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Abstract: This paper presents a novel bio-inspired metaheuristic algorithm termed the Fossa Optimization Algorithm 

(FOA), which emulates the natural hunting behavior of the fossa in its habitat. FOA draws its core inspiration from 

the two-stage hunting technique of the fossa, involving an initial attack on a spotted lemur followed by a pursuit 

through the trees. The theoretical framework of FOA is elaborated, and its implementation is mathematically modeled 

in two distinct phases: (i) exploration, which simulates the fossa's positional adjustments during the initial attack on 

the lemur, and (ii) exploitation, which models the positional changes of the fossa during the chase. The efficacy of 

FOA is tested against twenty-two constrained optimization problems from the CEC 2011 test suite, as well as four 

engineering design challenges. The optimization results demonstrate FOA's strong capabilities in both exploration and 

exploitation, maintaining a balance that facilitates convergence to optimal solutions. FOA's performance is 

benchmarked against twelve established algorithms, showing that it consistently outperforms its competitors by 

delivering superior results and ranking as the top optimizer in most of the evaluated functions. These findings indicate 

that FOA is highly effective in addressing optimization tasks in real-world scenarios. 

Keywords: Metaheuristic, Optimization, Fossa, Exploitation, Exploration. 

 

 

1. Introduction 

Optimization issues are crucial in today's world, 

making efficient methods to handle them a significant 

research challenge. The primary aim is to identify the 

most optimal solution from a spectrum of 

possibilities [1]. While the ideal is to achieve the 

global optimum, quasi-optimal solutions are 

sometimes acceptable [2]. Optimization dilemmas 

typically involve modeling with decision variables, 

constraints, and an objective function, aimed at 

optimizing the latter by determining suitable values 

for the former while adhering to constraints [3]. 

Techniques employed to address these optimization 

predicaments are categorized into deterministic and 

stochastic approaches [4]. 

Deterministic algorithms always reach the same 

solution under the same initial conditions and are 

effective for simple problems and small solution 

spaces [5, 6]. However, they struggle with large-scale, 

nonlinear, and multimodal problems, often getting 

stuck in local optima [7, 8]. Stochastic approaches, 

particularly metaheuristic algorithms, offer an 

alternative by using random search [9]. These 

algorithms are popular due to their ease of 
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implementation, efficiency in complex and unknown 

solution spaces, and ability to handle non-convex and 

non-differentiable problems [10]. Despite their 

advantages, metaheuristic algorithms do not 

guarantee the global optimal solution but can provide 

quasi-optimal solutions close to the global optimum 

[11]. This has led to the development of numerous 

metaheuristic algorithms [12]. 

The No Free Lunch (NFL) theorem asserts that no 

single metaheuristic algorithm universally excels 

across all optimization problems, underscoring the 

imperative to innovate and develop novel algorithms 

[13]. The inherent stochasticity of metaheuristic 

algorithms and the uncertainty surrounding optimal 

solutions emphasize the necessity of creating fresh 

algorithms aimed at achieving superior solutions. 

These considerations serve as catalysts prompting 

researchers to explore and invent new metaheuristic 

algorithms tailored for scientific optimization tasks. 

This study introduces a groundbreaking bio-

inspired metaheuristic algorithm known as the Fossa 

Optimization Algorithm (FOA), specifically 

developed to address complex optimization problems. 

The primary innovations and contributions of this 

research are outlined as follows: 

• Development of FOA: The FOA is designed 

by drawing inspiration from the natural 

behaviors of the fossa, a unique predator in 

the wild. 

• Hunting Strategy Inspiration: The FOA's 

conceptual framework is based on the fossa's 

two-phase hunting strategy, which includes 

an initial phase of attacking a lemur and a 

subsequent phase of chasing the lemur. 

• Theoretical and Mathematical Modeling: 

The FOA's methodology is explained and 

mathematically formulated in two distinct 

phases: 

• Exploration Phase: This phase models the 

positional changes of the fossa during its 

initial attack on the lemur, aiming to cover a 

broad search space. 

• Exploitation Phase: This phase simulates 

the positional adjustments of the fossa during 

the chase, focusing on refining and 

intensifying the search around promising 

areas. 

• Performance Evaluation: The effectiveness 

of FOA is rigorously tested on a set of 

twenty-two constrained optimization 

problems from the CEC 2011 test suite, as 

well as four complex engineering design 

problems. 

• Comparative Analysis: The optimization 

results achieved by FOA are benchmarked 

against twelve well-established 

metaheuristic algorithms, providing a 

comprehensive comparison of performance 

metrics. 

The outcomes of this study highlight the FOA's 

remarkable ability to balance exploration and 

exploitation throughout the search process, leading to 

high-quality solutions for various optimization tasks. 

The comparative analysis demonstrates that FOA 

outperforms many existing algorithms, consistently 

achieving superior results and securing top rankings 

across most benchmark functions. These findings 

affirm the FOA's potential as a robust tool for solving 

real-world optimization problems. 

The paper is organized as follows: Section 2 

presents the literature review. Section 3 introduces 

and models the proposed Fossa Optimization 

Algorithm (FOA). Section 4 assesses the 

performance of the FOA in tackling a variety of real-

world optimization problems, presenting 

experimental results and comparative analyses to 

demonstrate its efficacy. Finally, Section 5 offers 

concluding remarks and proposes directions for 

future research, suggesting potential improvements 

and new applications for the FOA. 

2. Literature review 

Metaheuristic algorithms are inspired by a 

diverse range of natural phenomena, behaviors of 

living organisms, scientific principles from genetics, 

biology, and physics, as well as human activities and 

evolutionary processes. These algorithms can be 

broadly categorized into four groups based on their 

sources of inspiration: swarm-based, evolutionary-

based, physics-based, and human-based approaches. 

Swarm-based metaheuristic algorithms draw 

inspiration from the collective behaviors observed in 

animals, insects, birds, and other creatures. For 

instance, Particle Swarm Optimization (PSO) [14] 

mimics the movement of flocks of birds or schools of 

fish searching for food, where each particle 

(representing a potential solution) updates its position 

based on its own experience and that of the swarm. 

Ant Colony Optimization (ACO) [15] replicates the 

foraging behavior of ants, using pheromone trails to 

find the shortest path between their colony and a food 

source. Similarly, the Grey Wolf Optimizer (GWO) 

[16] models the hierarchical hunting behavior of grey 

wolves. Various natural behaviors inspire many 

swarm-based metaheuristic algorithms, including 

foraging, hunting, migration, and escape. Examples 

include Walrus Optimization Algorithm (WaOA) 
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[17], Gooseneck Barnacle Optimization (GBO) [18], 

Termite Alate Optimization Algorithm (TAOA) [19], 

Orca Predation Algorithm (OPA) [20], Electric Eel 

Foraging Optimization (EEFO) [21], and Greylag 

Goose Optimization (GGO) [22]. 

Evolutionary-based metaheuristic algorithms are 

grounded in principles of genetics, biology, and 

evolutionary theory, such as natural selection and 

survival of the fittest. Notable examples include 

Genetic Algorithm (GA) [23] and Differential 

Evolution (DE) [24], which emulate biological 

reproduction and genetic concepts such as mutation 

and crossover. In GA, each individual, or 

chromosome, represents a member of the population. 

Parents are selected using a selection operator, and 

reproduction is simulated through crossover and 

mutation operators. Following the survival of the 

fittest principle, successive generations evolve, 

guiding the algorithm toward the optimal solution for 

the problem. 

Physics-based metaheuristic algorithms are 

inspired by principles and phenomena in physics. 

Simulated Annealing (SA) [25] mimics the metal 

annealing process, where metals are melted with heat 

and slowly cooled to form an ideal crystal, analogous 

to finding an optimal solution. Gravitational Search 

Algorithm (GSA) [26] models gravitational attraction 

between masses, where each mass represents a 

potential solution, moving towards better solutions 

based on gravitational force and Newton's laws. 

Spring Search Algorithm (SSA) [27] is based on 

Hooke's law, where weights (candidate solutions) 

move towards heavier weights, leading to 

convergence on better solutions. Momentum Search 

Algorithm (MSA) [28] uses collision momentum of 

balls, each representing a candidate solution, to move 

towards the best known position. Cosmological 

concepts inspire algorithms like Multi-Verse 

Optimizer (MVO) [29] and Black Hole Algorithm 

(BHA) [30]. 

Human-based metaheuristic algorithms are 

inspired by various aspects of human behavior, 

decision-making, and social interactions. Teaching-

Learning Based Optimization (TLBO) [31] models 

the classroom learning process, where teachers and 

students represent candidate solutions. The best 

solution, the teacher, guides students toward optimal 

solutions during the teacher phase, and student 

knowledge sharing improves solution quality in the 

student phase. Mother Optimization Algorithm 

(MOA) [32] is based on a Eshrat's care and education 

of her children, with the mother and children as 

candidate solutions. The algorithm updates solutions 

through education, advice, and upbringing phases. 

Driving Training-Based Optimization (DTBO) [7] 

simulates driving school training, with driving 

applicants and instructors as candidate solutions. The 

algorithm updates positions through training, skill 

patterning, and practice phases. 

Despite the extensive range of inspirations for 

existing metaheuristic algorithms, none have yet been 

designed based on the natural behaviors of the fossa, 

a predator native to Madagascar. The fossa's strategy 

of locating, attacking, and chasing lemurs through the 

trees exhibits intelligent and efficient hunting tactics 

that can be harnessed for optimization purposes. To 

address this gap, this paper introduces a novel 

metaheuristic algorithm called the Fossa 

Optimization Algorithm (FOA), inspired by the 

hunting processes of the fossa. The subsequent 

sections of this paper will delve into the theoretical 

foundation, mathematical modeling, and 

performance evaluation of FOA, demonstrating its 

potential as an effective tool for solving complex 

optimization problems. 

3. Fossa optimization algorithm 

In this section, we delve into the foundational 

inspiration behind the development of the proposed 

Fossa Optimization Algorithm (FOA). We begin by 

exploring the biological and behavioral 

characteristics of the fossa that have been emulated 

in the design of FOA. Following this, we present a 

detailed mathematical modeling of the algorithm's 

implementation steps, demonstrating how these 

natural behaviors are translated into computational 

procedures for optimization. 

3.1 Inspiration of FOA 

The fossa (Cryptoprocta ferox) is a cat-like 

mammal native to Madagascar, belonging to the 

Eupleridae family.  

Among the fossa's natural behaviors in wildlife, 

the strategy of this animal in hunting lemurs is much 

more prominent. This intelligent strategy has two 

stages: (i) the attack of the fossa towards the location 

of the observed lemur and (ii) the chase process 

between the fossa and the lemur on the trees. 

Mathematical modeling of these intelligent fossa 

behaviors during hunting has been employed to 

design the proposed Fossa Optimization Algorithm 

(FOA) approach, which is discussed below. 

3.2 Algorithm initialization 

The proposed Fossa Optimization Algorithm 

(FOA) operates as a population-based optimization 

technique where each individual fossa represents a 

member of the population. FOA efficiently searches 
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for optimal solutions by mimicking the fossas' natural 

search behaviors within the defined problem space. 

In this analogy, the fossa's habitat corresponds to the 

problem-solving space, and the position of each fossa 

within this habitat represents a potential solution to 

the optimization problem. 

Each fossa's position is characterized by a vector, 

where each element of the vector signifies the value 

of a decision variable. Thus, a fossa's position 

encapsulates a candidate solution. The entire 

population of fossas, each represented by a position 

vector, is mathematically described by a matrix, as 

shown in Eq. (1). The initial positions of the fossas 

are assigned randomly within the problem space, 

according to Eq. (2). 

This structured approach allows FOA to explore 

and exploit the search space effectively, using the 

fossas' dynamic positional adjustments to iteratively 

hone in on optimal solutions. By leveraging the 

inherent search capabilities of the fossas, FOA 

ensures a thorough examination of the problem space, 

leading to high-quality solutions for complex 

optimization problems. 
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𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 

In this context, 𝑋 represents the population 

matrix of FOA, where 𝑋𝑖 denotes the ith fossa, 

which is a candidate solution. 𝑥𝑖,𝑑 represents the dth 

dimension of the ith fossa in the search space, where 

𝑁 stands for the number of fossas, 𝑚 indicates the 

number of decision variables, 𝑟 is a random number 

in interval [0,1], 𝑙𝑏𝑑, and 𝑢𝑏𝑑 denote the lower and 

upper bounds of the dth decision variable, 

respectively. 

As previously stated, each fossa's position 

denotes a potential solution for the problem and can 

undergo evaluation within the objective function. The 

resultant values from evaluating the objective 

function can be encapsulated in a vector, as outlined 

by Eq. (3). 
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Here, 𝐹  represents the vector of evaluated 

objective function values, with 𝐹𝑖 indicating the 

objective function value corresponding to the ith 

fossa. 

3.3 Mathematical modelling of FOA 

The FOA algorithm is designed by emulating the 

intelligent movement strategies of fossas in nature. 

The positions of the FOA members within the 

problem-solving space are updated through two 

distinct phases: 

Exploration Phase: This phase is inspired by the 

initial attack behavior of fossas when targeting a 

lemur. During this phase, the algorithm focuses on 

exploring the search space broadly to identify 

promising regions. The positional updates during 

exploration are modeled based on the changes in the 

fossa's position as it prepares and initiates its attack. 

Exploitation Phase: This phase mimics the pursuit 

of the lemur through the trees, where the fossa fine-

tunes its approach to home in on the target. In the 

exploitation phase, the algorithm intensifies the 

search around the identified promising areas, refining 

the solutions. The positional updates during 

exploitation are based on the dynamic adjustments 

made by the fossa during the chase. 

The mathematical modeling and detailed explanation 

of each update phase in FOA are presented below. 

3.3.1 Attacking and moving towards the lemur 

(exploration phase)  

In the initial phase of the FOA, the positions of 

the population members within the problem-solving 

space are updated by simulating the fossa's attack on 

an observed lemur. Fossas can accurately locate 

lemurs using their keen sense of smell, hearing, and 

vision. Once the lemur's position is identified, the 

fossa advances toward it. This modeled displacement 

during the attack phase results in significant changes 

in the positions of the population members, thereby 

enhancing FOA's global exploration capabilities. 

For each fossa, the positions of other population 

members with better objective function values are 

regarded as the lemurs' locations within its habitat. 

Consequently, the set of candidate lemurs for each 

fossa is determined by comparing objective function 

values, as described by Eq. (4): 

 

𝐶𝐿𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖 𝑎𝑛𝑑 𝑘 ≠ 𝑖}, 
where 𝑖 = 1,2, … ,𝑁 and 𝑘 ∈ {1,2, … ,𝑁} 

(4) 

 

In this equation, 𝐶𝐿𝑖   represents the set of 

candidate lemur locations for the 𝑖 th fossa, 𝑋𝑘 

denotes the population member with a superior 
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objective function value than the 𝑖th fossa, and 𝐹𝑘 is 

its corresponding objective function value. 

The FOA assumes that the fossa randomly selects 

one of these candidate lemurs in its habitat and 

launches an attack. Based on the fossa's positional 

change during the attack on the identified lemur, a 

new random position for each member of the FOA 

population is calculated using Eq. (5). If this new 

position yields a better objective function value, it 

replaces the previous position of the respective 

population member, as outlined in Eq. (6). 

 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗  ∙ (𝑆𝐿𝑖,𝑗 − 𝐼𝑖,𝑗 ∙ 𝑥𝑖,𝑗),    (5) 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖,

𝑋𝑖, 𝑒𝑙𝑠𝑒 ,
  (6) 

 

In this context, 𝑆𝐿𝑖 denotes the lemur chosen by 

the 𝑖th fossa and 𝑆𝐿𝑖,𝑗 refers to the 𝑗th dimension of 

this selected lemur's position. 𝑋𝑖
𝑃1  represents the 

newly computed position for the 𝑖th fossa during the 

attack phase of the FOA, with 𝑥𝑖,𝑗
𝑃1  being its 𝑗 th 

dimension. The objective function value at this new 

position is 𝐹𝑖
𝑃1 . The terms 𝑟𝑖,𝑗 are random nvalues 

within the range [0, 1], and 𝐼𝑖,𝑗 are random integers, 

either 1 or 2. 

3.3.2 Phase 2: Chasing to catch lemur (exploitation 

phase)  

In the second phase of FOA, the positions of the 

population members are updated by simulating the 

fossa's pursuit of the lemur. The fossa utilizes its 

exceptional climbing abilities to follow the lemur 

through the trees and across branches. This pursuit 

takes place in a confined area within the hunting 

ground. By modeling the fossa's movements during 

the chase, the algorithm introduces minor 

adjustments to the positions of the population 

members, thereby enhancing the FOA's exploitation 

capabilities in local search optimization. 

In the FOA design, the chase process between the 

fossa and the lemur in nature is represented by small 

positional changes in the population members. The 

positional updates during the lemur chase are 

mathematically modeled, with a new position for 

each FOA member calculated using Eq. (7). If this 

new position results in an improved objective 

function value, it replaces the member's previous 

position, as outlined in Eq. (8). 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 𝑟𝑖,𝑗) ∙  

𝑢𝑏𝑗 − 𝑙𝑏𝑗

𝑡
   (7) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒 
 (8) 

 

In this context, 𝑋𝑖
𝑃2  represents the updated 

position computed for the 𝑖 th f fossa during the 

chasing phase in the proposed FOA. Each 𝑥𝑖,𝑗
𝑃2 

signifies the 𝑗th dimension of this new position, while 

𝐹𝑖
𝑃2  denotes its corresponding objective function 

value. The variables 𝑟𝑖,𝑗 are random numbers ranging 

from [0, 1] , and 𝑡  stands for the current iteration 

count. 

4. Simulation studies 

In this segment, the efficacy of FOA in 

addressing optimization challenges in practical 

applications is assessed. To achieve this, a total of 

twenty-six constrained optimization problems have 

been chosen. These comprise twenty-two real-world 

problems sourced from the CEC 2011 test suite, 

alongside an additional four problems from the realm 

of engineering design. 

4.1 Evaluation of CEC 2011 test suite 

In this section, we evaluate the effectiveness of FOA 

and its competitors in tackling the challenges posed 

by the CEC 2011 test suite. This test suite 

encompasses twenty-two distinct constrained 

optimization problems derived from real-world 

applications. Comprehensive details, including the 

mathematical models and descriptions of the CEC 

2011 test suite, can be accessed in [33]. 

Table 1 presents the optimization outcomes obtained 

by FOA and competing algorithms on the CEC 2011 

test suite. The results highlight FOA's capacity to 

deliver effective solutions across problems C17-F1 to 

C17-F22, demonstrating its adeptness in exploration, 

exploitation, and maintaining a balance throughout 

the search process. According to the findings from 

simulations, FOA consistently outperformed all other 

algorithms across all twenty-two optimization 

problems, positioning it as the top-performing 

optimizer. Statistical analyses, specifically the 

Wilcoxon rank sum test conducted on experimental 

data, further underscored FOA's significant statistical 

superiority over the twelve alternative algorithms in 

optimizing the CEC 2011 test suite. 
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Table 1. Performance of metaheuristic algorithms on CEC 2011 test suite 
 GA PSO GSA TLBO GWO MVO WOA TSA MPA RSA AVOA WSO FOA 

C11-F1 

Best 20.99485 10.47427 17.97987 16.71953 1.130611 11.58557 7.604293 16.90901 0.453935 18.45749 8.642607 14.08941 2.00E-10 

Mean 22.14845 17.20023 20.60315 17.65027 10.72532 13.59232 12.90498 17.62112 7.718053 20.85771 12.63879 16.95377 5.920103 

Median 21.54986 17.5065 21.08212 17.37924 12.49167 13.61517 13.57618 17.20423 8.845166 20.79824 12.72897 16.97953 5.687176 

Worst 24.49924 23.31363 22.2685 19.12309 16.78732 15.55336 16.86329 19.16701 12.72794 23.37688 16.45459 19.76661 12.30606 

std 1.756925 6.23952 2.006092 1.188596 7.3733 2.470244 4.664845 1.157165 6.115793 2.501392 4.807401 2.952731 7.476538 

rank 13 8 11 10 3 6 5 9 2 12 4 7 1 

C11-F2 

 

Best -16.1717 -24.0945 -20.9656 -13.286 -24.7265 -12.1764 -22.2907 -15.9609 -25.6183 -13.168 -21.8573 -16.597 -27.0676 

Mean -13.9987 -22.8058 -16.3567 -12.1633 -22.7616 -10.2743 -19.1379 -12.5182 -24.9761 -12.7716 -21.3238 -15.3149 -26.3179 

Median -13.6499 -23.2107 -15.984 -12.04 -23.4923 -10.1089 -19.3403 -11.7486 -25.3448 -12.7422 -21.3444 -15.1796 -26.3856 

Worst -12.5232 -20.7072 -12.4933 -11.2874 -19.3352 -8.70316 -15.5801 -10.6146 -23.5963 -12.4343 -20.749 -14.3035 -25.4328 

std 1.942177 1.600367 4.174713 0.942061 2.60868 1.618708 3.696526 2.751276 1.0288 0.389213 0.577737 1.227751 0.767703 

rank 9 3 7 12 4 13 6 11 2 10 5 8 1 

C11-F4 

 

Best 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 

Mean 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 

Median 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 

Worst 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 3.26E-06 

std 1.39E-16 1.40E-16 1.40E-16 7.27E-14 3.59E-15 9.22E-13 1.40E-16 2.20E-14 1.28E-15 4.62E-11 2.36E-09 2.05E-11 2.08E-19 

rank 5 2 3 9 7 10 4 8 6 12 13 11 1 

C11-F4 

 

Best 72.55129 71.10386 37.99406 58.62053 28.13873 31.40391 38.65784 30.85337 23.23436 44.19588 26.19046 40.48998 17.74098 

Mean 74.28086 85.67926 43.4327 85.41443 29.73022 35.40336 45.08551 35.25719 26.66493 57.83315 31.42147 44.24001 22.20814 

Median 74.25833 83.45319 44.05978 80.81618 29.87288 34.8409 43.82622 34.54418 26.20191 55.04009 30.50303 43.94568 21.62299 

Worst 75.9203 91.35037 51.37966 93.81534 31.89236 37.15296 46.47603 36.80899 28.24343 60.29817 32.97873 46.81271 24.33469 

std 1.951844 10.28216 6.117383 16.85201 1.74757 2.705872 3.899698 3.123915 2.324352 8.210035 3.490426 3.505964 3.071087 

rank 11 13 9 12 3 6 7 5 2 10 4 8 1 

C11-F5 

 

Best -12.9633 -14.0945 -31.4583 -15.0617 -34.1245 -31.6367 -28.3603 -31.7808 -33.7811 -23.2641 -29.6017 -26.7142 -34.7494 

Mean -11.8745 -11.103 -27.9156 -13.0451 -31.6952 -27.596 -28.1683 -27.7213 -33.2163 -21.2904 -28.5962 -25.6376 -34.1274 

Median -12.0577 -10.3539 -27.5065 -12.7468 -32.3842 -26.6221 -28.2 -28.0587 -33.6269 -21.4602 -28.4014 -25.6157 -34.1871 

Worst -10.4193 -9.60958 -25.1912 -11.6251 -27.8878 -25.503 -27.913 -22.9871 -31.8304 -18.977 -27.9804 -24.605 -33.3862 

std 1.250673 2.30699 3.004306 1.594488 2.917966 3.142033 0.227202 3.948511 1.012393 2.411024 0.768531 0.990576 0.612958 

rank 12 13 6 11 3 8 5 7 2 10 4 9 1 

C11-F6 

 

Best -10.4176 -7.99292 -25.9196 -4.88561 -22.6153 -17.8135 -22.7897 -16.9438 -25.6097 -14.4772 -20.8568 -15.2174 -27.4298 

Mean -5.89114 -5.07774 -21.849 -4.30091 -19.8288 -10.7684 -20.1179 -9.00058 -22.4991 -13.9198 -19.2912 -14.8115 -24.1119 

Median -4.52608 -4.13065 -21.4943 -4.13065 -19.2485 -10.6016 -21.9742 -6.56902 -21.5949 -14.1527 -19.3295 -14.7852 -23.0059 

Worst -4.09474 -4.05674 -18.4879 -4.05674 -18.2027 -4.05674 -13.7337 -5.92048 -21.197 -12.8964 -17.6491 -14.4582 -23.0059 

std 3.318344 2.122875 3.541293 0.428562 2.28315 7.977012 4.701624 5.812291 2.296303 0.769418 1.554489 0.367927 2.415463 

rank 11 12 3 13 5 9 4 10 2 8 6 7 1 

C11-F7 

 

Best 1.293914 0.854726 0.879567 1.474091 0.827545 0.841207 1.56562 1.097291 0.766328 1.608278 1.125389 1.468141 0.582266 

Mean 1.656328 1.106615 1.067479 1.636933 1.056742 0.890619 1.65915 1.265574 0.933894 1.816199 1.249677 1.536587 0.860699 

Median 1.742515 1.119582 1.066934 1.656858 1.065555 0.87712 1.630522 1.183451 0.977372 1.839325 1.244905 1.523598 0.91775 

Worst 1.846369 1.332569 1.25648 1.759925 1.268311 0.967026 1.809935 1.598104 1.014501 1.977866 1.383506 1.63101 1.025027 

std 0.272084 0.265478 0.186178 0.139852 0.197138 0.066569 0.114757 0.246191 0.125447 0.167329 0.152119 0.076051 0.219737 

rank 11 6 5 10 4 2 12 8 3 13 7 9 1 

C11-F8 

 

Best 220 245.9004 220 220 220 220 242.6022 220 220 278.3859 224.0273 255.2005 220 

Mean 222.7139 443.6161 244.049 224.1316 227.048 224.1316 261.6804 253.8425 222.6734 314.7225 238.7947 278.5874 220 

Median 220.5788 497.1932 234.7096 220.3934 226.9554 220.9722 250.2866 226.9554 222.5807 313.1747 238.3086 274.4072 220 

Worst 229.6981 534.1777 286.7768 235.7397 234.2814 234.582 303.5461 341.4594 225.5322 354.1547 254.5343 310.3349 220 

std 5.119385 148.666 34.59718 8.460498 8.888807 7.626272 30.73647 64.18699 3.375126 33.97846 14.33194 26.45289 0 

rank 3 12 7 4 5 4 9 8 2 11 6 10 1 

C11-F9 

 

Best 1669561 779171.2 633837.2 305005.7 17992.06 70020.37 187100 46780.75 11358.35 623943.8 303703.8 336624.4 5457.674 

Mean 1741609 971669.5 739743.3 368599.6 41337.18 122209.7 338205.6 62107.96 20911.18 953353.7 341487 501589 8789.286 

Median 1726937 958802.2 765168.3 348439.9 37918.27 117413.7 297579 61996.84 21185.22 1035051 348103.4 546223.3 7828.591 

Worst 1843000 1189903 794799.3 472513 71520.11 183991.2 570564.2 77657.41 29915.93 1119369 366037.4 577285 14042.29 

std 92744.64 239797 78603.68 80205.77 24690.8 51444.35 190694.6 14680.84 8914.331 244708.1 29948.31 123361 4040.59 

rank 13 12 10 8 3 5 6 4 2 11 7 9 1 

C11-F10 

 

Best -11.8777 -12.1392 -14.1377 -12.09 -14.9635 -20.8499 -13.9637 -18.7065 -19.2772 -13.2432 -17.2126 -15.4171 -21.8299 

Mean -11.7997 -12.0639 -13.6434 -11.9747 -14.4933 -15.0277 -13.3928 -14.7489 -18.8938 -12.8612 -17.0117 -14.3738 -21.4889 

Median -11.8093 -12.0602 -13.7626 -11.974 -14.7956 -13.5846 -13.3078 -13.8074 -18.8929 -12.7759 -17.0947 -14.1093 -21.669 

Worst -11.7024 -11.996 -12.9109 -11.8606 -13.4183 -12.0915 -12.9919 -12.6743 -18.5122 -12.6498 -16.6447 -13.8597 -20.7878 

std 0.082719 0.0703 0.657711 0.116756 0.796964 4.308425 0.446373 2.968027 0.431168 0.292805 0.287749 0.774897 0.518028 

rank 13 11 8 12 6 4 9 5 2 10 3 7 1 

C11-F11 

 

Best 5677943 4876156 1355754 4874518 3479200 797431.5 1212878 4648869 1605925 7898344 933669.6 5170959 260837.9 

Mean 5715298 4909100 1503283 4899197 3668455 1411326 1328293 5556217 1724848 8161789 1127735 5428932 571712.3 

Median 5710274 4911323 1494330 4896975 3602463 1089997 1309812 5450789 1720208 8204838 1140258 5389551 598725.2 

Worst 5762701 4937598 1668719 4928322 3989695 2667880 1480672 6674421 1853049 8339135 1296753 5765667 828560.9 

std 39470.81 31430.76 140055.5 30459.3 243250.4 927121.6 123049 912761.6 127928.3 204150.5 175849.4 298944.6 271080 

rank 12 9 5 8 7 4 3 11 6 13 2 10 1 

C11-F12 

 

Best 12985236 2075391 5069911 12214423 1267206 1204649 4976933 4413862 1212610 11129535 3073561 7330982 1155937 

Mean 13101652 2218684 5325393 12957822 1423395 1337048 5347886 4645979 1289778 11980897 3167584 7650391 1199805 

Median 13099661 2198262 5365007 13042668 1435195 1340014 5444858 4702619 1288578 12032002 3179857 7668092 1196965 

Worst 13222048 2402821 5501647 13531529 1555984 1463515 5524894 4764815 1369345 12730048 3237059 7934399 1249353 

std 106367 148292.6 203566.6 603530.9 130905.5 116064.8 277918.8 179484.8 74652.8 716923.4 77855.94 272918.8 48993.46 

rank 13 5 8 12 4 3 9 7 2 11 6 10 1 

C11-F13 

 

Best 15461.56 15473.13 84613.22 15610.79 15491.54 15486.67 15490.35 15479.1 15461.74 15849.47 15449.72 15650.7 15444.19 

Mean 28468.14 15488.92 116417.9 15884.56 15498.11 15504.19 15528.85 15488.35 15464.18 16221.86 15450.61 15816.98 15444.2 

Median 15619.13 15480.19 110751.1 15769.62 15495.75 15495.83 15521.86 15487.34 15463.33 15945.42 15450.75 15698.87 15444.2 

Worst 67172.77 15522.16 159556.3 16388.19 15509.41 15538.42 15581.33 15499.63 15468.33 17147.14 15451.22 16219.49 15444.21 

std 28177.61 24.47431 36845.87 384.045 8.636126 26.33876 46.4354 10.80619 3.179862 679.1709 0.707511 295.8929 0.009445 

rank 12 5 13 10 6 7 8 4 3 11 2 9 1 

C11-F14 Best 18818.75 18938.08 18796.93 29049.17 19043.13 19250.66 19030.28 19218.19 18539.58 152908.3 18451.81 78523.85 18241.58 
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Mean 19077.55 19088.96 19059.83 280023.5 19185.03 19352.06 19178.82 19452.19 18626.04 206926.2 18546.95 102602.5 18295.35 

Median 19068.96 19095.56 19102.76 276190.7 19169.03 19362.31 19195.3 19319.71 18631.88 188733.6 18547.18 94586.94 18275.87 

Worst 19353.51 19226.62 19236.88 538663.5 19358.95 19432.94 19294.4 19951.15 18700.84 297329.2 18641.62 142712.3 18388.08 

std 239.1445 129.5361 210.3944 267168.7 152.4139 84.72372 133.1554 367.0078 76.74049 70641.04 98.64241 31350.13 74.38679 

rank 5 6 4 13 8 9 7 10 3 12 2 11 1 

C11-F15 

Best 3237130 33247.73 240949.8 2895904 33032.56 33005.93 33000.47 33047.85 32875.58 720290.4 42110.22 338511.1 32782.17 

Mean 7107922 33322.55 271873.5 13807658 33134.41 33154.23 199218.4 52358.2 33018.48 1717634 100060.8 816433.8 32883.58 

Median 6507633 33264.59 276807.7 15872946 33101.93 33113.48 240023.2 33165.02 32990.01 836157.3 96682.82 439828.3 32897.86 

Worst 12179293 33513.28 292928.8 20588838 33301.23 33384.02 283826.7 110054.9 33218.31 4477930 164767.4 2047568 32956.46 

std 4477377 139.348 26377.34 8785227 129.6209 177.9281 123599.1 42004.12 159.5038 2012667 72064.12 899537.6 79.94256 

rank 12 5 9 13 3 4 8 6 2 11 7 10 1 

C11-F16 

 

Best 55289650 58934654 8526963 77564482 142909.8 133833.5 136624.1 141930.9 135804.4 438659.6 134084.5 273214.9 131374.2 

Mean 68406462 71243770 16774448 79596055 145238.3 141600.4 141918.6 144570.6 137885.4 1759603 135665.3 860740.2 133550 

Median 65421652 70454300 14117049 79466231 143717.1 141657.3 141973 145080.4 137067.7 1124036 136090.1 577936.7 133257.5 

Worst 87492894 85131824 30336734 81887274 150609.3 149253.4 147104.1 146190.7 141601.9 4351682 136396.6 2013873 136310.8 

std 14938222 12330851 10298312 1978328 3947.89 7018.439 4767.445 2214.617 2825.563 1921850 1161.754 854983.8 2485.329 

rank 11 12 10 13 7 4 5 6 3 9 2 8 1 

C11-F17 

 

Best 1.83E+10 1.65E+10 8.84E+09 1.92E+10 5297236 6661968 6.19E+09 9.49E+08 5224908 9.98E+09 1.89E+09 6.84E+09 1916953 

Mean 1.96E+10 1.87E+10 1E+10 2E+10 6922237 7005034 8.68E+09 1.15E+09 6269965 1.39E+10 2.08E+09 8.03E+09 1926615 

Median 1.89E+10 1.83E+10 1.03E+10 1.99E+10 6583310 6977244 8.5E+09 1.17E+09 6198317 1.43E+10 2.07E+09 8.18E+09 1923412 

Worst 2.21E+10 2.16E+10 1.06E+10 2.09E+10 9225091 7403679 1.15E+10 1.32E+09 7458320 1.7E+10 2.27E+09 8.9E+09 1942685 

std 1.89E+09 2.51E+09 8.93E+08 7.35E+08 1909349 357222.7 2.46E+09 2.06E+08 1123218 3.28E+09 1.86E+08 9.95E+08 12470.83 

rank 12 11 9 13 3 4 8 5 2 10 6 7 1 

C11-F18 

 

Best 98886898 1.01E+08 7538917 22101606 968293.4 977576.3 3793961 1707773 953554.7 73305536 3631280 33958804 938416.2 

Mean 1.03E+08 1.21E+08 10068634 27859754 1029725 991222.8 8682456 1941970 976570.8 1.06E+08 5975105 49330249 942057.5 

Median 1.03E+08 1.24E+08 10026993 29600639 980595.5 994076.1 7882971 1906696 957999.8 1.15E+08 5044596 53633053 942553.5 

Worst 1.06E+08 1.34E+08 12681633 30136132 1189417 999162.8 15169920 2246712 1036729 1.21E+08 10179946 56096087 944706.9 

std 3364918 15984910 2508023 4209691 116531.1 10532.68 5246197 280616.2 43947.61 24445003 3329758 11321428 2882.138 

rank 11 13 8 9 4 3 7 5 2 12 6 10 1 

C11-F19 

 

Best 1E+08 1.4E+08 2281996 22432725 1222677 1135717 1969595 2110354 1075570 89781843 5585104 41462669 967927.7 

Mean 1.03E+08 1.55E+08 5739620 31991581 1348953 1450893 9276615 2334247 1147559 1.04E+08 6088032 48581106 1025341 

Median 1.03E+08 1.5E+08 6591645 32831756 1322786 1394055 9220230 2248793 1106128 97677003 5711338 45566352 983146.6 

Worst 1.06E+08 1.79E+08 7493195 39870088 1527561 1879745 16696406 2729050 1302409 1.31E+08 7344349 61729050 1167142 

std 2532248 18224008 2582122 8246265 139976.6 339653.7 7576039 296442.5 113940.5 20772114 919788 9980797 103555.5 

rank 11 13 6 9 3 4 8 5 2 12 7 10 1 

C11-F20 

 

Best 98348523 1.3E+08 8591082 30375571 979533.8 965606.1 6245290 1574189 961236.8 98191740 4755991 45431180 936143.2 

Mean 1.03E+08 1.43E+08 12880053 31054116 998175.3 975145.4 6622515 1739427 963984.7 1.12E+08 5379388 51622517 941250.4 

Median 1.04E+08 1.43E+08 11524473 31026530 999801.4 974999.6 6559891 1685079 964071 1.09E+08 5357579 49973759 940995.9 

Worst 1.07E+08 1.55E+08 19880187 31787834 1013565 984976.4 7124987 2013362 966560.1 1.33E+08 6046402 61111371 946866.6 

std 4043353 14919097 5387546 641381.5 15945.97 9334.779 410649.8 227709.2 2403.706 16376455 584973.9 7296408 5208.733 

rank 11 13 8 9 4 3 7 5 2 12 6 10 1 

C11-F21 

 

Best 54.60476 83.80605 34.18591 45.26357 20.14849 23.76096 33.88851 25.41455 14.00337 53.05298 19.85679 39.1355 9.974206 

Mean 93.74696 96.54937 38.32035 92.04052 21.90974 26.53102 36.60882 28.57921 16.1408 70.34437 21.25232 46.86645 12.71443 

Median 103.2593 97.69051 39.02586 94.17921 21.62156 26.43952 36.22601 29.53327 16.06672 70.33024 21.01376 46.55892 12.95425 

Worst 113.8644 107.0104 41.04376 134.5401 24.24733 29.48409 40.09472 29.83577 18.42639 87.66401 23.12498 55.21246 14.97499 

std 30.11547 12.62395 3.297139 39.95036 2.008403 3.429023 2.988624 2.320265 2.250136 16.67677 1.538698 7.551228 2.506594 

rank 12 13 8 11 4 5 7 6 2 10 3 9 1 

C11-F22 

 

Best 84.01881 82.03603 37.22109 61.58839 23.72063 24.30535 37.80818 27.11712 16.46137 43.54151 21.82335 38.765 11.50133 

Mean 85.1019 97.6976 44.00065 94.08526 24.56654 31.10542 43.68071 30.96559 19.27119 59.04216 26.76287 44.11097 16.12513 

Median 84.84462 100.4589 43.42257 101.7697 24.65206 32.16406 44.42632 31.66513 19.61731 62.42624 26.8069 44.23459 16.72317 

Worst 86.69957 107.8366 51.93637 111.2133 25.24143 35.7882 48.062 33.41497 21.38878 67.77466 31.61431 49.20969 19.55286 

std 1.242318 12.64539 6.634157 24.32807 0.710153 5.511919 5.075941 2.956052 2.556775 11.66582 5.059597 4.902887 4.36122 

rank 11 13 8 12 3 6 7 5 2 10 4 9 1 

Sum rank 234 210 165 233 99 123 151 150 56 240 112 198 22 

Mean rank 10.63636 9.545455 7.5 10.59091 4.5 5.590909 6.863636 6.818182 2.545455 10.90909 5.090909 9 1 

Total rank 12 10 8 11 3 5 7 6 2 13 4 9 1 

p-value 1.32E-18 6.28E-19 2.11E-18 1.32E-18 1.75E-18 9.84E-16 4.24E-19 9.03E-19 1.75E-18 4.24E-19 2.41E-18 4.24E-19 - 

 

 

4.2 Evaluation of engineering design problems 

In this section, we assess the efficacy of FOA and 

rival algorithms in tackling four distinct engineering 

optimization tasks. These challenges encompass 

pressure vessel design, speed reducer design, welded 

beam design, and tension/compression spring design. 

Pressure vessel design aims primarily at minimizing 

construction costs within real-world engineering 

applications. Detailed mathematical models and 

comprehensive information on pressure vessel design 

can be found in reference [34]. Similarly, speed 

reducer design focuses on minimizing the weight of 

the speed reducer, with detailed models and 

information available in references [35, 36]. Welded 

beam design aims to reduce fabrication costs, and its 

detailed mathematical model is outlined in reference 

[37]. Lastly, tension/compression spring design aims 

to minimize the weight of these components, with 

detailed models also available in reference [37].  

Table 2 presents the implementation results and 

performance of competing algorithms in optimizing 

these engineering challenges. FOA has demonstrated 

significant achievements in each design scenario:
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Table 2. Performance of metaheuristic algorithms on engineering design problems 
DP  FOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA 

TCS 

x1 0.051689 0.051737 0.051257 0.050326 0.05169 0.051073 0.051233 0.050326 0.051924 0.052324 0.054699 0.052053 0.051888 

x2 0.356718 0.357867 0.346439 0.319486 0.356738 0.342104 0.345876 0.324558 0.362385 0.372754 0.430976 0.366437 0.362179 

x3 11.28897 11.22211 11.92786 14.29026 11.2879 12.22009 11.96323 13.56401 10.96935 10.81158 8.238095 11.25212 11.33667 

OF 0.012665 0.012665 0.01267 0.013099 0.012665 0.01268 0.01267 0.01274 0.01267 0.012783 0.013024 0.012792 0.012752 

WB 

x1 0.778027 0.77803 0.778152 1.194252 0.778029 0.779498 0.911327 0.834505 0.778847 0.908547 1.129191 0.933719 0.886017 

x2 0.384579 0.384583 0.384653 0.639897 0.384581 0.385818 0.450989 0.416446 0.386002 0.628703 1.155857 0.641424 0.557939 

x3 40.31228 40.31245 40.3187 60.51195 40.31237 40.38643 46.22319 43.22087 40.34048 42.75299 44.1012 44.05702 43.02611 

x4 200 199.999 199.9263 48.28486 200 200 133.9229 163.8891 199.7992 182.9717 190.8091 168.7006 176.7552 

OF 5882.901 5882.941 5883.219 7756.095 5882.934 5909.346 6270.268 6004.221 5891.301 7762.927 11970.25 7816.691 7181.082 

SR 

x1 3.5 3.500037 3.500004 3.581054 3.500014 3.511351 3.576922 3.502079 3.500663 3.50624 3.520229 3.506347 3.50428 

x2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.700726 0.70242 0.700726 0.700484 

x3 17 17 17 17 17 17 17 17 17 17.09734 17.32445 17.09734 17.06489 

x4 7.3 7.3 7.30074 8.110958 7.3 7.3 7.3 7.3 7.304521 7.491246 7.757514 7.545238 7.47249 

x5 7.8 7.800502 7.800076 8.205554 7.800498 8.205554 7.984485 8.036471 7.8 7.823629 7.878762 7.823629 7.815752 

x6 3.350215 3.350249 3.350272 3.355059 3.350215 3.350501 3.360247 3.367261 3.362298 3.366437 3.401692 3.367212 3.361677 

x7 5.286683 5.286693 5.286703 5.4595 5.286687 5.289792 5.286754 5.286861 5.288556 5.313197 5.373942 5.313517 5.304633 

OF 2996.348 2996.378 2996.386 3160.309 2996.367 3011.773 3033.212 3006.84 3000.933 3043.037 3148.787 3043.958 3028.259 

PV 

x1 0.886017 0.20573 0.205728 0.205044 0.19779 0.205728 0.20438 0.212751 0.205952 0.205601 0.228928 0.283135 0.228904 

x2 0.557939 3.470489 3.470516 3.485375 3.526928 3.470516 3.492384 3.346984 3.465724 3.473457 3.273343 2.812744 3.273462 

x3 43.02611 9.036624 9.036654 9.036704 9.817037 9.036654 9.060873 8.981482 9.043723 9.036264 8.612117 7.617417 8.61337 

x4 176.7552 0.20573 0.20573 0.205729 0.216335 0.20573 0.206105 0.219144 0.206017 0.205792 0.232667 0.295529 0.232664 

OF 7181.082 1.724852 1.724862 1.725806 1.945043 1.724862 1.732763 1.809626 1.727966 1.725466 1.819821 2.040803 1.819994 

 

 

• For pressure vessel design, FOA yielded optimal 

design variable values of (0.7780271, 0.3845792, 

40.312284, 200) and an objective function value 

of 5882.8955. 

• In speed reducer design, FOA achieved superior 

results with design variable values of (3.5, 0.7, 17, 

7.3, 7.8, 3.3502147, 5.2866832) and an objective 

function value of 2996.3482. 

• For welded beam design, FOA obtained optimal 

design variable values of (0.2057296, 3.4704887, 

9.0366239, 0.2057296) and an objective function 

value of 1.7246798. 

• In tension/compression spring design, FOA 

produced optimal design variable values of 

(0.0516891, 0.3567177, 11.288966) and an 

objective function value of 0.0126019. 

Analysis of simulation results indicates that FOA 

consistently outperforms competing algorithms in 

solving these engineering design challenges. Its 

capability to effectively explore, exploit, and 

maintain balance throughout the search process 

underscores its robust performance in real-world 

optimization applications. 

5. Concluding remarks and future works 

This study introduced the Fossa Optimization 

Algorithm (FOA), a newly developed metaheuristic 

inspired by the hunting strategies of fossas in the wild. 

FOA was designed to emulate the fossa's approach to 

hunting lemurs, which involved initial attacks 

followed by strategic pursuits through trees. The 

algorithm was meticulously explained and 

mathematically modeled to optimize exploration and 

exploitation during these distinct phases. To evaluate 

its efficacy, FOA was tested on twenty-two 

challenging optimization problems sourced from the 

CEC 2011 test suite, alongside four practical 

engineering designs. Results highlighted FOA's 

capability in achieving optimal solutions by 

effectively balancing exploration, exploitation, and 

search management. Comparative assessments 

against twelve prominent metaheuristic algorithms 

consistently demonstrated FOA's superiority across 

diverse benchmarks. 

Future research directions include developing 

binary and multi-objective versions of FOA and 

applying it across diverse scientific and practical 

domains. 
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