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A B S T R A C T

Efficient power delivery is crucial for power distribution systems, prompting utilities to consistently seek out new
technologies to improve their performance. Managing power loss and cost efficacy stands out as a critical
concern, directly impacting systems efficiency. Hence, this study provides an innovative method for the per-
formance enhancement of radial distribution networks (RDNs) through simultaneous reconfiguration and Shunt
Capacitor (SC) allotment utilizing a newly developed Dandelion Optimizer (DO) and a novel objective function.
The main aim of the optimization process is to maximize economic benefits while also assessing technical ad-
vantages. Technical benefits include real power loss, Average Voltage Stability Index (AVSI), and Voltage Profile
Index (VPI), while economic benefits involve evaluating cost reductions due to decreased power purchased and
losses, as well as the SC and switching costs spanning a 20-year planning period. Tests were conducted on IEEE
33- and 69-bus RDNs using the suggested methodology under various scenarios, including reconfiguration, SC
integration, and synchronous reconfiguration with SC allocation, and the model was simulated using MATLAB
software. The optimal solution was achieved by simultaneously reconfiguring and allocating SCs to maximize
total cost benefits. For the 33-bus system, this resulted in power loss, AVSI, VPI, and total cost-benefit values of
82.84 kW (62.90 % reduction), 0.9566 p.u., 1.9190 p.u., and $ 773 752.85, respectively, while for the 69-bus
system, the corresponding values were 43.8 kW (80.51 % reduction), 0.9874 p.u., 2.4680 p.u., and $ 1.1347
million. Comparing the technique with other methods, its effectiveness was established, and it was shown to
perform better with power loss reduction chosen as assessment metric.

1. Introduction

Efficient power distribution remains a central focus for electrical
engineers, researchers, and technological innovators alike. Key to this

efficiency is the reduction of losses within the distribution system,
encompassing various elements such as conductors, transformers, and
feeders [1]. The distribution network acts as the crucial interface be-
tween end-users and the broader grid infrastructure [2,3]. Typically
configured as radial or weakly meshed structures, these networks enable
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the unidirectional flow of power from substations to different nodes.
Referred to as radial distribution networks (RDNs), they are preferred
for their simplicity in operation, cost-effectiveness, and ease of main-
tenance and protection [4]. However, RDNs face notable challenges,
particularly concerning significant power losses and voltage fluctuations
along their distribution paths [5]. These issues manifest due to the
network’s inherent high resistance to reactance ratio and the prevalence
of heavy inductive loads [6] like transformers, AC induction motors, and
adjustable speed drives (ASDs) [4,7]. Research indicates that distribu-
tion networks incur substantial losses, with approximately 13% of the
total generated power dissipated within these systems. Furthermore,
distribution systems are responsible for approximately 70% of all losses
within the broader electrical power system [8]. Consequently, ongoing
efforts are directed towards addressing these challenges by tackling bus
voltage fluctuations and minimizing power losses. Such endeavors are
critical to enhancing the distribution networks’ overall reliability and
performance in meeting the growing demands of modern energy dis-
tribution [9,10].

Feeder reconfiguration is an act of altering a DN’s topology by
modifying the switches’ positions. Two types of these switches exist in
the DNs: normally closed (N.C.) and normally open (N.O.). Within the
network, N.O. switches serve as tie switches. [11]. During reconfigura-
tion, their statuses are optimized based on predefined objective func-
tions. The amount of losses in the DN can be efficiently influenced by
changing the statuses of these switches [12]. Parallel to this, capacitors
are essential to distribution networks’ reactive power correction [13,
14]. They are also employed to lessen energy losses and enhance voltage
profiles [15]. The efficacy of capacitor-based compensation hinges on its
strategic placement within the network. Recent research has explored
the synergistic benefits of simultaneously employing optimal allotment

of capacitors and reconfiguration of distribution networks to decrease
energy losses using different objective functions over time [16]. None-
theless, the efforts to continually optimize the performance of DNs by
integrating various objective functions through combined methodolo-
gies should not be relaxed.

The cultural algorithm (CA) and the cuckoo search algorithm (CSA)
for the optimal NR and integration of SCs in a smart distribution system
were introduced in Ref. [17]. The optimization process’s chosen objec-
tive function was real power loss, with the primary goals being losses
diminution and the improvement of voltage profiles. In [9], an adaptive
particle swarm optimization (APSO) method was proposed with the goal
of decreasing power losses for synchronous reconfiguration and shunt
capacitor placement in RDNs. Using the IEEE 33-bus and the Nigerian
Ayepe 34-bus RDNs as test beds, the effectiveness of the selected APSO
was shown. Using the DGs hosting capacities (HC) and real power loss as
objective functions, the authors in [18] presented the SHADE optimi-
zation algorithm and the switch opening and exchange (SOE) method
for solving a multi-objective optimization NR (network reconfiguration)
and optimal placements of renewable-based DGs and SC in RDNs. The
multi-objective NR and SC unit allotment in RDNs presented a by [19]
made use of an improved artificial bee colony optimization (EABCO)
approach. The function of the optimization was for the voltage deviation
index (VDI) and active power losses diminution. In [20], different
loading conditions were taken into consideration for a multi-objective
NR and the allotment of capacitor banks in RDNs using a modified
particle swarm optimization (MPSO). The optimization’s objective
functions were diminution of cumulative voltage deviation and the loss
of active and reactive power. For the purpose of allocating DGs and SCs
in a reconfigured RDN, Biswal et al. in [21] proposed the Quasi-reflected
slimemold method (QRSMA). The optimization procedure made use of a

Nomenclature

Parameters
SCMC Shunt capacitor maintenance cost
SCinv cost Shunt capacitor investment cost
SCostinv,s Switch investment cost
SCostO&M,S Switch maintenance and operation cost
CGrid Cost of grid-supplied electricity
CBP Cost-benefit from the decreased price of electricity

purchased
Vi Voltage at bus i
Ii Current flow via distribution line
Vβ Average bus voltage
Vχ Standard deviation of the bus voltages
Gij Conductance between node i and j
Bij Susceptance between node i and j
Pgi Real power generated at bus i
PDi Real power demanded at bus i
Qgi Reactive power generated at bus i
QDi Reactive power demanded at bus i
LB Lower bound
UB Upper bound
Xelite dandelion seed propagation’s best location
fbest Best fitness score
Dim variable dimension
pop population size
β Local adaptive parameter
randn Arbitrary number after standard normal distribution
Xmean t Average location of the dandelions in ith iteration
βt Brownian motion
InfR Inflation rate

IntR Interest rate

Abbreviations
DO Dandelion Optimizer
RDN radial distribution network
NR Network reconfiguration
SCA Shunt capacitor allocation
DG Distributed generation
VPI Voltage profile index
AVSI Average voltage stability index
MBA Modified bat algorithm
ICSA Improved cuckoo search algorithm
HSA Harmony search algorithm
FWA Fireworks algorithm
ACSA Ant colony search algorithm
HM Heuristic Method
$/npy Dollars per number of planning years
UVDA Uniform voltage distribution based constructive algorithm
INNA Improved neural network algorithm
ACA Ant colony algorithm
SFS Stochastic fractal search
GWO Grey wolf Optimizer
AWOA Adaptive whale optimization algorithm
LS Least square optimizer
MLIP Mixed linear integer programming
BFO Bacterial foraging algorithm
MBBO Modified biogeography-based optimization
CS Cuckoo search algorithm
MIC Modified imperialist competitive algorithm
APSO Adaptive particle swarm optimizer
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multi-objective function that minimized the system’s expenses, reduced
its overall real power loss, reduced its cumulative voltage deviation
index, and increased its reliability indices.

Additionally, for simultaneous reconfiguration and SCs in RDNs, the
authors in [22] suggested a mixed-integer linear programming (MLIP)
model aiming to reduce active power loss. For a probabilistic
multi-objective NR and optimal allotment of SCs and DG in DNs,
Ref. [23] described the use of a multi-criteria decision-making (MCDM)
algorithm. The objective function of this algorithm was aimed at real
power losses and voltage deviation index diminution while simulta-
neously maximizing loading margins. Artificial ecosystem optimizers
(AEOs) were also used in [24] to optimize the NR and allotment of SCs
and DGs in DNs, with the objective of reducing active power losses. The
objective of [25] was aimed at real power loss and the operating costs
diminution by applying Johnson’s algorithm and the adaptive whole
optimization (AWO) algorithm for synchronous NR and SC allotment in
RDNs. The objective of [26]’s NR and SCA systems was to minimize real
power loss by applying the moth swarm algorithm (MSA). To reduce the
yearly energy losses of balanced and unbalanced DNs, system reconfi-
guration and the best possible distribution of shunt capacitor banks were
implemented in [27] using the modified Tabu search and the Harper
sphere search algorithms (MTS-HSSA). The objective function used in
Ref. [28] presented the grey wolf optimizer for the optimal RDNR and
integration of SCs and DGs for power loss minimization. The objective
function of the discrete improved grey wolf optimizer (DIGWO), which
was used for NR and SCA, was to minimize the annual operating cost
[29]. For the purpose of NR and SC allotment in DNs, the authors in
reference [30] employed a hybrid simulated annealing-minimum
spanning tree approach. In [31], reconfiguration, distributed energy
resources (DERs), and SC integration in distribution networks were
achieved by using the Boolean algebra and particle swarm optimization
(PSO) in binary space, with the objective function being minimized
active power losses and maximized VSI. A stochastic model was applied
in Ref. [32] to reflect the influence of unpredictable loads on distribu-
tion network reconfiguration. Minimizing the active power losses in the
networks was the objective of the obtained objective function. Recon-
figuration of DNs to improve dependability and reduce active power
losses through application of the particle swarm optimization (PSO) and
genetic algorithms was introduced in [33]. With the goal of minimizing
aggregated voltage deviation index, maximizing VSI, and minimizing
power losses, the authors of [34] introduced a multi-objective Teaching
Learning based optimizer (TLBO) for reconfiguring and integrating DG
and SC units on balanced and unbalanced networks [35].

The literature reviewed on simultaneous reconfiguration and
capacitor placement considered various objective functions ranging
from technical parameters like power loss, voltage deviation, and
voltage stability. Most works did not consider the technical and eco-
nomic benefits of this approach. Some literature, such as [25], that even
considered economic benefits only focused on evaluating the reduced
operating costs. They never factored in the process’s switching costs and
the cost per reactive compensation. Moreover, they focused only on the
assessment for a single year, not considering the impact of inflation and
interest rates. In the technological and economic world, profits or ben-
efits obtained from devices cannot be the same throughout the lifespan
of the device or machine due to depreciation, inflation, and interest rates
accounting for the reduction of the lifespan of the device and instability
of market prices over time. Hence, the economic benefits may not be
accurately accounted for without considering the effect of inflation and
interest rates. Taking note, this research proposes a unique
techno-economic benefit approach over several years of planning,
considering the effect of inflation and interest rates for optimal NR and
integration of shunt capacitors in RDNs. Additionally, a summary of the
results from the reviewed literature showed that maximum active power
loss reduction for those that implemented their approach on the IEEE
33-bus distribution system, ranged from 42.68–58.82 %, likewise, for
the IEEE 69-bus distribution system, the maximum active power loss

reduction ranged from 54.28–69.37 %, except in [17] that reported
76.95 % reduction. While the results are impressive, there can still be
improvement in the loss reduction obtained in these distribution sys-
tems. Hence, in addition to enhancing the cost efficacy of RDNs, this
approach aims to achieve improved loss reduction compared to previous
techniques.

A novel dandelion optimizer (DO) is proposed to applied for the
simultaneous reconfiguration and SC unit allocations in RDNs, consid-
ering maximizing the total cost benefits under various scenarios of a
single and mixed combination of the two loss reduction techniques (NR
and SCA). The technical and economic advantages of the changes pro-
duced by the NR and allotment of the SC units in the RDNs are to be
evaluated. The active power loss diminution, the Voltage Profile Index
(VPI), and the Average Voltage Stability Index (AVSI) are the technical
parameters evaluated. The economic benefits is achieved by analysing
the cost-benefit of purchasing less power due to a matching decrease in
power loss after accounting for the expenses of the SC and switching
over a 20-year planning period. Thus, the manuscript contributes to the
field by offering a more holistic optimization approach that aligns
technical efficiency with economic viability, setting a new benchmark
for future research in power distribution optimization.

The following highlights this study’s major contributions:

• A novel algorithm for SC allotment and reconfiguration in distribu-
tion networks.

• A novel objective function for maximizing cost benefits through NR
and SC allotment.

• For the first time, VPI is assessed concerning reconfiguration and SC
allocation.

• Improved power loss reduction for NR and SCA compared to existing
methods.

The remaining sections of the paper are structured as follows: Section
2 discusses the mathematical derivation of the objective function uti-
lized for optimization, the mathematical expressions of all the technical
benefits assessed, and the constraints to which the optimization was
subjected. Section 3 presents the overview of the optimization technique
(DO) used and its application for NR and SCA. Section 4 discusses the
result of simulations for all scenarios considered, including an objective
comparison of the proposed approach with existing techniques. Section
5 presents a summary of the discussions presented throughout the article
and directions for future research.

2. Problem formulation

The proposed work’s objective function and the various restrictions
imposed on the optimization procedure are explained in this section.

1. Objective function

The goal selected for this research is to maximize the overall cost
benefits from SC deployment in conjunction with RDN reconfiguration.
The objective function’s mathematical model is expressed as follows:

A. Capacitor installation cost

The annual maintenance cost (SCMC) plus the SC investment cost
(SCinv cost) make up the total shunt capacitor cost (SCCOST).

SCCOST = SCinv cost + SCMC (1)

SCinv cost =
∑ncap

i=1
Qcap,i × ICcap (2)

I.O. Fajinmi et al.
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SCMC = MCcap ×
∑Nyrs

y=1

(
1+ infR
1+ intR

)y

(3)

SCCOST =
∑ncap

i=1
Qcap,i × ICcap +MCcap ×

∑Nyrs

y=1

(
1+ infR
1+ intR

)y

(4)

Qcap,i denotes the ith shunt capacitors size in MVAr, ICcap represents
the SC cost of investment in $/MVAr, ncap specifies the total amount of
SC placed in the RDN, the annual maintenance cost is denoted with
MCcap, Nyrs represents the total quantity of planning years (npy), inf R
represents the inflation rate, and intR is the interest rate.

B. Evaluation of Switch Cost

The switching cost is comprised of the capital investment (that in-
cludes the installation charges) as well as the annual maintenance and
operation expenses. Below is a mathematical assessment of it [31].

SWCost =
∑Ns

s=1
SCostinv,s +

∑Ns

s=1
SCostO&M,S ×

∑Nyrs

y=1

(
1+ infR
1+ intR

)y

(5)

Where SCostinv,s is the investment cost of switch, SCostO&M,S represents the
switch maintenance and operation cost, and Ns is the quantity of
switches that must be added to the network. The best sectionalizing
switch

C. Cost-benefit analysis based on the lower energy costs

Utilities procure energy from the transmission grid to meet end
customers’ power demands; however, feeder line losses cause part of this
power to be lost. Reference [32] provides the purchasing price (PPBeforeGrid )
of power from the substation prior to reconfiguration and SC
integration.

PPBeforeGrid = CGrid ×
(
PBeforeGrid +PBeforeloss

)
× T (6)

Where CGrid is the cost of grid-supplied electricity in $/MWh, PBeforeGrid
(in MW) denotes the substation’s cumulative active power supplied
before SC allotment, and PBeforeloss typifies the overall active power loss
before SC allotment.

The utilities can reduce system energy losses and partially satisfy
system power demand through effective SC deployment. Consequently,
following reconfiguration and SC integration, the price of purchasing
power from the substation, accounting for power loss, PPAfterGrid is given by:

PPAfterGrid = CGrid ×
(
PAfterGrid +PAfterloss

)
× T (7)

Where PAfterGrid represents the total active power (in MW) that the sub-
station injects at bus 1 following the reconfiguration and integration of
SC, and PAfterloss is the total active power loss (in MW).

Therefore, after reconfiguration and the allotment of SCs, the cost-
benefit (CBP) resulting from the decreased price of electricity pur-
chased via the sub-station, considering energy loss, as shown by ref. [36]

CBP = PPBeforeGrid − PPAfterGrid (8)

Substituting (6) and (7) in (8), then;

CBP = CGrid ×
[(
PBeforeGrid − PAfterGrid

)
+
(
PBeforeloss − PAfterloss

)]
× T (9)

The evaluation of the Present Worth Factor (PWF) for (6), (7), and
(9):

PWF
(
PPBeforeGrid

)
= PPBeforeGrid ×

∑Nyrs

y=1

(
1+ infR
1+ intR

)y

(10)

PWF
(
PPAfterGrid

)
= PPAfterGrid ×

∑Nyrs

y=1

(
1+ infR
1+ intR

)y

(11)

PWF(CBP) = CBP ×
∑Nyrs

y=1

(
1+ infR
1+ intR

)y

(12)

D. Evaluation of the total cost-benefits (CBT)

Ultimately, the variety of SC costs and switching costs discussed in
the preceding subsection are carefully considered to create a single,
distinct objective function that is stated as follows:

CBT = PWF(CBP) − (PWF(SWCost)+ SCCOST) (13)

Where CBT is the cumulative cost-benefit throughout the quantity of
planning years

(
Nyrs

)
attained by network reconfiguration and optimal

SC allotment.
Having obtained the objective function’s complete mathematical

representation. Finally, it can be expressed as;

OFmax = CBT = PWF(CBP) − (PWF(SWCost)+ SCCOST) (14)

2. Constraints

The following constraints are applicable to the objective function:

A. Power flow equations

During the optimization phase, the direct load flow (DLF) approach
is utilized when solving the power flow equation. The following are the
equations:

Pgi = PDi +
∑nb

j=1
|Vi|

⃒
⃒Vj

⃒
⃒
[
Gijcosθij +Bijsinθij

]
(15)

Qgi = QDi +
∑nb

j=1
|Vi|

⃒
⃒Vj

⃒
⃒
[
Gijsinθij − Bijcosθij

]
(16)

where buses "i" and "j" have voltages of Vi and Vj, respectively; The
generated and demanded active power at bus "i" is represented by Pgi and
QDi; reactive power produced and requested at bus "i" is represented by
Qgi and QDi; and the difference in voltage phases between buses "i" and "j"
is represented by θij.

B. Reactive Power Compensation Limit

Shunt capacitors’ maximum permissible compensation limit should
not be higher than the network’s overall reactive load. It can be
expressed utilizing the equation below:

∑ncap

i=1
Qcap,i ≤ TotalQ (17)

C. Bus voltage constraint

The voltage needs to be within the RDN standard limits.

Vmin ≤ Vi ≤ Vmax (18)

Vmin denotes the minimum voltage (Vmin = 0.95), Vmax represents the
maximum voltage (Vmax = 1.05), and the bus voltage is denoted by Vi.

D. Thermal Constraints

Eq. (19) states that the current flow (Ii) via the RDN’s distribution

I.O. Fajinmi et al.
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lines cannot exceed the allowable loading capacity (Imax,i).

|Ii| ≤
⃒
⃒Imax,i

⃒
⃒; i = 1,2…NB − 1 (19)

E. Radial configuration constraint

To ensure that energy only flows in one direction to every bus con-
nected to the network, the RDN’s radial structure must be preserved.

3. Average Voltage Stability Index (AVSI)

In addition to being vulnerable to voltage instability, RDNs can
breakdown under load and stress. Utilizing the VSI, busses that need to
be compensated for their potential to collapse are identified [37]. It is
provided as follows:

VSI = |Vs|
4
− 4[PrRsr +QrXsr]|Vr|

2
− 4[PrRsr +QrXsr] (20)

The subscripts "s" and "r" stand for "from" and "to" bus. Real power is
denoted by P and reactive power byQ, and the bus voltage is represented
by V. R and X typifies the distribution lines’ resistance and reactance,
respectively. When all distribution line VSIs are added together and
divided by the cumulative quantity of distribution lines, the resulting
total VSI is known as the average VSI (AVSI), and it can be shown as
follows:

AVSI =

⎛

⎜
⎜
⎜
⎝

∑Nb − 1

i=1
VSIi

Nb − 1

⎞

⎟
⎟
⎟
⎠

(21)

4. Voltage Profile Index

An index was employed to indicate the extent to which the voltage
matches the nominal value in order to contrast the voltage profiles under
various conditions [38]. The mathematical expression for VPI is Eq.
(22).

VPI = log10
(

C×

⃒
⃒
⃒
⃒

1
Vβ − 1

⃒
⃒
⃒
⃒

)

(22)

Vβ and C can be obtained as follows:

Vβ =
1
N

∑N

j=1
Vj (23)

C = 1 − Vχ (24)

Vχ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

j=1

(
Vj − Vβ

)2

√
√
√
√ (25)

Where,
N denotes the total quantity of buses, Vj represents voltage magni-

tude at bus j, Vβ denotes the average bus voltage, and Vχ represents the
standard deviation of the bus voltages, and C is the difference between
unity and the standard deviation of the bus voltages.

Considering two scenarios (A and B), if VPIA > VPIB, then a better
voltage profile is offered by scenario A.

3. Proposed algorithm

3.1. Overview of the DO algorithm

The DO is an advanced metaheuristic algorithm inspired by the
natural dispersal process of dandelion seeds. It was proposed and
mathematically modelled by Zhao et al., (2022) [39]. With its roots in

swarm intelligence, this innovative optimization technique mimics the
flight of dandelion seeds in search of fertile ground. By harnessing
principles from nature, the Dandelion Optimizer efficiently explores
complex solution spaces, finding a balance between exploitation and
exploration. Its versatility and effectiveness make it a promising tool for
tackling diverse optimization challenges across various domains. The
flight of the dandelion seeds are modelled to go through three stages;
rising, descending, and landing stages.

3.1.1. Initialization
During the dandelion population’s initialization phase, DO uses Eq.

(26) to arbitrarily create each candidate solution. where Dim and pop
stand for the values representing variable dimension and population
size, respectively. LB = (lb1, lb2, ...lbDim) and UB = (ub1, ub2, ...ubDim)
denotes the seed status’s upper and lower bounds, respectively.

Xi,j = rand×
(
ubj − lbj

)
+ lbj, i = 1, 2, ..., pop, j = 1, 2, ...,Dim (26)

After initialization, the seed with the lowest fitness is picked as the
dandelion seed propagation’s best location, and is denoted as Xelite. The
ith seed’s fitness score in the population is denoted by f(Xi). The
expression goes like this:

fbest = min(f(Xi))

Xelite = X(find(fbest = f(Xi))) (27)

where an index that has two identical values is indicated by find().

3.1.2. Rising stage
The growing altitude of dandelion seeds is determined by a combi-

nation of wind speed and meteorological conditions throughout the
ascending phase, which is why the weather is categorized as sunny or
rainy.

Case 1. In bright days, wind speed follows a log-normal distribution;
dandelion seeds have higher chances of travelling long distances under
this distribution. Thus, on bright days, the DO promotes exploration. The
vortex over the dandelion seeds is continually shifting due to wind speed,
which causes the seeds to spiral upward. The model depicting the upward
spiraling dandelion seeds on a sunny day is described below:

Xt+1
i = Xt

i + α∗sx∗sy∗lnY∗
(
Xt
s − Xt

i

)
(28)

Xt
s = rand(1,Dim)

∗
(UB − LB) + LB, (29)

α = rand()∗
(
1
T2t

2 −
2
T
t+1

)

, (30)

r =
1
eθ,

sx = r∗cosθ, (31)

sy = r∗sinθ,

Where the seed’s position at iteration t is depicted by Xt
i . The random

location of dandelion seeds at iteration t is depicted by the symbol Xt
s.

The highest possible number of iterations is T. To indicate a log-normal
distribution, lnY is used. Obeying μ = 0, σ2 = 1, α is an adaptive
parameter, Î is a random value in [ − π,π], sx and sy are the coefficients of
the dandelion seed lift component.

Case 2On wet days, the breeze does not cause dandelion seeds to rise. The
dandelion seeds currently highlight neighborhood exploitation on a local
level. Below is the appropriate model and formula:

I.O. Fajinmi et al.
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e = T2 − 2T + 1, (32)

β = 1 − rand()∗
1
e
(
t2 − 2t − 1

)
, (33)

Xt+1
i = Xt+1

i
∗β, (34)

The local adaptive parameter is typified using β, the highest iteration
number us denoted using T.

In conclusion, the following is the mathematical depiction of the
rising phase for dandelion seeds:

Xt+1
i =

{
Xt
i + α∗sx∗sy∗lnY∗

(
Xt
s − Xt

i
)
randn < 1.5

Xt
i
∗βelse

(35)

randn denotes an arbitrary number after standard normal distribution.

3.1.3. Descending stage
In the decline stage, DO prioritizes global exploration. In addition to

reflecting the stability of the fall, utilizing the mean location after the

Fig. 1. Radiality check for candidate configuration.

I.O. Fajinmi et al.
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growing phase aids the population of dandelion seeds in moving toward
the most productive area. The following is the mathematical model that
represents the declining phase:

Xmean t =
1
pop

∑pop

i=1
Xi, (36)

Xt+1
i = Xt

i − α∗βt
∗
(
Xmean t − α∗βt

∗Xt
i
)
, (37)

Where Xmean t typifies the average location of the dandelion numbers
in ith iteration, Brownian motion is βt.

3.1.4. Landing stage
Local community development is the DO’s primary objective

throughout the landing phase. The dandelions seeds determine where to
land at random based on the rising and falling phases. To get closer to
the global optimum, local exploitation is conducted using the data
pertaining to the current elite seed. The corresponding mathematical
model for the landing stage is:

Xt+!
i = Xelite + levy(λ)∗α∗

(
Xelite − Xt+1

i
∗δ
)
, (38)

δ =
2t
T

(39)

T is the largest number of iterations that can be performed, and Xelite

represents the most favorable seed position at iteration t.

3.2. Radial configuration check

A configuration check is performed to ensure that the radial
configuration requirements are met at various stages of the proposed
technique’s optimization process. This is done before the loading flow is
executed and the fitness value of each generated solution is ascertained.
In every configuration, the incidence matrix M is located. The first col-
umn, where in the RDN corresponds to the slack bus is to be eliminated
to create a square matrix M. There are two values for the square matrix
M determinant, which indicate radial or non-radial arrangements [40].
The radial feasibility flowchart for the setup is displayed in Fig. 1.

3.3. Application of DO for RDNR and SCA

The steps involved are as follows:

Step 1: Input the parameters for the tie switches and DO, as well as
the line and load data for the RDN.

Fig. 2. Single-line diagram of the IEEE 33-bus RDN.

Table 1
Grid features and cost specifications.

Parameters Symbols Value

Investment cost of SC SCinv cost 4000 ($/MVAr)
SC annual maintenance cost SCMC 10% of SCinv cost

Investment cost of Tie Switch SCostinv,s 4700 ($)
Tie switch operation and maintenance cost. SCostO&M,S 2% of SCostinv,s

Power purchase cost from Disco Cgrid 49 ($/MWh)
Planning years Nyrs 20 years
Time (No of hours in a year) T 8760 hours
Interest rate IntR 12.5 %
Inflation rate InfR 9.5 %

Table 2
Simulation Results for IEEE 33-Bus RDN.

Base case Rec only SCA only Rec and SCA

SC size in kVAr
(location)

  301(14)
492 (7)
907 (30)

430(24)
191(22)
167(7)

Open branches 33 34 35
36 37

27 15 37 36
7

33 34 35 36
37

27 7 37 36
15

Ploss (kW) 210.99 93.09 139.63 78.28
%Ploss  55.88 33.82 62.90
Qloss (kVar) 143.13 77.30 95.31 65.18
SC cost ($/npy)   16,721.20 7750.76
Switch cost
($/npy)

 24,285.84  24,285.84

VPI (p.u) 1.2477 1.8758 1.4196 1.9374
AVSI (p.u) 0.8124 0.9517 0.8678 0.9580
Cost-benefit
($/npy)

 707,985.06 430,128.64 765,535.27

Vmin (p.u.) 0.9038(18) 0.9728(33) 0.9339 (18) 0.9728 (33)

I.O. Fajinmi et al.
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Step 2: Determine the RDN’s fundamental loops (FLs).
Step 3: Depending on branches’ size that make up each tie-switch’s
corresponding FL, initialize the dandelion seeds (X) of its DO. A
dandelion seed is a possible solution consisting of NOBs, SC locations
and SC sizes. A rise of n dandelions is expressed as:

D=

⎡

⎢
⎢
⎣

d1
d2
⋮
dn

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

NOS11,…,NOS1NTL loc.SC1
1,…, loc.SC1

m size.SC1
1,…, size.SC1

m

NOS21,…,NOS2NTL loc.SC2
1,…, loc.SC2

m size.SC2
1,…, size.SC2

m

⋮⋱⋱⋱⋱⋱⋮ ⋮⋱⋱⋱⋱⋱⋮ ⋮⋱⋱⋱⋱⋱⋮
NOSn1,…,NOSnNTL loc.SCn

1,…, loc.SCn
m size.SCn

1,…, size.SCn
m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(40)

Every seed in the flight is represented by:

di =
[
NOSi1,…,NOSiNTL loc.SCi

1,…, loc.SCi
m size.SCi

1,…, size.SCi
m

]

(41)

Eq. (41) makes clear that each seed’s solution vector is composed of
three components. The number of busses chosen for SC penetration is
represented by the second component, the number of commonly open
switches or lines (open branches: NOSs) of the RDN is represented by the
first part, and the sizes of the SC units are represented by the third part.

From the expressions, NOS1,NOS2,…,NOSNTL denotes the normally
open switches (open branches) in the fundamental loops, loc.SCi

1,…, loc.
SCi

m stands for the optimal buses selected for reactive compensations;
size.SCi

1,…, size.SCi
m represents the capacities of the SCs in kVAr to be

allotted at the chosen buses, respectively.
Every dandelion in the DO can be seen of as a randomly generated

initialization solution. As a result, every seed in the population is
initialized at random in this way:

NOSi = round
[
NOSilower,r1 + rand×

(
NOSiupper,r1 − NOSilower,r1

)]
(42)

Fig. 3. Active power loss plot for all considered cases for IEEE 33-bus RDN.

Fig. 4. Voltage profile plot for all considered cases for IEEE 33-bus RDN.
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loc.SCi = round
[
locilower,r2 + rand×

(
lociupper,r2 − locilower,r2

)]
(43)

size.SCi = round
[
sizeilower,r3 + rand×

(
sizeiupper,r3 − sizeilower,r3

)]
(44)

With the exception of the slack bus, which serves as the first bus, SCs
can be installed at any bus of the RDN. As a result, according to the
inequality constraints of Eq. (17), the SC units’ lowest and highest limits
are from bus 2 to the RDN’s last bus, and the sizes of each SC range from
100kVAr to the maximum total reactive load of the network.

Step 4: Utilizing the direct load flow technique, obtain the total
power loss, the total operating costs and bus voltages.
Step 5: Obtain the position and size of the SCs by calculating the
fitness value (f) of each dandelion seed. Create a size that meets
every optimization constraint.
Step 6: Based on fitness values, choose the best dandelion seed.
Step 7: Initialize the counter.

Step 8: Execute the power flow analysis, obtain the power loss for
every seed produced, and assess its corresponding fitness values
utilizing the modelled objective function.
Step 9: While (t < T), do /*Rise stage*/
Step 10: Calculate the exploitation between the previous position
and the elite seed.
Step 11: Make use of Eq. (30) to generate adaptive parameters.
Step 12: Utilizing Eq. (34), update dandelion seeds.
Step 13: End if /*Decline stage*/. Else, go to step 12
Step 14: Utilizing Eq. (37) for /*Land stage*/, update dandelion
seeds
Step 15: Utilizing Eq. (27), update Xelite
Step 16: Print the results.

3.4. Overview of methodology, operational details, and system
configurations

Buses in RDNs are connected through sectionalizing switches and tie
switches, which are normally closed and normally open, respectively,

Fig. 5. Convergence characteristics for all considered cases for IEEE 33-bus RDN.

Fig. 6. Operating costs for all considered cases for IEEE 33-bus RDN.
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under standard system operations. These switches are used to maintain
the radial nature of the distribution systems, ensuring a unidirectional
power flow to each bus. Under operation, current demand from buses,
particularly the ones with high power-consuming loads, leads to high
power losses in the systems due to the distribution lines’ impedances.
Hence, the more impeditive the distribution paths to these loads are
from the slack bus, the higher the system losses. High system losses
correspondingly lead to poor cost efficacy of the RDNs, which is then
prioritized as the objective of this research. The reconfiguration pro-
cedure alters the topology of the network by developing new tie switches
(opening some of the existing sectionalizing switches and closing some
of the existing tie switches) that provide the path with the least
impedance to buses with high power-consuming load, thereby reducing
power losses, maximizing cost benefits, and improving voltage profiles.
The optimization model in this work finds this optimal configuration
and determines the location and sizes of SCs to be integrated into the
network for reactive compensation and additional voltage profile
enhancement. The algorithm in Fig. 1 ensures the system stays radial
through every configuration in the optimization process. The SCs
selected for integration in this study are single capacitors. While single
capacitors are known to possess fixed and limited reactive power ca-
pacities, it is selected in this study due to their ease of installation,
flexibility, and, most importantly, their relatively low investment costs,
which is further aimed at maximizing the objective function specified in
this study. Further diagrammatical explanations about the switch details
and the base case system configurations of the test networks considered
in this study can be seen in Figs. 2 and 7.

4. Results and discussion

The IEEE 33-bus and IEEE 69-bus RDN test beds are utilized to
implement and validate the novel DO technique described in this
research study. The bounds of the capacitor sizes chosen for allotment in
the test beds ranges between 150 and 1500 kVAR and the minimum and
maximum bus voltages for all cases considered is Vmax =1.05 p.u and
Vmin =0.9 p.u. The direct load flow technique proposed by Teng [41]
was used. In the mesh distribution network, the reconfiguration process
starts with every switch closed. To break loops, one at a time, each
switch is opened. The maximizing of total cost benefits is the condition
for opening a switch and the switch that yields the optimal cost-benefit
should be opened. Additionally, only SC sizes that maximizes the cost
benefits should be integrated. Table 1 presents the parameters utilized in
the mathematical derivations of the objective function.

Using a 3.0 GHz, 64-bit PC with an i5 processor and 8 GB RAM,
MATLAB® software is utilized to obtain the load flow solution and the
DO-based approach. The total number of search agents is set at 30, and
the total iteration number is fixated at 100.

The following scenarios are examined for each test beds, and com-
parisons are made with the findings found in recent researches.

Scenario 1: Base case (before NR an SC allotment)
Scenario 2: Only Reconfiguration.
Scenario 3: Only SC allotment.
Scenario 4: Reconfiguration coupled with SC allotment.

Table 3
Comparison with Other Techniques for IEEE 33-Bus RDN.

Technique Open
branches

SC
(kVAr)/
bus

Power
loss
(kW)

% Power
loss
reduction

Min. Bus
Voltage
(p.u)

Base case 33 34 35
36 37

 210.99  0.9131

Scenario 2:
Reconfiguration
only

    

MBA [28] 7 14 9 32
37

 139.53 31.14 N.A.

ICSA [44] 7 14 9 32
37

 139.55 31.14 0.9378

HSA [28] 7 14 9 32
37

 139.55 31.14 0.9378

FWA [28] 7 14 9 32
28

 139.98 30.93 0.9413

ACSA [45] 7 14 9 32
28

 139.55 31.14 0.9413

HM [46] 7 9 14 32
37

 139.55 30.93 0.9378

UVDA [28] 7 9 14 32
37

 139.55 31.14 0.9378

INNA [47] 7 9 14 32
37

 139.55 31.14 0.9378

ACA [28] 7 9 14 32
37

 139.68 31.07 0.9375

SFS [48] 7 14 9 32
37

 139.55 31.14 0.9378

GWO [28] 7 14 9 32
37

 139.55 31.14 0.9378

DO 27 15 37
36 7

 93.09 55.88 0.9728

Scenario 3: SCA
only

    

AWOA [25] 33 34 35
36 37

150 (24)
50 (25)
150 (30)

115.88 31.82 N.A.

LS [25] 33 34 35
36 37

450 (12)
350 (25)
900 (30)

139.23 31.30 N.A.

MLIP [9] 33 34 35
36 37

750 (6)
150 (28)
850 (29)

139.57 31.13 0.9302

ACA [28] 33 34 35
36 37

600 (9)
450(28)
600 (29)

136.14 32.82 N.A.

DO 33 34 35
36 37

301 (14)
492 (7)
907 (30)

139.63 33.82 0.9339

Scenario 4:
Simultaneous
reconfiguration
and SCA

    

GWO [28] 7 9 14 32
37

533 (24)
957 (30)
445 (8)

92.59 54.31 0.9595

ACA [28] 7 9 14 32
37

600 (20)
450 (28)
600 (29)

95.79 52.73 0.9656

BFO [28] 7 11 34
37 36

600 (5)
300 (16)
300 (25)

101.08 50.12 0.9712

AWOA [25] 33 34 35
36 25

400 (2)
250 (25)
150 (30)

97.415 42.68 N.A.

MBBO [49] 7 11 34
36 28

750 (27)
450 (30)
600 (24)

83.47 58.82 N.A.

CS [49] 8 5 37 30
12

300 (8)
750 (30)
600 (23)

95.66 52.80 N.A.

MIC [25] 9 25 14
33 37

750 (27)
150 (2)
750 (24)

97.64 51.83 N.A.

Table 3 (continued )

Technique Open
branches

SC
(kVAr)/
bus

Power
loss
(kW)

% Power
loss
reduction

Min. Bus
Voltage
(p.u)

APSO [9] 7 9 14 32
34

516 (24)
624 (21)
961 (30)

92.64 54.30 0.9585

DO 27 7 37
36 15

430 (24)
191 (22)
167 (7)

78.28 62.90 0.9728
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Fig. 7. Single line-diagram of the IEEE 69-bus RDN.

Table 4
Simulation results for IEEE 69-Bus RDN.

Base case Rec only SCA only Rec and SCA

SC size in kVAr (location)   878 (61)
204 (64)
179 (21)

150(21)
150(6)
150(59)

Open branches 69 70 71 72 73 73 58 60 71 69 69 70 71 72 73 45 11 10 23 60
Ploss (kW) 224.99 58.82 144.36 43.80
%Ploss  73.86 35.83 80.51
Qloss (kVar) 102.16 37.95 69.65 35.22
SC cost ($/npy)   12 403.12 4 426.20
Switch cost ($/npy)  30 357.30  30 357.30
VPI (p.u) 1.5866 2.1674 1.6530 2.4680
AVSI (p.u) 0.9062 0.9627 0.9222 0.9874
Cost-benefit ($/npy)  1 010 300.87 473 641.32 1 134 722.60
Vmin (p.u.) 0.9092(65) 0.9712 (27) 0.9283 (65) 0.9899 (59)
    0.9900

Fig. 8. Active power loss plot for all considered cases for IEEE 69-bus RDN.
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4.1. IEEE 33-Bus RDN

The IEEE 33-Bus RDN is operated at 12.66kV with load requiring
total real power and reactive power of 3.7150MW and 2.300 MVAr,
respectively. The RDNs’ line and load data can be obtained from [42].
37 branches made up of 32 normally closed branches (NCB) and 5
normally opened branches (NOB) can be found in the 33-bus RDN, with
its initial tie switches located at branches [33–37]. The base case results
obtained after load flow depicts the cummulative active power, reactive
power loss, VPI and AVSI to be 210.99 kW, 143.13kVAr, 1.2477 p.u and
0.8124 p.u, respectively. Its line diagram is shown in Fig. 2.

Table 2 showcase the results obtained for all cases returned by the
DO optimizer for its cost-based objective function. Considering scenario
2(after NR only), the newly acquired open branches are [27,15,37,36,7],
which have 77.30 kVAr for reactive power and 93.09 kW for active
power losses, respectively, which is quite low. The active power loss
corresponds to 55.88 % reduction in comparison with the value of the
base case (210.99 kW) before changes in the system. The lowest voltage
magnitude in p.u was obtained to be 0.9728 at bus 33, with VPI and
AVSI values of 1.8758 and 0.9517, respectively. The switch cost and the

total cost benefit 24 285.84($/npy) and 707 985.06 ($/npy) were
incurred by the reconfiguration procedure.

For case 3 (SCA only), the algorithm returned shunt capacitors sizes
(kVAr) of 301,492 and 907 situated at buses 14,7 and 30 respectively,
with a reduced active and reactive power losses of 139.63kW and
95.31kVAr which corresponds to a 33.82 % and 33.41 % diminution in
the active and reactive power losses, respectively in relation to the base
case. The obtained value for the minimum voltage magnitude, VPI and
AVSI in p.u were 0.9339 at bus 18, 1.4196 and 0.8678, respectively.
Finally, the total cost benefit incurred and Shunt Capacitor cost by the
Shunt capacitor allocation were obtained to be 430 128.64 ($/npy) and
16 721.20 ($/npy)

Proceeding to case 4 (simultaneous NR and SCA), the new open
branches obtained were found to be [27,7,37,36,15] and the shunt
capacitor sizes in kVAr were obtained to be 430,191 and 167 located at
buses 24, 22 and 7, respectively. The active and reactive power losses
were found to be 78.28 kW and 65.18 kVAr, respectively which corre-
lates to a 62.90 % reduction in active power loss and 54.46 % reduction
in reactive power loss on comparison with the base case. The minimum
voltage magnitude in p.u was 0.9728 at bus 33, and VPI and AVSI were

Fig. 9. Voltage profile plot for all considered cases for IEEE 69-bus RDN.

Fig. 10. Convergence characteristics for all considered cases for IEEE 69-bus RDN.
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1.9374 and 0.9580, respectively Conclusively, the total cost-benefit,
switch cost and shunt capacitor cost incurred by the synchronous
reconfiguration of the RDN and shunt capacitors integrations were
computed at 765 535.27 ($/npy), 24 285.84($/npy) and 7 750.76
($/npy), respectively. Figs. 3, 4, 5, and 6 explain diagrammatically the
notable improvements obtained on the RDN for all cases considered in
terms of active power loss reduction, voltage profile enhancement,
convergence characteristics, and the total reductions in operating costs,
respectively when compared to the base case.

Table 3 showcases a comprehensive comparison of the suggested DO
technique’s performance with the findings of contemporary literatures,
utilizing power loss reduction as a metric. The recommended technique
presented results better than other techniques in in every case that was
examined.

4.2. IEEE 69-Bus RDN

With total active power demand and total reactive power needed by
loads set at 3.800MW and 2.700 MVAr, respectively, the IEEE 69-Bus
RDN is operated at 12.66kV. The RDNs’ line and load data can be ob-
tained from [43]. The 33-bus RDN has 73 branches, of which 68 are
normally closed branches (NCB) and 5 are normally opened branches
(NOB). The branches [69 70 71 72 73] contain to the initial tie switches.
The total active power loss, reactive power loss, VPI and AVSI in the base
case results obtained after load flow are 224.99kW, 102.16kVAr, 1.5866
p.u, 0.9062 p.u, respectively. Fig. 7 showcases the line diagram of the
IEEE 69-bus RDN. The outcomes for each scenario that the DO optimizer
returned for its cost-based objective function are displayed in Table 4.

The new open branches acquired in scenario 2 (after NR alone) are
[73 58 60 71 69], the configuration of these branches provided much
lower real and reactive power losses, measuring 58.82 kW and 37.95
kVAr, respectively. The actual power loss is equivalent to a 73.86%
decrease from the base case value of 224.99 kW prior to system modi-
fications. At bus 27, the lowest voltage magnitude in p.u. was found to
be 0.9712, with corresponding VPI and AVSI values of 2.1674 and
0.9627. The reconfiguration process resulted in the switching cost and
the total cost benefit of 30 357.30($/npy) and 1 010 300.87($/npy).

For scenario 3 (SCA only), the algorithm returned shunt capacitors
sizes (kVAr) of 878,204 and 179 situated at buses 61,64 and 21
respectively, with a reduced active and reactive power losses of
134.32kW and 94.28kVAr which corresponds to a 33.62% and 31.82%
diminution in the active and reactive power losses, respectively in

relation to the base case. The obtained value for the minimum voltage
magnitude, VPI and AVSI in p.u were 0.9283 at bus 65, 1.6530 and
0.9222, respectively. Finally, the total cost benefit incurred and Shunt
Capacitor cost by the Shunt capacitor allocation were obtained to be 473
641.32($/npy) and 12 403.20($/npy), respectively.

Moving on to simulations in scenario 4 (simultaneous NR and SCA),
It was found that the shunt capacitor sizes in kVAr are 150, 150, and 150
at buses 21, 6, and 59, respectively, and the new open branches obtained
are [45,11,10,23 60]. It was discovered that the real and reactive power
losses were 43.8 kW and 35.22 kVAr, respectively. This translates to
reductions of 80.51 % in active power loss and 65.52% in reactive power
loss when compared to the base scenario. The lowest voltage magnitude
in p.u. was 0.9899 at bus 59, and the corresponding values for VPI and
AVSI were 2.4680 and 0.9874. In conclusion, the synchronized recon-
figuration of the RDN and shunt capacitors integrations resulted in total
cost-benefit, switch cost, and shunt capacitor cost calculations of 1 134
722.596($/npy), 30 357.30($/npy), and $4 426.20($/npy), respec-
tively. Figs. 8, 9, 10, and 11 explain diagrammatically the notable im-
provements obtained on the RDN for all cases considered in terms of
active power loss reduction, voltage profile enhancement, convergence
characteristics, and the total reductions in operating costs, respectively
when compared to the base case,

Table 5 showcases a comprehensive comparison of the suggested DO
technique’s performance with the findings of contemporary literature,
utilizing power loss reduction as a metric. The recommended technique
presented results better than other techniques in in every case that was
examined.

5. Conclusion

A novel optimizer (DO) and objective function has been effectively
applied to simultaneously reconfigure RDN and allot shunt capacitors.
The objective of the approach was to maximize the total cost benefits
obtained from the decrease in the cost of energy procured from the
DisCos through reduced power losses in radial distribution networks.
While costs are never constant through time, the benefits obtained were
scaled over a certain number of planning periods, considering interest
and inflation rates in the modeling. Other technical benefits, such as
AVSI and VPI, were also assessed. The suggested technique was vali-
dated on the IEEE 33-bus and 69-bus RDNs under various scenarios of
reconfiguration, SC installation, synchronous reconfiguration, and SC
integration. The simulation results revealed that making the cost-benefit

Fig. 11. Operating costs for all considered cases for IEEE 69-bus RDN.
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the sole objective of the optimization process brought about significant
power loss reduction compared to other objective functions utilized in
the previously reviewed literature, with the algorithm returning a
maximum of 69.2% active power loss reduction for the IEEE 33-bus
RDN, and an improved 80.51% active power loss reduction for the
IEEE 69-bus RDN, thereby, further establishing the efficacy of this
approach. Future research could explore the application of this approach
on an unbalanced distribution network. This approach could also be
extended to the optimal allocation of electric vehicle charging stations
(EVCS), FACTS (Flexible AC Transmission system) devices, and distrib-
uted generation (DG) in various distribution networks.
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