overestimations given by Eq. (16).

MSLE=
1
n
∑n

i=1
(log(1+ yi) − log(1+ ŷi))2 (16)

• Median Absolute Error: Provides the median of all absolute dif-
ferences between the predicted and actual values given by Eq. (17),
offering a robust measure of central tendency.

Median Absolute Error=median(|y1 − ŷ1|, |y2 − ŷ2|,…, |yn − ŷn|) (17)

• Coefficient of Variation of the Root Mean Square Error (CV-
RMSE): CV-RMSE normalizes RMSE by the mean of the observed
values, providing a relative measure of the error. It is useful for
comparing the performance of models across different scales of
output, calculated using Eq. (18).

CV − RMSE =
RMSE
y

(18)

By aggregating these performance metrics across all folds, the
model’s predictive accuracy and reliability are comprehensively
assessed. The training process ensures that the model learns effectively
from the data, while the validation metrics provide a robust evaluation
of its performance. This meticulous approach guarantees that the final
model is both accurate and reliable, capable of making precise pre-
dictions of the load carrying capacity of composite columns.

4.3. Hyperparameter tuning

Hyperparameter tuning is a crucial step in optimizing the perfor-
mance of a predictive model. It involves selecting the best set of
hyperparameters that maximize the model’s accuracy and reliability.
This section details the methodology for hyperparameter tuning,
including the model definition for tuning, hyperparameter grid specifi-
cation, and the grid search process for selecting the best
hyperparameters.

4.3.1. Model definition for hyperparameter tuning
The first step in hyperparameter tuning is defining the model with

tunable hyperparameters. In the context of the hybrid Transformer-CNN
model, several hyperparameters are optimized to improve performance.
These include.

1. Number of Filters in CNN Layers: The number of filters in the
convolutional layers determines the model’s capacity to extract
features from the input data. The values to tune include 32, 64, and
128 filters.

2. Kernel Size in CNN Layers: The kernel size defines the dimensions
of the convolutional filters. The choices are 3x3, 5x5, and 7x7.

3. Dropout Rate: Dropout is used to prevent overfitting by randomly
dropping neurons during training. The dropout rates to tune include
0.2, 0.3, 0.5, and 0.7.

Fig. 8. Schematic of 5-fold cross-validation.
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4. Number of Attention Heads in Transformer Encoder: The number
of attention heads in the multi-head self-attention mechanism can
significantly impact the model’s ability to capture dependencies. The
values considered in the study are 4, 8, and 16 heads.

5. Feed-Forward Network Dimension in Transformer Encoder: The
size of the feed-forward network in the Transformer encoder is
another critical parameter. The values include 128, 256, and 512
neurons.

4.3.2. Hyperparameter grid specification
Once the tunable hyperparameters are identified, the next step is to

specify a grid of possible values for each hyperparameter. This grid
defines the search space for the hyperparameter tuning process. The
selected values of the hyperparameters grid for the hybrid Transformer-
CNN model is shown in Table 3.
This grid defines the combinations of hyperparameters that have

been evaluated during the tuning process.

4.3.3. Grid search and selection of best hyperparameters
Grid search is a systematic method for exploring the hyperparameter

space defined by the grid specification. It involves training and evalu-
ating the model for each combination of hyperparameters in the grid.
The steps involved in grid search are as follows.

1. Initialize GridSearchCV: The GridSearchCV function from the
scikit-learn library is used to perform the grid search. It systemati-
cally trains the model on each combination of hyperparameters and
evaluates its performance using cross-validation. The initialization of
GridSearchCV is given using Eq. (19):

grid search=GridSearchCV
(
estimator=

model, param grid= grid, cv= 5, scoring= ’neg mean squared error’
)

(19)

2. Fit Grid Search: The grid search process involves fitting the model
on the training data for each combination of hyperparameters and
evaluating it using cross-validation. The model’s performance is
assessed, using Eq. (20), based on the specified scoring metric, such
as the negative MSE in this study.

grid search.fit(X train, y train) (20)

3. Select Best Hyperparameters: After evaluating all combinations,
the best set of hyperparameters is selected based on the cross-
validation performance. The GridSearchCV object stores the best
hyperparameters and the corresponding model as given by Eqs. 21
and 22.

best parameters= grid search.best params (21)

best model= grid search.best estimator (22)

The comprehensive approach to hyperparameter tuning ensures that
the final model is optimized for performance, leveraging the best

combination of hyperparameters. This meticulous process helps achieve
a model that is both accurate and robust, capable of making precise
predictions for the load carrying capacity of composite columns.

4.4. Model GUI deployment

To make the predictive model for estimating the load carrying ca-
pacity of composite columns accessible and user-friendly, a graphical
user interface (GUI) is developed. This section details the development
and deployment of the GUI, including the use of the Tkinter library in
Python and hosting the GUI on GitHub.

4.4.1. Development of a GUI using tkinter library in python
Tkinter (Lundh, 1999) is a standard GUI library in Python that pro-

vides a fast and easy way to create interactive applications. The devel-
opment process of the GUI involves several steps, ensuring that the
interface is intuitive and easy to use for end-users.

1. Setting Up the Environment: First, the Python environment is set
up with Tkinter installed. This library is included in the standard
Python distribution, making it readily available without the need for
additional installations.

2. Designing the Interface: The interface design is a crucial step. It
includes creating input fields for users to enter the required features
(X1 to X8) and a button to trigger the prediction. Labels and in-
structions are added to guide the users on how to use the application.
Fig. 9 provides a layout of the GUI design.

3. Coding the Functionality: The core functionality of the GUI is
implemented using Python. This includes:
• Input Fields: TextEntrywidgets are used to create input fields for
the features X1 to X8.

• Prediction Button: A Button widget is implemented to trigger the
prediction process when clicked.

• Output Display: A Label or Text widget is used to display the
predicted load carrying capacity (Pcc).

4. Integrating the Model: The trained predictive model is integrated
into the GUI. This involves loading the model using a library pickle
and using it to make predictions based on the user inputs.

4.4.2. Hosting the GUI on GitHub
To make the GUI application easily accessible, it is hosted on GitHub.

Hosting the application on GitHub provides version control, collabora-
tion features, and easy distribution. The steps to host the GUI on GitHub
are as follows.

1. Creating a GitHub Repository: A new repository is created on
GitHub to host the project files. This includes the GUI code, the
trained model file, and any additional resources or documentation.

2. Uploading the Project Files: The project files are uploaded to the
GitHub repository. This can be done using Git commands from the
terminal or directly through the GitHub web interface.

3. Version Control: GitHub provides robust version control, allowing
for tracking changes, rolling back to previous versions, and collab-
orative development. Commit messages are used to document
changes, making it easy to manage the project over time.

4. Providing Documentation: Documentation is added to the re-
pository to guide users on how to download, install, and run the GUI
application. This includes a README file with step-by-step in-
structions and screenshots.

5. Sharing the Repository: Once the project is uploaded and docu-
mented, the repository can be shared with users. They can clone or
download the repository to their local machines and run the appli-
cation using Python.

Hosting the GUI on GitHub ensures that the application is accessible
to a wide audience, facilitates collaboration and version control, and

Table 3
Hyperparameter range specification.

Hyperparameter Range

Number of Filters in Conv
Layers

[32, 64, 128]

Kernel Size in Conv Layers [(3,3), (5,5), (7,7)]
Dropout Rate [0.2, 0.3, 0.5, 0.7]
Number of Attention Heads (Fakharifar and Chen, 2016; Berg et al., 2006;

Abdulla, 2017)
Feed-Forward Network
Dimension

[128, 256, 512]
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Fig. 9. Screenshot of the GitHub repository hosting the GUI project.

Table 4
Models performance across all the metrices and cross folds.

Fold Model MSE RMSE (kN) MAE (kN) R2 MAPE MSLE MedAE (kN) CV-RMSE

1 LR 3482.53 59.01 46.67 0.95 52.03 NA 38.46 0.19
2 LR 2865.32 53.53 42.02 0.93 18.47 NA 33.51 0.16
3 LR 4899.68 70.00 55.05 0.94 21.20 0.12 42.40 0.19
4 LR 5199.46 72.11 59.99 0.92 48.54 NA 65.39 0.19
5 LR 3033.11 55.07 45.77 0.95 22.69 NA 39.06 0.15
 Min 2865.32 53.53 42.02 0.92 18.47 0.12 33.51 0.15
 Max 5199.46 72.11 59.99 0.95 52.03 0.12 65.39 0.19
 Mean 3896.02 61.94 49.90 0.94 32.59 0.12 43.76 0.18
 Std. Dev. 967.91 7.68 6.60 0.01 14.56 0.00 11.18 0.02
1 SVR 55752.09 236.12 197.44 0.16 163.93 1.01 170.03 0.78
2 SVR 33137.18 182.04 145.51 0.15 62.78 0.36 121.99 0.54
3 SVR 79964.06 282.78 203.80 0.06 91.72 0.64 147.52 0.78
4 SVR 66926.79 258.70 218.96 0.00 126.34 0.85 197.52 0.68
5 SVR 60890.00 246.76 192.31 0.04 79.78 0.54 161.51 0.66
 Mean 59334.03 241.28 191.60 0.08 104.91 0.68 159.71 0.69
 Std. Dev. 15393.34 33.44 24.72 0.06 36.12 0.23 24.94 0.09
1 DT 6690.48 81.80 56.62 0.90 24.22 0.07 32.83 0.27
2 DT 7676.94 87.62 64.73 0.80 20.87 0.07 51.10 0.26
3 DT 18710.03 136.78 98.49 0.78 27.38 0.14 67.91 0.38
4 DT 13264.13 115.17 93.57 0.80 45.05 0.20 72.19 0.30
5 DT 9348.76 96.69 71.09 0.85 21.63 0.06 38.50 0.26
 Mean 11138.07 103.61 76.90 0.83 27.83 0.11 52.51 0.29
 Std. Dev. 4400.38 20.07 16.35 0.04 8.91 0.05 15.56 0.04
1 RF 838.84 28.96 18.00 0.99 6.88 0.01 14.00 0.10
2 RF 2637.59 51.36 31.67 0.93 9.55 0.02 16.24 0.15
3 RF 3730.60 61.08 30.58 0.96 8.36 0.01 14.68 0.17
4 RF 1664.96 40.80 28.15 0.98 9.80 0.02 18.11 0.11
5 RF 1225.92 35.01 25.08 0.98 8.10 0.01 20.06 0.09
 Mean 2019.58 43.44 26.70 0.97 8.54 0.01 16.62 0.12
 Std. Dev. 1044.92 11.50 4.90 0.02 1.06 0.00 2.23 0.03
1 GB 398.57 19.46 12.68 0.94 4.97 0.01 7.02 0.06
2 GB 722.99 26.21 16.54 0.93 5.23 0.01 8.88 0.08
3 GB 1521.45 38.02 19.60 0.93 5.51 0.01 7.56 0.10
4 GB 602.70 23.93 15.30 0.94 5.24 0.01 11.11 0.06
5 GB 479.55 21.34 14.33 0.94 5.31 0.01 9.73 0.06
 Mean 745.05 25.79 15.69 0.94 5.25 0.01 8.86 0.07
 Std. Dev. 403.51 6.53 2.32 0.01 0.17 0.00 1.48 0.02
1 Hybrid Transformer-CNN model 419.54 20.48 13.35 0.99 5.23 0.01 7.39 0.07
2 Hybrid Transformer-CNN model 761.04 27.59 17.41 0.98 5.51 0.01 9.34 0.08
3 Hybrid Transformer-CNN model 1601.52 40.02 20.63 0.98 5.80 0.01 7.96 0.11
4 Hybrid Transformer-CNN model 634.42 25.19 16.11 0.99 5.52 0.01 11.69 0.07
5 Hybrid Transformer-CNN model 504.78 22.47 15.09 0.99 5.59 0.01 10.24 0.06
 Mean 784.26 27.15 16.52 0.99 5.53 0.01 9.32 0.08
 Std. Dev. 424.74 6.87 2.45 0.01 0.18 0.00 1.55 0.02
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provides a platform for ongoing development and improvement.

5. Results and discussion

This section presents the performance metrics of various predictive
models across different folds, compares these models with existing
methods, and discusses the significance of the findings in the context of
existing research. The potential applications and implications of these
results in structural engineering are also considered.

5.1. Performance metrics across different folds

The predictive performance of several models was evaluated using 5-
Fold cross-validation. The models assessed include Linear Regression
(LR), Support Vector Regression (SVR), Decision Tree (DT), Random
Forest (RF), Gradient Boosting (GB), and the Proposed Hybrid
Transformer-CNN model. Table 4 summarizes the performance metrics
for each model, including MSE, RMSE, MAE, R2, MAPE, MSLE, MedAE,
and CV-RMSE.
The Proposed Model consistently outperformed other models across

most metrics. For instance, the Hybrid Transformer-CNN model ach-
ieved a mean MSE of 784.26, RMSE of 27.15, MAE of 16.52, and R2 of
0.9875, indicating high accuracy and reliability. In contrast, SVR and
Decision Tree models showed significantly higher errors and lower R2

values, demonstrating poorer performance. The Proposed Model’s su-
perior performance is also reflected in its lower standard deviations,
suggesting stable and consistent predictions across different folds.

5.2. Comparison of model performance with other existing methods

When comparing the Hybrid Transformer-CNN model to other
existing models, the results clearly indicate its superior predictive
capability. The Linear Regression model, for instance, had a mean MSE
of 3896.02 and an R2 of 0.9380, significantly worse than the Hybrid
Transformer-CNN model. Similarly, SVR and Decision Tree models had
mean R2 values of 0.0794 and 0.8269, respectively, compared to the
Hybrid Transformer-CNN model’s 0.9875. These comparisons highlight
the effectiveness of the hybrid Transformer-CNN architecture in
capturing complex patterns and dependencies within the data.
Fig. 10 illustrate the actual versus model-predicted values for the

training and test sets, respectively, with a 20% deviation margin band.
The Hybrid Transformer-CNN Model’s predictions closely follow the
actual values, staying well within the deviation margin, further
demonstrating its accuracy.
Fig. 11 depicts the number of epochs versus loss and validation loss

during training and validation of hybrid Transformer-CNN model,
showing a stable convergence with minimal overfitting.
Fig. 12 presents a radar plot comparing the performance of different

models across various metrics. The hybrid Transformer-CNN Model
shows superior performance across most metrics, emphasizing its
robustness and efficacy.

5.3. Model interpretability

Understanding the decision-making process of deep learning models
is crucial, especially in structural engineering applications where
interpretability can provide valuable insights into the underlying
physical phenomena (Zhang et al., 2024). To address the black-box
nature of the proposed Transformer-CNN hybrid model, we employed
SHAP (SHapley Additive exPlanations) to analyze and interpret the
model’s predictions. SHAP values quantify the contribution of each
feature to the prediction for individual samples, offering both global and
local interpretability (Zhang et al., 2023).
The SHAP summary plot (beeswarm) reveals the distribution and

impact of each feature across all predictions. From the beeswarm plot
(see Fig. 13), feature X5 shows the most substantial positive impact on

Fig. 10. Actual versus model predicted Y plot with 20 % deviation margin band
on training and test set.

Fig. 11. Number of epochs versus loss and validation loss.

L. Shang et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110217 

14 



the model’s predictions, indicating a strong direct relationship with the
target values. Conversely, X8 displays both positive and negative im-
pacts, suggesting more complex interactions where the context or
interaction with other features determines its effect on the model’s
output. The SHAP bar plot further quantifies these influences, showing
that X5, X8, X4, and X3 have the most substantial average impacts on
model output, highlighting their critical roles in the predictive accuracy
of the model (see Fig. 14).
To delve deeper into the interactions of specific features, dependence

plots were analyzed. The SHAP dependence plot for X5 (see Fig. 15)
illustrates a predominantly linear relationship with the model’s output,
reaffirming its strong influence. Higher values of X5 generally lead to
higher predictions, which is consistent with its engineering implications,
such as material strength or geometric properties. In contrast, the
dependence plot for X8 (see Fig. 16) shows clusters of both high positive
and negative SHAP values across its range, indicating variable effects
depending on the interaction with other features, which is indicative of
operational conditions or external environmental factors.
The dependence plots for X4 and X3 (see Figs. 17 and 18,

Fig. 12. Radar plot of model’s performance and comparison.

Fig. 13. SHAP summary beeswarm plot.

Fig. 14. SHAP summary bar plot.
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respectively) show more scattered distributions, suggesting that these
features contribute to the model’s output in more nuanced ways. For X4,
higher values tend to lead to higher outputs, but with considerable
variation that might be influenced by interactions with other features.

X3 shows a general trend where certain mid-range values lead to posi-
tive impacts on model outputs, hinting at an optimal range for this
particular feature.
The SHAP analysis not only validates the model’s predictions but

also provides meaningful engineering insights. Material properties such
as concrete strength and PVC tube tensile strength are critical de-
terminants of load capacity, emphasizing the importance of material
selection and quality in composite column design. Geometric parame-
ters including core diameter and specimen height significantly influence
structural performance, guiding optimal design configurations to
enhance load-bearing capabilities. Moreover, loading conditions,
particularly eccentricity, are crucial factors affecting load capacity,
highlighting the need for careful consideration of loading scenarios in
structural applications.
By integrating SHAP-based interpretability into our analysis, we

bridge the gap between complex machine learning models and practical
engineering applications. This approach not only enhances the trans-
parency and trustworthiness of the model but also provides actionable
insights that can inform design decisions and improve structural
performance.

5.4. Interpretation of results & significance of findings

The results indicate that the Proposed Hybrid Transformer-CNN
model significantly outperforms traditional models such as Linear
Regression, SVR, Decision Tree, Random Forest, and Gradient Boosting.
The high R2 value suggests that the Proposed Model explains a large
portion of the variance in the load carrying capacity, while the lowMSE,
RMSE, and MAE values indicate minimal prediction errors. Fig. 19
presents a box plot for composite metrics comparison, highlighting the
distribution of errors for each model. The Proposed Model shows the
least variance and the lowest median error across all metrics, confirming
its robustness and reliability.
The superior performance of the Proposed Model underscores the

importance of using advanced deep learning architectures like the
hybrid Transformer-CNN in structural engineering applications. Tradi-
tional models often struggle to capture the complex interactions and
dependencies in the data, leading to higher prediction errors. In
contrast, the hybrid model’s ability to integrate local feature extraction
with global dependency modeling provides a significant advantage.

5.5. Potential applications and implications in structural engineering

The findings from this study have several important implications for
structural engineering. The ability to accurately predict the load car-
rying capacity of composite columns can lead to safer and more efficient

Fig. 15. SHAP dependence plot for X5 (standard cylinder concrete strength).

Fig. 16. SHAP dependence plot for X8 (Eccentricity).

Fig. 17. SHAP dependence plot for X4 (Height of the Tested Specimen).

Fig. 18. SHAP dependence plot for X3 (Concrete Core Diameter).
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structural designs. Engineers can use the Proposed Model to assess the
structural integrity of columns under various conditions, leading to
better-informed decisions in the design and construction process.
Additionally, the robustness and accuracy of the model can reduce the
need for extensive physical testing, saving time and resources.
Overall, the results demonstrate that the Proposed Hybrid

Transformer-CNN model is a powerful tool for predicting the load car-
rying capacity of composite columns, offering significant improvements
over traditional methods and providing valuable insights for structural
engineering applications.

6. Conclusions

Amachine learning-based data-driven framework is presented in this
study for predicting the load carrying capacity of composite columns. A
comprehensive and reliable dataset was constructed, containing 200
samples with input features such as thickness of PVC tube, tensile
strength of PVC tube, standard cylinder concrete strength, concrete core
diameter, height of the tested specimen, longitudinal and transverse
reinforcement ratios multiplied by the tensile strength of the rebars, and

eccentricity. Various machine learning algorithms, including Linear
Regression, Support Vector Regression, Decision Tree, Random Forest,
Gradient Boosting, and a Proposed Hybrid Transformer-CNN model,
were employed for the prediction task. K-Fold cross-validation was
utilized to ensure robust model performance evaluation. The main
conclusions are summarized as follows:

1. The Proposed Hybrid Transformer-CNN model demonstrated supe-
rior performance across all metrics compared to traditional models.
It achieved the lowest Mean Squared Error (MSE) and highest R2,
indicating high accuracy and reliability in predicting the load car-
rying capacity of composite columns.

2. Traditional models such as Linear Regression and SVR showed
significantly higher prediction errors and lower R2 values, high-
lighting the limitations of these models in capturing the complex
interactions and dependencies within the data.

3. The use of advanced deep learning architectures, specifically the
hybrid Transformer-CNN, allowed for effective feature extraction
and global dependency modeling, which are crucial for accurate
predictions in structural engineering applications.

Fig. 19. Box plot for composite metrics comparison.
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4. The consistent performance of the Proposed Model across different
folds, as evidenced by low standard deviations in metrics, un-
derscores its robustness and reliability.

5. The radar plot comparison of model performances revealed that the
Proposed Model excels across multiple evaluation criteria, confirm-
ing its efficacy and suitability for practical applications in structural
engineering.

The data-driven approach adopted in this study has shown high ac-
curacy and rationality on the dataset, demonstrating the effectiveness of
machine learning methods in structural engineering. However, the ex-
istence of class imbalances in the data presents challenges that prevent
achieving 100% prediction accuracy.
Building upon the findings and limitations of this study, several

advanced technologies and methodologies can be explored to enhance
the predictive modelling of Polyvinyl Chloride Tube-Confined Concrete
Columns.

1. Investigating more sophisticated architectures such as Graph Neural
Networks (GNNs) or Attention-based models could capture complex
structural relationships and interactions more effectively.

2. Combining multiple machine learning models through ensemble
methods like stacking, boosting, or bagging can potentially improve
prediction accuracy and model robustness.

3. Employing automated hyperparameter tuning methods, such as
Bayesian Optimization or Genetic Algorithms, may enhance model
performance by identifying optimal configurations.

4. Implementing techniques such as Synthetic Minority Over-sampling
Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), or
cost-sensitive learning can mitigate the effects of class imbalance,
leading to more reliable predictions.

5. Incorporating explainability frameworks can provide insights into
the decision-making process of the models, fostering greater trust

and facilitating the integration of domain knowledge into the
models.

6. Combining machine learning models with traditional physics-based
models can leverage the strengths of both approaches, enhancing
predictive accuracy and ensuring consistency with physical laws.

7. Exploring transfer learning techniques can allow models trained on
related tasks or datasets to be adapted for predicting the load ca-
pacity of composite columns, reducing the need for extensive
labelled data.

8. Developing models capable of real-time data processing and pre-
diction can be invaluable for structural health monitoring and pro-
active maintenance strategies.

By pursuing these advanced methodologies, future research can
address the current limitations and further advance the application of
machine learning in structural engineering, leading to more accurate,
reliable, and interpretable models.
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Nomenclature

Symbols
dk Dimension of the key vectors
FFN(x) Feed-Forward Network function
Pcc Load carrying capacity (kN)
PE Positional Encoding
Q, K, V Query, Key, and Value matrices used in attention mechanisms
ReLU(x) Rectified Linear Unit function, max(0,x)
X1 Thickness of PVC tube (mm)
X2 Tensile strength of PVC tube (MPa)
X3 Standard cylinder concrete strength (MPa)
X4 Concrete core diameter (mm)
X5 Height of the tested specimen (mm)
X6 Longitudinal reinforcement ratio multiplied by the tensile strength of the longitudinal steel rebars (MPa)
X7 Transverse reinforcement ratio multiplied by the tensile strength of the transverse steel rebars (MPa)
X8 Eccentricity (mm)

Abbreviations and Acronyms
ANN Artificial Neural Network
CFST Concrete-Filled Steel Tubes
CNN Convolutional Neural Network
CV-RMSE Coefficient of Variation of the Root Mean Square Error
DT Decision Tree
GNN Graph Neural Network
FRP Fiber Reinforced Polymer
GB Gradient Boosting
GUI Graphical User Interface
KAN Kolmogorov–Arnold Network
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LSTM Long Short-Term Memory
LR Linear Regression
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MedAE Median Absolute Error
ML Machine Learning
MSE Mean Squared Error
MSLE Mean Squared Logarithmic Error
PCA Principal Component Analysis
PVC Polyvinyl Chloride
RF Random Forest
RMSE Root Mean Squared Error
R2 Coefficient of Determination
SHAP SHapley Additive exPlanations
SVR Support Vector Regression
Transformer-CNN Hybrid Transformer-Convolutional Neural Network
XGBoost Extreme Gradient Boosting

APPENDIX A

Table A1
Database information.

No Code Axial Strain (mm/mm) Load (KN) e (mm) tp (mm) D (mm) H (mm) fyp (Mpa) fc (MPa) Longitudinal
reinforcement

Transverse
reinforcement

Ø (mm) No. Ø (mm) S (mm)

1 E00_1 0.0215 1210.56 0 7.8 200 500 62.00 28.50 10 8 6 200
2 E00_2 0.0150 934.78 0 7.8 200 500 62.00 28.50 0 0 0 0
3 E00_3 0.0125 703.86 0 5.0 168 588 61.73 29.01 0 0 0 0
4 E00_4 0.0097 615.08 0 4.0 165 495 50.00 26.88 0 0 0 0
5 E00_5 0.0089 762.87 0 2.3 160 500 39.79 25.04 10 6 6 110
6 E00_6 0.0111 778.82 0 3.7 160 500 39.79 25.04 10 6 6 110
7 E00_7 0.0139 825.72 0 5.4 160 500 39.79 25.04 10 6 6 110
8 E00_8 0.0080 721.90 0 2.3 160 1000 39.79 25.04 10 6 6 120
9 E00_9 0.0116 740.89 0 3.7 160 1000 39.79 25.04 10 6 6 120
10 E00_10 0.0134 793.72 0 5.4 160 1000 39.79 25.04 10 6 6 120
11 E00_11 0.0082 794.17 0 2.3 160 1000 39.79 29.12 10 6 6 120
12 E00_12 0.0100 812.46 0 3.7 160 1000 39.79 29.12 10 6 6 120
13 E00_13 0.0141 873.75 0 5.4 160 1000 39.79 29.12 10 6 6 120
14 E00_14 0.0083 738.84 0 2.3 160 750 39.79 25.04 10 6 6 120
15 E00_15 0.0097 753.58 0 3.7 160 750 39.79 25.04 10 6 6 120
16 E00_16 0.0133 797.87 0 5.4 160 750 39.79 25.04 10 6 6 120
17 E00_17 0.0191 79.56 0 2.5 63 126 49.74 10.50 0 0 0 0
18 E00_18 0.0178 143.89 0 3.0 90 180 49.74 10.50 0 0 0 0
19 E00_19 0.0155 190.53 0 3.0 110 220 49.74 10.50 0 0 0 0
20 E00_20 0.0144 271.86 0 3.0 140 280 49.74 10.50 0 0 0 0
21 E00_21 0.0179 86.27 0 2.5 63 126 49.74 13.79 0 0 0 0
22 E00_22 0.0159 154.97 0 3.0 90 180 49.74 13.79 0 0 0 0
23 E00_23 0.0140 209.86 0 3.0 110 220 49.74 13.79 0 0 0 0
24 E00_24 0.0118 299.65 0 3.0 140 280 49.74 13.79 0 0 0 0
25 E00_25 0.0165 92.33 0 2.5 63 126 49.74 16.89 0 0 0 0
26 E00_26 0.0138 167.09 0 3.0 90 180 49.74 16.89 0 0 0 0
27 E00_27 0.0123 229.00 0 3.0 110 220 49.74 16.89 0 0 0 0
28 E00_28 0.0114 321.87 0 3.0 140 280 49.74 16.89 0 0 0 0
29 E00_29 0.0151 97.88 0 2.5 63 126 49.74 20.13 0 0 0 0
30 E00_30 0.0127 182.15 0 3.0 90 180 49.74 20.13 0 0 0 0
31 E00_31 0.0116 245.99 0 3.0 110 220 49.74 20.13 0 0 0 0
32 E00_32 0.0069 353.71 0 3.0 140 280 49.74 20.13 0 0 0 0
33 E00_33 0.0136 105.70 0 2.5 63 126 49.74 24.12 0 0 0 0
34 E00_34 0.0118 196.95 0 3.0 90 180 49.74 24.12 0 0 0 0
35 E00_35 0.0089 267.80 0 3.0 110 220 49.74 24.12 0 0 0 0
36 E00_36 0.0061 406.87 0 3.0 140 280 49.74 24.12 0 0 0 0
37 E00_37 0.0102 63.89 0 2.0 70 158 33.40 15.00 0 0 0 0
38 E00_38 0.0090 123.14 0 3.0 100 225 34.20 15.00 0 0 0 0
39 E00_39 0.0065 265.73 0 3.0 150 338 34.20 15.00 0 0 0 0
40 E00_40 0.0046 127.77 0 2.0 70 158 33.40 35.00 0 0 0 0
41 E00_41 0.0059 255.51 0 3.0 100 225 34.20 35.00 0 0 0 0
42 E00_42 0.0070 499.34 0 3.9 140 500 52.00 35.00 0 0 0 0
43 E00_43 0.0079 561.75 0 4.3 160 500 52.00 30.00 0 0 0 0
44 E00_44 0.0054 721.37 0 3.9 140 500 52.00 51.50 0 0 0 0
45 E20_1 0.0149 1093.92 20 7.8 200 500 62.00 28.50 10 8 6 200

(continued on next page)
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Table A1 (continued )

No Code Axial Strain (mm/mm) Load (KN) e (mm) tp (mm) D (mm) H (mm) fyp (Mpa) fc (MPa) Longitudinal
reinforcement

Transverse
reinforcement

Ø (mm) No. Ø (mm) S (mm)

46 E20_2 0.0115 854.90 20 7.8 200 500 62.00 28.50 0 0 0 0
47 E20_3 0.0072 617.28 20 5.0 168 588 61.73 29.01 0 0 0 0
48 E20_4 0.0068 552.17 20 4.0 165 495 50.00 26.88 0 0 0 0
49 E20_5 0.0067 675.77 20 2.3 160 500 39.79 25.04 10 6 6 110
50 E20_6 0.0086 693.60 20 3.7 160 500 39.79 25.04 10 6 6 110
51 E20_7 0.0110 733.30 20 5.4 160 500 39.79 25.04 10 6 6 110
52 E20_8 0.0027 582.12 20 2.3 160 1000 39.79 25.04 10 6 6 120
53 E20_9 0.0033 597.63 20 3.7 160 1000 39.79 25.04 10 6 6 120
54 E20_10 0.0039 628.11 20 5.4 160 1000 39.79 25.04 10 6 6 120
55 E20_11 0.0026 639.26 20 2.3 160 1000 39.79 29.12 10 6 6 120
56 E20_12 0.0032 655.50 20 3.7 160 1000 39.79 29.12 10 6 6 120
57 E20_13 0.0044 690.72 20 5.4 160 1000 39.79 29.12 10 6 6 120
58 E20_14 0.0033 614.37 20 2.3 160 750 39.79 25.04 10 6 6 120
59 E20_15 0.0038 622.30 20 3.7 160 750 39.79 25.04 10 6 6 120
60 E20_16 0.0044 643.98 20 5.4 160 750 39.79 25.04 10 6 6 120
61 E20_17 0.0154 56.56 20 2.5 63 0 49.74 10.50 0 0 0 0
62 E20_18 0.0131 113.25 20 3.0 90 0 49.74 10.50 0 0 0 0
63 E20_19 0.0128 157.30 20 3.0 110 0 49.74 10.50 0 0 0 0
64 E20_20 0.0119 235.36 20 3.0 140 0 49.74 10.50 0 0 0 0
65 E20_21 0.0123 61.12 20 2.5 63 0 49.74 13.79 0 0 0 0
66 E20_22 0.0114 121.58 20 3.0 90 0 49.74 13.79 0 0 0 0
67 E20_23 0.0107 172.72 20 3.0 110 0 49.74 13.79 0 0 0 0
68 E20_24 0.0095 258.19 20 3.0 140 0 49.74 13.79 0 0 0 0
69 E20_25 0.0116 65.13 20 2.5 63 0 49.74 16.89 0 0 0 0
70 E20_26 0.0098 130.46 20 3.0 90 0 49.74 16.89 0 0 0 0
71 E20_27 0.0092 187.80 20 3.0 110 0 49.74 16.89 0 0 0 0
72 E20_28 0.0078 278.34 20 3.0 140 0 49.74 16.89 0 0 0 0
73 E20_29 0.0099 68.58 20 2.5 63 0 49.74 20.13 0 0 0 0
74 E20_30 0.0091 141.84 20 3.0 90 0 49.74 20.13 0 0 0 0
75 E20_31 0.0080 201.70 20 3.0 110 0 49.74 20.13 0 0 0 0
76 E20_32 0.0053 305.30 20 3.0 140 0 49.74 20.13 0 0 0 0
77 E20_33 0.0084 73.47 20 2.5 63 0 49.74 24.12 0 0 0 0
78 E20_34 0.0077 153.36 20 3.0 90 0 49.74 24.12 0 0 0 0
79 E20_35 0.0065 221.04 20 3.0 110 0 49.74 24.12 0 0 0 0
80 E20_36 0.0049 349.07 20 3.0 140 0 49.74 24.12 0 0 0 0
81 E20_37 0.0067 46.82 20 2.0 70 158 33.40 15.00 0 0 0 0
82 E20_38 0.0060 99.69 20 3.0 100 225 34.20 15.00 0 0 0 0
83 E20_39 0.0050 232.48 20 3.0 150 338 34.20 15.00 0 0 0 0
84 E20_40 0.0029 86.07 20 2.0 70 158 33.40 35.00 0 0 0 0
85 E20_41 0.0045 197.91 20 3.0 100 225 34.20 35.00 0 0 0 0
86 E20_42 0.0042 413.50 20 3.9 140 500 52.00 35.00 0 0 0 0
87 E20_43 0.0054 489.88 20 4.3 160 500 52.00 30.00 0 0 0 0
88 E20_44 0.0033 583.23 20 3.9 140 500 52.00 51.50 0 0 0 0
89 E30_1 0.0115 998.70 30 7.8 200 500 62.00 28.50 10 8 6 200
90 E30_2 0.0096 785.79 30 7.8 200 500 62.00 28.50 0 0 0 0
91 E30_3 0.0051 545.21 30 5.0 168 588 61.73 29.01 0 0 0 0
92 E30_4 0.0053 490.84 30 4.0 165 495 50.00 26.88 0 0 0 0
93 E30_5 0.0051 596.96 30 2.3 160 500 39.79 25.04 10 6 6 110
94 E30_6 0.0065 616.46 30 3.7 160 500 39.79 25.04 10 6 6 110
95 E30_7 0.0077 655.22 30 5.4 160 500 39.79 25.04 10 6 6 110
96 E30_8 0.0019 497.74 30 2.3 160 1000 39.79 25.04 10 6 6 120
97 E30_9 0.0023 510.98 30 3.7 160 1000 39.79 25.04 10 6 6 120
98 E30_10 0.0026 534.45 30 5.4 160 1000 39.79 25.04 10 6 6 120
99 E30_11 0.0019 542.47 30 2.3 160 1000 39.79 29.12 10 6 6 120
100 E30_12 0.0022 551.13 30 3.7 160 1000 39.79 29.12 10 6 6 120
101 E30_13 0.0028 588.08 30 5.4 160 1000 39.79 29.12 10 6 6 120
102 E30_14 0.0023 526.66 30 2.3 160 750 39.79 25.04 10 6 6 120
103 E30_15 0.0025 533.57 30 3.7 160 750 39.79 25.04 10 6 6 120
104 E30_16 0.0029 552.39 30 5.4 160 750 39.79 25.04 10 6 6 120
105 E30_17 0.0130 45.57 30 2.5 63 0 49.74 10.50 0 0 0 0
106 E30_18 0.0122 95.09 30 3.0 90 0 49.74 10.50 0 0 0 0
107 E30_19 0.0114 135.28 30 3.0 110 0 49.74 10.50 0 0 0 0
108 E30_20 0.0103 208.75 30 3.0 140 0 49.74 10.50 0 0 0 0
109 E30_21 0.0106 48.51 30 2.5 63 0 49.74 13.79 0 0 0 0
110 E30_22 0.0101 101.00 30 3.0 90 0 49.74 13.79 0 0 0 0
111 E30_23 0.0089 147.34 30 3.0 110 0 49.74 13.79 0 0 0 0
112 E30_24 0.0079 228.71 30 3.0 140 0 49.74 13.79 0 0 0 0
113 E30_25 0.0098 51.41 30 2.5 63 0 49.74 16.89 0 0 0 0
114 E30_26 0.0086 107.69 30 3.0 90 0 49.74 16.89 0 0 0 0
115 E30_27 0.0078 159.72 30 3.0 110 0 49.74 16.89 0 0 0 0
116 E30_28 0.0063 247.11 30 3.0 140 0 49.74 16.89 0 0 0 0
117 E30_29 0.0089 53.44 30 2.5 63 0 49.74 20.13 0 0 0 0
118 E30_30 0.0075 116.28 30 3.0 90 0 49.74 20.13 0 0 0 0

(continued on next page)
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Table A1 (continued )

No Code Axial Strain (mm/mm) Load (KN) e (mm) tp (mm) D (mm) H (mm) fyp (Mpa) fc (MPa) Longitudinal
reinforcement

Transverse
reinforcement

Ø (mm) No. Ø (mm) S (mm)

119 E30_31 0.0062 171.48 30 3.0 110 0 49.74 20.13 0 0 0 0
120 E30_32 0.0048 270.70 30 3.0 140 0 49.74 20.13 0 0 0 0
121 E30_33 0.0075 56.35 30 2.5 63 0 49.74 24.12 0 0 0 0
122 E30_34 0.0061 124.70 30 3.0 90 0 49.74 24.12 0 0 0 0
123 E30_35 0.0052 187.34 30 3.0 110 0 49.74 24.12 0 0 0 0
124 E30_36 0.0043 308.07 30 3.0 140 0 49.74 24.12 0 0 0 0
125 E30_37 0.0060 35.61 30 2.0 70 158 33.40 15.00 0 0 0 0
126 E30_38 0.0050 82.14 30 3.0 100 225 34.20 15.00 0 0 0 0
127 E30_39 0.0043 206.85 30 3.0 150 338 34.20 15.00 0 0 0 0
128 E30_40 0.0022 60.68 30 2.0 70 158 33.40 35.00 0 0 0 0
129 E30_41 0.0035 158.21 30 3.0 100 225 34.20 35.00 0 0 0 0
130 E30_42 0.0029 349.65 30 3.9 140 500 52.00 35.00 0 0 0 0
131 E30_43 0.0043 432.70 30 4.3 160 500 52.00 30.00 0 0 0 0
132 E30_44 0.0024 489.74 30 3.9 140 500 52.00 51.50 0 0 0 0
133 E40_1 0.0099 900.01 40 7.8 200 500 62.00 28.50 10 8 6 200
134 E40_2 0.0096 705.22 40 7.8 200 500 62.00 28.50 0 0 0 0
135 E40_3 0.0041 476.27 40 5.0 168 588 61.73 29.01 0 0 0 0
136 E40_4 0.0041 427.15 40 4.0 165 495 50.00 26.88 0 0 0 0
137 E40_5 0.0033 502.59 40 2.3 160 500 39.79 25.04 10 6 6 110
138 E40_6 0.0045 520.24 40 3.7 160 500 39.79 25.04 10 6 6 110
139 E40_7 0.0056 559.84 40 5.4 160 500 39.79 25.04 10 6 6 110
140 E40_8 0.0014 404.68 40 2.3 160 1000 39.79 25.04 10 6 6 120
141 E40_9 0.0016 417.60 40 3.7 160 1000 39.79 25.04 10 6 6 120
142 E40_10 0.0019 446.72 40 5.4 160 1000 39.79 25.04 10 6 6 120
143 E40_11 0.0013 440.37 40 2.3 160 1000 39.79 29.12 10 6 6 120
144 E40_12 0.0015 453.60 40 3.7 160 1000 39.79 29.12 10 6 6 120
145 E40_13 0.0020 490.57 40 5.4 160 1000 39.79 29.12 10 6 6 120
146 E40_14 0.0018 448.07 40 2.3 160 750 39.79 25.04 10 6 6 120
147 E40_15 0.0019 453.22 40 3.7 160 750 39.79 25.04 10 6 6 120
148 E40_16 0.0022 474.12 40 5.4 160 750 39.79 25.04 10 6 6 120
149 E40_17 0.0110 36.47 40 2.5 63 0 49.74 10.50 0 0 0 0
150 E40_18 0.0107 79.90 40 3.0 90 0 49.74 10.50 0 0 0 0
151 E40_19 0.0524 117.58 40 3.0 110 0 49.74 10.50 0 0 0 0
152 E40_20 0.0092 182.90 40 3.0 140 0 49.74 10.50 0 0 0 0
153 E40_21 0.0085 37.98 40 2.5 63 0 49.74 13.79 0 0 0 0
154 E40_22 0.0090 83.89 40 3.0 90 0 49.74 13.79 0 0 0 0
155 E40_23 0.0079 124.67 40 3.0 110 0 49.74 13.79 0 0 0 0
156 E40_24 0.0063 198.65 40 3.0 140 0 49.74 13.79 0 0 0 0
157 E40_25 0.0083 40.22 40 2.5 63 0 49.74 16.89 0 0 0 0
158 E40_26 0.0075 88.37 40 3.0 90 0 49.74 16.89 0 0 0 0
159 E40_27 0.0067 133.74 40 3.0 110 0 49.74 16.89 0 0 0 0
160 E40_28 0.0051 214.71 40 3.0 140 0 49.74 16.89 0 0 0 0
161 E40_29 0.0075 41.54 40 2.5 63 0 49.74 20.13 0 0 0 0
162 E40_30 0.0068 94.32 40 3.0 90 0 49.74 20.13 0 0 0 0
163 E40_31 0.0052 142.14 40 3.0 110 0 49.74 20.13 0 0 0 0
164 E40_32 0.0042 233.54 40 3.0 140 0 49.74 20.13 0 0 0 0
165 E40_33 0.0065 43.34 40 2.5 63 0 49.74 24.12 0 0 0 0
166 E40_34 0.0056 99.64 40 3.0 90 0 49.74 24.12 0 0 0 0
167 E40_35 0.0042 153.57 40 3.0 110 0 49.74 24.12 0 0 0 0
168 E40_36 0.0038 264.56 40 3.0 140 0 49.74 24.12 0 0 0 0
169 E40_37 0.0069 27.71 40 2.0 70 158 33.40 15.00 0 0 0 0
170 E40_38 0.0048 66.30 40 3.0 100 225 34.20 15.00 0 0 0 0
171 E40_39 0.0037 178.81 40 3.0 150 338 34.20 15.00 0 0 0 0
172 E40_40 0.0018 41.39 40 2.0 70 158 33.40 35.00 0 0 0 0
173 E40_41 0.0026 119.45 40 3.0 100 225 34.20 35.00 0 0 0 0
174 E40_42 0.0019 283.54 40 3.9 140 500 52.00 35.00 0 0 0 0
175 E40_43 0.0033 369.35 40 4.3 160 500 52.00 30.00 0 0 0 0
176 E40_44 0.0014 388.50 40 3.9 140 500 52.00 51.50 0 0 0 0
177 E50_1 0.0094 807.17 50 7.8 200 500 62.00 28.50 10 8 6 200
178 E50_2 0.0088 643.00 50 7.8 200 500 62.00 28.50 0 0 0 0
179 E50_3 0.0033 415.16 50 5.0 168 588 61.73 29.01 0 0 0 0
180 E50_4 0.0032 368.07 50 4.0 165 495 50.00 26.88 0 0 0 0
181 E50_5 0.0024 405.46 50 2.3 160 500 39.79 25.04 10 6 6 110
182 E50_6 0.0031 423.90 50 3.7 160 500 39.79 25.04 10 6 6 110
183 E50_7 0.0037 461.32 50 5.4 160 500 39.79 25.04 10 6 6 110
184 E50_8 0.0009 322.78 50 2.3 160 1000 39.79 25.04 10 6 6 120
185 E50_9 0.0011 339.00 50 3.7 160 1000 39.79 25.04 10 6 6 120
186 E50_10 0.0014 367.05 50 5.4 160 1000 39.79 25.04 10 6 6 120
187 E50_11 0.0009 354.78 50 2.3 160 1000 39.79 29.12 10 6 6 120
188 E50_12 0.0011 365.60 50 3.7 160 1000 39.79 29.12 10 6 6 120
189 E50_13 0.0014 400.69 50 5.4 160 1000 39.79 29.12 10 6 6 120
190 E50_14 0.0013 374.77 50 2.3 160 750 39.79 25.04 10 6 6 120
191 E50_15 0.0015 379.93 50 3.7 160 750 39.79 25.04 10 6 6 120

(continued on next page)
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Table A1 (continued )

No Code Axial Strain (mm/mm) Load (KN) e (mm) tp (mm) D (mm) H (mm) fyp (Mpa) fc (MPa) Longitudinal
reinforcement

Transverse
reinforcement

Ø (mm) No. Ø (mm) S (mm)

192 E50_16 0.0018 412.04 50 5.4 160 750 39.79 25.04 10 6 6 120
193 E50_19 0.0401 101.96 50 3.0 110 220 49.74 10.50 0 0 0 0
194 E50_20 0.0082 159.44 50 3.0 140 280 49.74 10.50 0 0 0 0
195 E50_23 0.0071 105.51 50 3.0 110 220 49.74 13.79 0 0 0 0
196 E50_24 0.0059 171.42 50 3.0 140 280 49.74 13.79 0 0 0 0
197 E50_35 0.0038 125.67 50 3.0 110 220 49.74 24.12 0 0 0 0
198 E50_36 0.0031 222.43 50 3.0 140 280 49.74 24.12 0 0 0 0
199 E50_43 0.0022 304.84 50 4.3 160 500 52.00 30.00 0 0 0 0
200 E50_44 0.0008 291.13 50 3.9 140 500 52.00 51.50 0 0 0 0

Data availability

Data will be made available on request.
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