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1. Introduction

Photogrammetry and remote sensing are powerful tools to gather 
information about the Earth from a distance using sensors on 
satellites, airplanes, or drones to collect data in the form of light, 
radar, or other electromagnetic waves (Zhu et al., 2018; Hong et 
al., 2023; Zhao and Sun, 2023). Given the emergence of different 
technologies such as LiDAR (light detection and ranging) or 
various techniques such as dense matching of aerial imagery, it is 
now possible to quickly collect the accurate 3D point cloud from 

the Earth’s surface. Represented as the point cloud, these data 
include 3D information about the Earth’s surface and all of its 
objects. The point cloud is called the Digital Surface Model 
(DSM). Digital Terrain Model (DTM) generation is crucial for 
various applications such as urban planning, flood modeling, 
line-of-sight analysis, and landscape modeling (Pingel et al.,
2013; Gevaert et al., 2018). It provides valuable information 
about the topography of an area, aiding in the understanding of 
surface features, elevation changes, and slope characteristics. 
This data is essential for making informed decisions in fields like 
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engineering, environmental assessment, and infrastructure 
development. Converting a DSM into a DTM is among the 
important applications of photogrammetry and remote sensing. It 
necessitates filtering or detecting and eliminating the non-ground 
objects. The difference between DSM and DTM resulted in the 
development of the normalized Digital Surface Model (nDSM), 
which includes the heights of non-ground objects. In fact, an 
nDSM plays a key role in detecting and classifying objects and 
developing their 3D models (Gevaert et al., 2018; Bigdeli et al., 
2018b). The process of extracting a DTM from a DSM usually 
consists of two phases, in the first of which non-ground points 
are detected and eliminated. In the next phase, the DTM is 
developed by interpolating and retrieving the height information 
about the eliminated areas. Filtering methods are faced with 
various challenges and problems that can be classified as two 
categories (Gevaert et al., 2018), the first of which is due to the 
inherent characteristic of adopting or collecting the point cloud. 
For instance, shades can cause problems in the matching 
procedure or create noise in the outputs when the point cloud is 
obtained from the dense matching of aerial imagery. Moreover, 
the insufficiency of spectral information or calibration of cameras 
can sometimes cause noise or false data in the point cloud. In 
addition, the point cloud developed through LiDAR might have 
false data and noise due to dispersal or multiple reflections from 
different surfaces. The features of the study areas pose the second 
category of challenges to filtering algorithms. For instance, it is 
difficult to detect non-ground objects in sloped areas. Moreover, 
high-dimensional objects can adversely affect the detection 
accuracy (Pingel et al., 2013; Chen et al., 2016a; Gevaert et al.,
2018). The algorithms proposed for point cloud filtering can be 
classified as four categories: methods based on progressive 
densification, morphology-based operators, surface-based methods, 
and segmentation-based methods.

In the methods based on progressive densification, a few 
points are considered the initial points which must belong to the 
ground. They are then densified and multiplied through a progressive 
process. Axelsson (2000) used a grid to select the points with the 
lowest height and develop a Triangulated Irregular Network 
(TIN). In fact, an initial network was employed with the points of 
the lowest height to eliminate the edge-cutting phenomenon. The 
developed TIN would be densified progressively by adding the 
points with shorter distances from three neighboring node points 
in the network than a threshold (Axelsson, 2000). Sohn and 
Dowman (2002) proposed an algorithm with triangulation 
downward and divide-and-conquer upward trends as well as the 
progressive DTM enhancement. For this purpose, an initial 
coarse TIN was first developed with a specific number of points. 
In a triangulation downward trend, the points with lower heights 
than the threshold were detected to update the DTM level. The 
locational relationship between the rest of the nodes and the TIN 
was then analyzed in the divide-and-conquer trend (Sohn and 
Dowman, 2002). In fact, the model was mainly based on the 
assumption to find the candidate points that could be added to 
the model and divide the surface locally to further flat ground 

surfaces. The distance criterion is employed to select a closer 
point as the candidate point when the number of candidate points 
is larger than a specific number. The process of detecting and 
adding points to the surface would continue until no new points 
were found (Sohn and Downman, 2002). Zhang and Lin (2013) 
employed the progressive TIN enhancement and segmentation 
based on the softness criterion for DTM extraction. First, the 
initial points were selected, and a region growing trend was then 
used with respect to the initial points to filter the non-ground points 
and TIN densification. Guan et al. (2014) proposed a filtering 
method based on the Cross-Section Plane (CSP) by first placing the 
point cloud inside a 3D grid and then using a multi-directional CSP, 
which can extract the features of a complicated 3D object as 2D 
features, to extract the features of every grid cell. This algorithm 
focused on the forest areas. Since the laser pulses can penetrate 
vegetation, the points with only one return were considered the 
initial ground points. The other potential ground points were 
extracted by considering certain rules based on the number of 
neighboring ground points as well as the height difference and signal 
intensity of each point in comparison with the neighboring points. 
All of the potential ground points were then filtered inside each cell 
through segmentation and point extraction with the lowest height. 
Ultimately, the final ground points were obtained from each 
direction of the CSP by extracting and crossing the ground point set 
(Guan et al., 2014). Chen et al. (2016a, 2016b) emphasized that the 
TIN-based method would mainly face problems in the steep slope 
mountain regions, for which they proposed three strategies. First, 
they used the triangular relationships to detect the triangles placed on 
ridges and discontinuity areas. The points with the lowest local 
heights and the ridge points were then detected. Finally, a 
relationship was employed to control the iteration number and 
achieve the best accuracy.

The morphology-based operators are potentially capable of 
eliminating non-ground objects and developing DTM. Vosselman
(2000) proposed a filtering method based on mathematical 
morphology to calculate the surface details by analyzing the 
height differences of neighboring points (Vosselman, 2000). 
Sithole (2001) proposed a local operator, the parameters of 
which can change as a function of the region slope, to minimize 
the negative effects of changes in the surface height. Roggero 
(2001) employed a morphology-based operator whose parameters
were tuned in proportion to the region surface (Roggero, 2001). 
Kobler et al. (2007) considered a slope-based operator for the 
DTM extraction and analyze the upward height difference and 
the downward height difference separately. Shao and Chen 
(2008) proposed a climbing and sliding method and tried to 
develop the local search technique by considering the general 
features. For this purpose, geometrical features such as erosion, 
dilation, and performance improvement slope of the steep slope 
regions were used (Shao and Chen, 2008). Lu et al. (2009) 
employed a hybrid conditional random field method of the DTM 
extraction, in which a supervised technique was proposed to 
classify ground and non-ground points on continuous and discrete 
surfaces. They used the height values of the detected ground 
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points, which can be extracted from LiDAR data, to create the 
ground. The height values of the ground surface around the 
detected non-ground points were determined through the Gaussian
random field (Lu et al., 2009). Sampath and Shan (2004) detected 
the non-ground points by applying 1D and 2D filters (Shan and 
Aparajithan, 2005), a technique which was also developed as a 
multi-directional method (Meng et al., 2009). Wang and Tseng 
(2014) divided the conventional 1D coin operator into two 
separate operators, the results of which were fused to extract the 
non-ground objects. These operators can be applied horizontally 
and vertically. They are suitable for detecting non-ground objects 
in urban areas due to their capability of extracting drastic surface 
changes and sudden stair changes (Wang and Tseng, 2014). Hu 
et al. (2015) adopted two strategies for detecting and eliminating 
non-ground objects. The value of the slope parameter is determined 
with respect to the surface bulge in the first strategy that is based 
on slope. In fact, the value of bulge is determined by calculating 
the differences of the adjacent detected segments. The second 
strategy is to filter the points by analyzing each line in eight 
directions (Hu et al., 2015). Li et al. (2014) employed a top-hat filter 
to detect the non-ground points and then used geometrical 
parameters such as slope to improve the performance of that filter 
(Li et al., 2014). Mongus et al. (2014) used a few interconnected 
operators to better filter the points. For this purpose, they first 
utilized a grid to connect the points and then eliminate the blunder 
errors of structural elements. Therefore, some operators were used 
as the area of the widest interconnected regions, the maximum 
roughness of an object existing in the scene, and the differential 
surfaces on which non-ground objects were placed on a higher level 
than the neighboring points (Mongus et al., 2014). Using several 
thresholds on different scales would eliminate non-ground objects of 
different dimensions and prevent the false elimination of sloped 
regions misidentified as non-ground objects (Mongus and Žalik, 
2012, 2013). Hu et al. (2016) employed the morphology-based 
operator with an iterative structure to extract the DTM, in which the 
dimensions of the structural element increased progressively, and 
various objects were eliminated in each step in proportion to the 
region slope (Hu and Yuan, 2016). Bigdeli et al. (2018a) proposed 
an iterative procedure based on the geodesic dilation operator to 
detect the non-ground points, in which the dimensions of the 
structural element increased progressively, and the detected 
segments were analyzed separately. The final class of non-ground 
objects was extracted through the detailed geometrical analysis of 
the detected segments (Bigdeli et al., 2018b).

It has been very common to use a local minimum to extract a 
DTM. For this purpose, an initial surface was created by selecting at 
least three points. The surface was then improved gradually by 
adding the ground points. In fact, it is fairly suitable to create 
initial surfaces with the minimum number of points for flat 
regions; however, this method faces problems and fails to work 
when the ground topography is slightly complicated. Kraus and 
Pfeifer (2001) proposed a method in which a primary procedure 
was developed through a number of control points, which are 
usually the points with the lowest height in each cell. The residual 

values between the points and the estimated surface were then 
calculated, and a weight was then attributed to each point in 
proportion to the resultant values. The points with higher weights 
have greater effects on the process of updating the surface, 
whereas the points with lower weights have smaller effects on 
the process. The process of iterating and updating the surface 
continues until the resultant surface is stabilized or the iteration 
number reaches the maximum quantity (Kraus and Pfeifer, 
2001). Pfeifer et al. (2001) converted the LiDAR point cloud into 
an image and proposed a hierarchical calculation process to 
improve the filtering performance and acquire better results. In 
fact, it is possible to improve the results gradually by comparing 
the initial DTM to the DTM with the above reference details 
(Pfeifer et al., 2001). Elmqvist (2002) employed an active model 
for the DTM estimation. Yielding acceptable outputs by using 
the dense point cloud, the model would minimize the energy 
function to extract a DTM in an iterative process (Elmqvist, 
2002). Kobler et al. (2007) proposed an iterative interpolation 
procedure for the DTM extraction. In that method, classical 
methods were used first to primarily process and eliminate false 
data and non-ground points. In other words, a few TINs were 
selected randomly, and the generation of height data was calculated 
in different DTM positions. The residual non-ground points were 
detected by comparing the distribution of height data with the 
total mean of points (Kobler et al., 2007). Chen et al. (2012) 
proposed an iterative structure for surface retrieval to generation 
the DTM. In their proposed structure, the final pulse points are 
first matched and are then classified as different surfaces by 
dividing LiDAR data. In the next step, the ground points are 
detected, and the final DTM results are improved from a top 
layer to a bottom layer (Chen et al., 2012). Maguya et al. (2013) 
proposed an adaptive algorithm for the DTM extraction in the 
forest areas. In their proposed algorithm, a set of minimum point 
would be selected to create an initial surface. Two different linear 
and quadratic equations were then employed to simulate the 
surface. A point would be considered a ground point if it met the 
DTM limits. Zhang et al. (2016) proposed a Cloth Simulation 
Filter (CSF), in which a procedure would be created on the 
points, and a gravity function would be utilized to correct and 
form the procedure properly.

The image processing algorithms used for image classification
(Li et al., 2014; Simon et al., 2023) are used extensively for the 
DTM extraction. In other words, the ground points are used for 
extraction in the DTM by categorizing the point cloud as different 
classes through the extracted or determined rules. Generally, the 
point cloud contains only height information, something which 
makes the point cloud classification difficult, for the limited 
spectral or geometrical information can be extracted from 
LiDAR data. In this regard, certain parameters such as the number 
of recursive LiDAR pulses or the difference of first and last 
pulses can be employed to detect non-ground objects such as 
vegetation (Lee and Lucas, 2007; Chen et al., 2016b). Since the 
geometrical behavior and signal intensity of the neighboring 
points are very similar in the point cloud, the object-based 
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classification methods can be really useful. In the object-based 
classification process, the point cloud is first interpolated and 
converted into an image. The point cloud is then divided into 
some segments with similar features but unspecific labels by 
using height values, signal intensity, and geometrical features in 
a segmentation method. Finally, classification is performed by 
applying some classification rules and considering the extracted 
features (Blaschke, 2010; Blaschke and Tomljenović, 2012). 
Antonarakis et al. (2008) used the height vegetation model, 
signal intensity, skewness, and kurtosis to classify LiDAR point 
cloud in forest areas in addition to distinguishing between ground and 
non-ground points (Antonarakis et al., 2008). The texture features of 
Gray-Level Co-occurrence Matrix (GLCM) such as homogeneity, 
mean, entropy, correlation, and dissimilarity were employed to 
classify trees, buildings, and land (Samadzadegan et al., 2010; 
Huang et al., 2011). Chen and Gao (2014) first adopted a 
segmentation algorithm to divide images into segments with 
similar features and then detected pieces of land by calculating 
distances of segments and applying a few slope operators instead 
of ground points (Chen and Gao, 2014). The good performance 
of deep networks in different fields has attracted the attention of 
researchers in recent years (Li et al., 2018; Mukherji et al., 2022; 
Mokayed et al., 2023). Hu et al. (2016) employed a deep 
Convolutional Neural Network (CNN) to classify and differentiate 
ground points from non-ground points. For this purpose, each 
point and its neighborhood were extracted and converted into an 
image in a specified window. In addition to the height values of 
each point, the height values of neighboring points and the 
structure of a region at the point of interest were considered in 
the classification process to improve the results (Hu and Yuan, 
2016). Gevaert et al. (2018) used a morphology-based filter first 
to detect the candidate ground and non-ground points, which 
they then employed to train a Fully Convolutional Network (FCN). 
Finally, the trained network was adopted to detect the non-
ground points (Gevaert et al., 2018).

Since the available filtering methods are mainly faced with 
problems in detecting non-ground objects of different dimensions
in complicated sloped regions and in extracting the DTM, this 
paper aims to perform the DTM extraction in such areas with the 
fewest errors by proposing a framework based on deep learning 
and Particle Swarm Optimization (PSO) (Shi, 2004; Wang et al., 
2023). In this regard, a hierarchical imagery-based deep network 
was proposed to extract non-ground objects from the point 
cloud. After the non-ground objects were eliminated, polynomial 
interpolation was performed to reconstruct the DTM and estimate
the eliminated height values. The modified PSO algorithm was 
employed to extract the optimal polynomial parameters. In 
designing a PSO, different ranges can be selected for each element 
of a particle's position and velocity vectors within the d-dimensional 
problem space, corresponding to the number of coefficients for 
the chosen polynomial. Managing the ranges for larger problem 
spaces can be quite challenging. Equally crucial is defining the 
maximum velocity change for a particle during an iteration. In 
our modified PSO proposal, we aimed to address these challenges 

by mapping the element values within a specified range in each 
iteration of computation. The evaluation results of the proposed 
approach are compared with those of other methods (Chen et al., 
2013; Pingel et al., 2013; Mongus et al., 2014; Hui et al., 2016; 
Bigdeli et al., 2018a) to assess the robustness of the proposed 
approach. This paper consists of various sections. The proposed 
methodology is introduced in Section 2, and the implementation 
results are reported in Section 3. The results are then analyzed 
and discussed in Section 4. Finally, the research conclusion is 
drawn in Section 5.

2. Methodology

The proposed algorithm for DSM filtering and DTM extraction 
consists of two main steps, the first of which is to detect non-
ground objects and eliminate them from a DSM (Subsection 2.1), 
and the second step is to interpolate and retrieve the eliminated 
regions as well as developing a DTM (Subsection 2.2).

2.1 Ground Filtering with Hierarchical Deep Network
The proposed deep framework for non-ground object extraction 
has a hierarchical structure. The main core of this method is a 
deep network with an encoder-decoder structure consisting of two 
separate sections for feature extraction in generating the classification 
map. In the first section called the encoder (Fig. 1: left), various 
features are extracted from the input image at different levels by using 
the ResNet-101 structure, in which the dimensions of feature maps 
decreased to 1.23 of the input images dimensions through five steps 
and five convolutional blocks based on the residual connection. 
Shallower levels extract features with more details, whereas deeper 
levels extract the general features of the image. In fact, the semantic 
consistency of data is very unsuitable at shallow layers due to the low 
dimensions of the receptive field and the insufficient context 
information. By contrast, the semantic consistency of the information 
is higher at deeper layers due to the higher dimensions of the 
receptive field; however, the positional information is fairly weak. As 
a result, each feature extraction block extracts different efficient 
features that are necessary for the accurate segmentation of an 
image. Thus, the proposed network was designed to have the 
capability of extracting and fusing features at various levels for 
the accurate detection of non-ground objects. Fig. 1 represents 
the structure of the proposed deep network.

As discussed earlier, the dimensions of the generated features 
decrease gradually in the first section of the proposed network. 
However, the dimensions of feature maps increase in the second 
section (Fig. 1: right), where the non-ground objects are detected 
and separated. Hence, the structure of the second section should 
be strong enough to convert the generated features into the final 
result of detecting objects. In addition, using the features 
generated at each level of the first section can be effective in 
detecting non-ground objects more accurately in the second 
section. For this purpose, the decoder sections of several different 
blocks were designed alongside the up-sampling layer to generate 
the feature layers by considering the features extracted from 
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previous layers, using the features of the network encoder layers, 
and fusing them with the layers of the network decoder (Fig. 2).

Inspired by the GoogleNet structure (Ballester and Araujo, 
2016), a Feature Extraction Block (FEB) was designed (Fig. 3) 
to extract features from different levels of the network encoder 
for fusion with the corresponding levels in the network decoder. 
For this purpose, four convolutional layers of 1 × 1, 3 × 3, 5 × 5, 
and 7 × 7 dimensions were employed to extract the context 
information required at different levels from the block designed 
in the first section (Figs. 2 and 3). Some points should be taken 
into account. First, a 1 × 1 convolutional layer was employed to 
reduce feature dimensions and compress the feature maps. 
Second, 1 × k and k × 1 filters were fused instead of using k×k 
convolutional filters due to preventing the elimination and loss of 
information in the process of applying convolution. Finally, different 

filters were used, and features were extracted from various levels. 
Moreover, a 1 × 1 filter was applied to fuse the extracted features 
and correct the number of their channels in order to prepare the final 
feature map for use in the next steps. Fig. 3 depicts the structure of 
the designed Feature Extraction Block (FEB).

The features of deep layers provide robust compatible constraints 
for the positions of objects, whereas shallow layers contain 
proper local information for pinpointing the objects accurately. 
The fusion of these data is very useful for acquiring the best 
accuracy. Therefore, the features extracted from the network 
encoder should be fused with the corresponding features of the 
network decoder through an FEB connection within the up-
sampling process. For this purpose, a block was designed to fuse 
local and global features. It is called the Global-Local Feature 
Fusion (GLFF) block. The designed structure consists of two 

Fig. 1. The Proposed Deep Network with an Encoder-Decoder Structure for the Extraction and Fusion of Features to Detect Non-Ground Objects

Fig. 2. The Proposed Structure for the Feature Extraction Block (FEB)
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main branches, i.e., weighting data based on the global features 
and up-sampling data (Fig. 4).

It is very difficult to acquire proper information to extract the 
relationships of channels only through convolutional operators. 
In fact, the fusion process should be performed in a way that 
encodes all the locational information of features in a channel. 
For this purpose, if it is assumed that xij is the numerical value of 
a feature pixel in a channel k with D1, D2, and D3 representing the 
lengths, widths, and number of the feature channels, the following 
equation can be used for fusion:

. (1)

In the weighed branch, the result is multiplied by the corresponding 
features from Section 1 of the network after a 1 × 1 convolutional 
layer, a batch normalization layer, and an ReLU layer are 
applied. In fact, this process helps use the data extracted from a 
deeper layer to direct the information retrieval through a shallower 

layer. If C is assumed a  column matrix containing the 
weights pertaining to each channel ( ) with M representing the 
feature map of interest with mi elements, the resultant feature 
map (F) will be a 3D matrix shown as .

(2)

In the up-sampling branch, a 1 × 1 convolutional layer is applied 
to the feature map to set the number of feature map channels. The 
dimensions of feature maps are then doubled through bilinear 
interpolation. Finally, the features generated in the first and second 
branches are merged (Fig. 5). The loss function used for the binary 
classification and detection on non-ground objects is cross-entropy.

 (3)

where Le and Lr denote the estimated value of the candidate pixel 
and the reference data value, respectively. The available filtering 
methods have certain defects such as misidentifying and deleting 
vegetation or dense urban regions. In many of these algorithms, 
an iterative-progressive procedure is employed to prevent the 
abovementioned problem; however, it still persists in challenging 
regions in practice. The main reason for the failure of these 
methods would be to use several limited geometrical parameters 
in the filtering process. By contrast, the proposed method extracts
very diverse features within the training process through a deep 
network. In addition, a vast region is analyzed in each round of 
detection, something which helps analyze neighborhood in long 
distances. However, analysis of geometrical parameters through a 
structural element and slope in the existing methods will lead to the 
analysis of a limited neighborhood in the point cloud. A hierarchical 
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deep structure was proposed to solve the problem of detecting and 
eliminating objects with different dimensions (Fig. 5).

2.2 Interpolation with Modified PSO
After the non-ground objects are detected and eliminated, the 
height values of the eliminated regions should be retrieved to 
extract the final DTM. Since many parts of a surface are 
sometimes eliminated due to vegetation or dense urban regions, 
interpolation and retrieval of height values should be performed 
accurately in order to generate the Earth’s surface correctly. In 
this subsection, the proposed modification is applied to the PSO 
algorithm to determine the optimal polynomial coefficients for 
the interpolation and retrieval of the height information. In the 
proposed PSO algorithm, the particle population is initialized 
randomly to search for the global optimum in an iterative 
process. First,  and  are assumed to be the lower and upper 
bounds of each xk(i), respectively, whereas  and  are 
assumed to be the lower and upper bounds of vk( j), respectively. 
Moreover, l and t represent the number of particles and the 
number of loop iterations, respectively. Therefore, the position 
vector and the velocity vector of particle k ( ) in 
the d-dimensional space will be as below:

(4)

(5)

Due to the topography and complexity of the study area, the 
quadratic polynomial coefficients were optimized. According to the 
above equations, different ranges can be selected for dimensions of 

 and  based on the problem that should be optimized. Hence, 
the wider the search space, the more difficult it is to determine the 
dimension domain of . The next challenge is to determine the 
maximum changes (vmax) that a particle might have experienced in 
an iteration. The range of each element  in the PSO algorithm is 
normalized within [-1, 1] to overcome the challenges.

(6)

(7)

Furthermore, every element  is initialized randomly within 
(-1, 1). Hence, the following equation is employed to determine 
the velocity of each particle for the next iteration between  
pertaining to the best particle kth called  and  pertaining to 
the best particle of all iterations called :

(8)

(9)

where r1 and r2 are random numbers between 0 and 1, whereas c1
and c2 are the coefficients of self-recognition and social 
components. Every  is used to calculate the fitness value of 
each particle in each iteration (t). The values of  and 

 are then calculated through the following equations:

(10)

. (11) 

Finally, the new position of particle k is determined through 
the following equation:

. (12)

Moreover, RMSE is the evaluation criterion for interpolation 
in the PSO algorithm. It is obtained from the following equation:

. (13)

where de and dr represent the estimated height and the reference 
height, respectively. The pseudocode of the modified PSO 
algorithm is presented now to obtain the polynomial coefficients.
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3. Experimentation and Evaluation

In this section, the research dataset is first presented to implement 
the proposed algorithm (Subsection 3.1). The results of detecting 
non-ground points through the proposed hierarchical deep network
are then reported in Subsection 3.2, and the results of the modified 
PSO algorithm are ultimately presented in Subsection 3.3 to 
develop the final DTM.

3.1 Study areas and Data Used
The 3D point cloud obtained from LiDAR was employed to 
implement the proposed algorithm. The captured elevation data 
by LiDAR are used for our implementation. The study areas and 
their features are described in the next paragraph. In fact, the 
study areas were selected in a way that would allow the thorough 
analysis of the proposed algorithm for filtering and extracting a 
DTM from a DSM.

The US Dataset: This dataset includes some LiDAR data 
collected from Lake City, Utah in the US within the 2013 – 2014 
period. Covering an area of 1360 km2, the data density was 
nearly 11.14 pts/m2. Four regions of this dataset with approximate 
areas of 22 km2 were selected to implement and analyze the 
proposed method (Regions 1 – 4 in Fig. 5).

ISPRS Dataset: This dataset is the ISPRS benchmark that is 
gathered by LiDAR. These data were collected by FOTONOR 
AS through the OpTech ALTM scanner. Since the collected data 
had different densities of points and covered various regions with 
different features, it is very suitable for the evaluation of algorithms 
proposed by researchers. The study areas of the US are represented 
in the following figure along with ISPRS samples (Samples 1 – 1 
to 7 – 1 in Fig. 5).

3.2 Ground Filtering with Hierarchical Deep Network
The proposed deep network is based on imagery; therefore, 
interpolation should be applied to convert the input data into an 
image if these data are given in the point cloud. For this purpose, 
the modified PSO algorithm was employed to convert the point 
cloud into a height image with 0.5 m spatial resolution. To this 
end, the modified PSO computes the optimized polynomial 
coefficients for generating height images using the point cloud 
coordinates (Section 2.2). In addition, remote sensing data 
mainly cover vast areas, in which it is impossible to directly use 
all regions simultaneously in the deep network. Hence, it is 
essential to collect the images that match the acceptable input 
dimensions to train the network (256 × 256). Deep networks 
have millions of parameters, the tuning of which through the 
network training procedure requires a large amount of training 

data. It is often challenging to collect this amount of training 
data; therefore, data augmentation methods were used effectively 
to increase the training data. These methods often include 
applying certain transforms to the input and target data. The 
following operations were performed in this paper for data 
augmentation.

Flipping: The input and target data are flipped horizontally 
and vertically.

Rotation: The input and target are rotated with respect to a 
random value.

Translation: Some of the input and target data are cropped 
randomly.

The US study area covers a vast region with diverse types of 
vegetation and different buildings. Hence, Area 1 of the US 
study area was selected to train the network (Fig. 5), and the 
other areas were utilized to test the network. In this regard, after 
cropping and applying dataset augmentation about 12000 
samples are generated that 80% of them are selected randomly 
for training and the remained are selected for validation. The 
number of epochs, batch size, weight decay, learning rate, and 
moment for both areas were considered 200, 8, 3×10−4, 10−4, and 
10−4, respectively. Fig. 6 reports the results of detecting non-
ground objects in the study areas.

Three parameters called ET1, ET2, and ETotal were employed to 
evaluate the results of filtering and detecting non-ground objects. 
These parameters are calculated through the following equations:

(14)

 (15)

. (16)

where a indicates the ground points detected correctly, and b

refers to the ground points misidentified as non-ground points. 
Moreover, c indicates the non-ground points misidentified as 
ground points, whereas d represents the non-ground points extracted 
correctly. Kappa (EKappa), a widely used standard for object 
detection and classification, was employed to gauge the accuracy 
of detection (Houtte et al., 2011). EKappa is a metric that measures 
the agreement between observed and expected classifications, 
often used to assess the performance of classification models. 
Accordingly, the results of detecting the non-ground points 
through the proposed deep network were compared with the 
results of other famous algorithms such as LAStools (Axelsson, 
2000), gLidar (Mongus et al., 2014), and CFS (Zhang et al., 
2016). Based on structural and geometrical characteristics, these 
algorithms try to detect non-ground objects; thus, they need to 
determine such parameters. Different values of parameters were 
analyzed to implement those algorithms, and the best values 
were selected to develop a suitable DTM. Table 1 reports the 
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Fig. 5. The Study Areas of America (a-d) and ISPRS (e-s), (a) Area 1, (b) Area 2, (c) Area 3, (d) Area 4, (e) Area 5, (f) Area 6, (g) Sample 1-1, (h) 
Sample 1-2, (i) Sample 2-1, (j) Sample 2-2, (k) Sample 2-3, (l) Sample 2-4, (m) Sample 3-1, (n) Sample 4-1, (o) Sample 4-2, (p) Sample 5-1, 
(q) Sample 5-2, (r) Sample 5-3, (s) Sample 5-4, (t) Sample 6-1, (u) Sample 7-1
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calculated values of ET1, ET2, and ET for the evaluation of results 
obtained from filtering and detecting non-ground objects through 
the proposed deep algorithm in comparison with LAStools, 
gLidar, and CSF algorithms. Moreover, the results of the proposed 
hierarchical deep network (Fig. 5) are presented along with the 
proposed encoder-decoder network (Fig. 2) for performance 
evaluation.

In Table 1, it can be seen that the obtained values of ET1 are 
higher than other areas, which indicates that more pixels are 
wrongly identified as non-ground pixels. This area has a rougher 
topography compared to other areas and has caused relatively 
severe height changes in small distances. Therefore, it becomes 
difficult to separate ground pixels that are associated with severe 
height changes and non-ground objects that also have sudden 
height changes. Fig. 7 presents the qualitative evaluation results. 
Each parameter (i.e., a, b, c, and d) is highlighted in different 
colors for clarity. Therefore, it is easy to perceive in what areas 
an algorithm failed to detect non-ground objects and in what 
areas there were errors in the detection of non-ground objects. 
Fig. 7 also reports the results of gLidar, CFS, and LAStools 
algorithms.

The performance of the proposed network was then evaluated 
in filtering non-ground points in comparison with ISPRS data. 

For this purpose, Table 2 presents the results of filtering through 
the proposed network as well as the outputs of famous algorithms 
(Chen et al., 2013; Pingel et al., 2013; Mongus et al., 2014; Hui 
et al., 2016; Bigdeli et al., 2018a). In addition, Fig. 8 reports the 
qualitative evaluation results of the proposed network outputs.

3.3 Interpolation with Modified PSO
This subsection presents the trend in the results of extracting the 
final DTM after the non-ground objects were detected and 
eliminated. As discussed earlier, the point cloud data should be 
converted into image data through interpolation to train the 
proposed deep network. It is essential to reach and maintain high 
accuracy in converting the point cloud data into an image, for the 
lower the conversion accuracy, the milder the ridges of objects. 
As a result, the accuracy of detecting non-ground objects will 
decrease in the filtering process. Hence, the modified PSO 
algorithm was employed to interpolate and convert the point 
cloud into an image. To evaluate the performance of the modified 
PSO algorithm, 60% of points of an area were used randomly to 
calculate the polynomial coefficients, and the rest of the data 
were employed to evaluate the estimated height values. Table 3
presents the results of evaluating the modified PSO algorithm in 
comparison with some other famous interpolation algorithms 

Fig. 5. (continued)
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such as kriging, IDW, spline, bilinear, and cubic methods. Moreover, 
Table 3 reports the result of using only the PSO algorithm to 
calculate polynomial coefficients for a better analysis. Eq. (13) 
(ERMSE) was adopted to calculate the DTM error rate.

The modified PSO algorithm was then employed to retrieve 
the height values of the eliminated regions after the non-ground 
objects were deleted and the final DTM was developed. The US 
study areas, which have a reference DTM, were used to evaluate 

Fig. 6. The Results of Detecting Non-Ground Objects in the Dataset and the US Through the Proposed Deep Networks: (a) Area 2, (b) Area 3, 
(c) Area 4, (d) Area 5, (e) Area 6
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the final DTM. Area 1, Area 2, and Area 3 were characterized by 
0.157, 0.120, and 0.245, respectively. Fig. 9 indicates the finally 
extracted DTMs and the differential DTM obtained from the 
subtraction of the DTM extracted through the proposed method 
from the reference DTM.

4. Discussion

As discussed earlier, the proposed deep networks were trained 
through Area 1 of the study areas (Fig. 5). The other areas were 
used for testing and evaluating the proposed network. According 
to Table 1, the proposed encoder-decoder network outperformed 
LAStools, CSF, and gLidar algorithms by far. In other words, the 
results of the proposed network had lower values of ET1, ET2, and 
ET; therefore, they achieved more accurate values of kappa (Table 1). 
The major weakness of the conventional filtering methods lies in the 
detection of non-ground objects in sloped regions and ridge lines of 
mountains that are very uneven (Fig. 7). In fact, many of the 
ground points are misidentified as non-ground points due to 
drastic height changes of the ground in these areas (see red 
regions in Fig. 7). However, the proposed deep network was very 
efficient in this regard (Figs. 7 and 10).

The proposed hierarchical structure managed to enhance the 
performance of the proposed deep network. In fact, it improved 
the final results by eliminating objects with different dimensions, 
especially objects with large areas, in the conventional filtering 
methods where it is difficult to delete such objects. According to 
Fig. 10, the gLidar, CSF, and LAStools algorithms faced problems
in deleting buildings with large areas. Changing the parameters 
did not improve their outputs. In these algorithms, emphasis on 
the elimination of high-dimensional objects can lead to the 
selection some ground objects as non-ground objects in steep 
slopes, something which adversely affects the accuracy of results.
The proposed deep encoder-decoder network outperformed the 
other methods in deleting such objects; however, the objects 
were not eliminated completely. However, the proposed hierarchical
deep network was very successful in this regard (Fig. 11).

The performance of the proposed hierarchical deep network 
was also noteworthy in comparison with the ISPRS data. 
Although the network was trained through different methods, the 
proposed network outperformed the other powerful techniques. 
Furthermore, the results of the algorithms presented in Table 2
were obtained by selecting the optimal parameters. In other 
words, the algorithm proposed by Pingel et al. (2013) and the 

Table 1. The Quantitative Evaluation of Results from Filtering and Detecting Non-ground Objects Through the Proposed Deep Network in 
Comparison with gLidar, LAStools, and CSF Algorithms

Method ET1 ET2 ET EKappa

Area 2 gLidar 0.051 0.002 0.013 96.17

CSF 0.052 0.021 0.028 87.37

LAStools 0.029 0.064 0.057 76.29

Proposed Encoder-decoder network 0.003 0.0156 0.012 96.34

Proposed multi-scale network 0.001 0.007 0.005 98.36

Area 3 gLidar 0.131 0.007 0.032 89.43

CSF 0.055 0.019 0.026 86.41

LAStools 0.034 0.046 0.044 78.04

Proposed Encoder-decoder network 0.002 0.021 0.018 93.63

Proposed multi-scale network 0.001 0.012 0.010 96.55

Area 4 gLidar 0.331 0.031 0.138 67.59

CSF 0.290 0.057 0.127 68.22

LAStools 0.254 0.013 0.092 72.64

Proposed Encoder-decoder network 0.063 0.003 0.019 94.42

Proposed multi-scale network 0.032 0.002 0.014 96.12

Area 5 gLidar 0.406 0.018 0.138 63.87

CSF 0.248 0.020 0.075 77.96

LAStools 0.216 0.038 0.102 78.03

Proposed Encoder-decoder network 0.080 0.030 0.024 94.01

Proposed multi-scale network 0.093 0.013 0.021 92.44

Area 6 gLidar 0.478 0.083 0.190 47.55

CSF 0.516 0.037 0.214 49.25

LAStools 0.032 0.077 0.068 68.10

Proposed Encoder-decoder network 0.185 0.011 0.052 84.57

Proposed multi-scale network 0.155 0.012 0.040 90.48
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Fig. 7. The Qualitative Evaluation of Results from Filtering and Detecting Non-Ground Objects: (a) gLidar, (b) LAStools, (c) CSF, (d) the Proposed 
Deep Encoder-Decoder Network, (e) the Proposed Hierarchical Deep Network, (i) Area 2, (ii) Area 3, (iii) Area 4, (iv) Area 5, (v) Area (6) (a 
= yellow; c = blue; b = red; and d = white)
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Fig. 7. (continued)
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algorithm proposed by Mongus et al. (2014) needed to determine 
the values of four parameters to achieve optimal results. 
Moreover, the algorithm proposed by Chen et al. (2013) needed 
to determine two optimal parameters in the area to acquire the 
most accurate results. Nevertheless, there were no parameters for 
optimization based on the topography of the study area after the 
network was trained properly in the proposed method, something 
which indicates the high generalizability of the proposed method.

According to Table 3, the performance evaluation of the 
modified PSO algorithm indicated its much higher accuracy than 
those of the other interpolation algorithms. In other words, the 
RMSE of the modified PSO algorithm was 0.150 cm on average, 
which is significantly better than those of the other methods. The 
conventional interpolation methods are often inefficient in the 
areas where there are sudden changes of height. In this case, 
these methods usually turn sharp ridges into mild ridges and 
change height gradually, which directly affects the filtering 
results and decreases their accuracy in detecting non-ground 
objects.

5. Conclusions

This paper proposed a hierarchical deep network to filter and 
detect non-ground objects through the point cloud by using an 
encoder-decoder structure as the main core consisting of a 
feature extraction block and a global-local feature fusion block. 

The proposed hierarchical deep network was designed to detect 
non-ground objects in urban areas with drastic height changes, 
dense vegetation, and complicated topography by extracting 
global and local features as well as fusing those features gradually. 
The data of Utah, the US were employed to test the proposed 
trained network, and indicated the detection of objects with the 
mean kappa of 94.79. Moreover, the values of ET1, ET2, and ET

were reported 0.056, 0.009, and 0.018, respectively, which 
indicated the much lower error rate of the proposed network than 
those of the CSF, LAStools, and gLidar algorithms. According to 
the results, the proposed hierarchical structure improved the 
performance of the encoder-decoder network (Table 1). In other 
words, the average values of Ekappa, ET1, ET2, and ET were reported 
92.59, 0.066, 0.016, and 0.025, respectively, for the encoder-
decoder network. The performance of the proposed network was 
compared with the outputs of the existing methods by using the 
ISPRS data, the results of which demonstrated improvements in the 
detection accuracy as opposed to those of the other methods. 
After the non-ground objects were detected and deleted, the 
modified PSO algorithm was employed to calculate the optimal 
polynomial coefficients for interpolation and development of the 
final DTM. To evaluate the performance of the modified PSO 
algorithm in calculating the height values, 60% of the study areas 
were utilized to calculate the polynomial coefficients, whereas 
the rest of the data were used for testing. The results indicated 
that the proposed PSO algorithm was characterized by only a 

Fig. 7. (continued)
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Table 2. Comparing the Proposed Deep Network with the Other Reviewed Algorithms

Sample Error (%) Pingel Chen Mongus Bigdeli Hui
Proposed encoder-decoder  

network

Proposed hierarchical  

network

ET1 7.88 19.25 6.17 8.03 13.63 6.65 6.10

1 (1-1) ET2 8.81 4.62 9.28 11.98 12.96 11.85 8.51

ET 8.28 13.01 7.50 9.71 13.34 8.35 7.23

ET1 2.57 3.99 2.28 3.59 4.86 2.25 2.21

2 (1-2) ET2 3.30 2.75 2.84 2.11 2.08 5.08 3.13

ET 2.92 3.38 2.55 2.84 3.50 3.63 2.73

ET1 0.26 0.75 0.37 0.60 0.01 0.16 0.15

3 (2-1) ET2 4.07 3.41 4.28 0.24 9.95 4.35 3.66

ET 1.10 1.34 1.23 1.00 2.21 1.09 0.92

ET1 2.57 2.65 1.79 2.79 5.27 2.60 2.22

4 (2-2) ET2 5.07 9.11 5.12 4.10 5.74 4.93 4.13

ET 3.35 4.67 2.83 3.20 5.41 3.31 2.74

ET1 3.21 4.45 3.26 2.44 4.00 3.61 3.23

5 (2-3) ET2 6.17 6.11 5.55 6.12 6.35 6.18 5.59

ET 4.61 5.24 4.34 4.18 5.11 4.83 4.01

ET1 2.25 5.54 2.34 2.63 7.47 2.02 1.92

6 (2-4) ET2 6.90 8.26 6.85 8.99 7.48 6.51 6.02

ET 3.52 6.29 3.58 4.38 7.47 3.35 3.06

ET1 0.39 0.55 0.31 1.59 0.87 0.46 0.40

7 (3-1) ET2 1.52 1.77 1.74 1.98 1.86 1.51 1.44

ET 0.91 1.11 0.97 1.77 1.33 0.95 0.88

ET1 3.64 9.07 2.14 5.21 18.17 3.45 3.46

8 (4-1) ET2 8.17 2.11 4.21 4.97 3.07 7.62 7.40

ET 5.91 5.58 3.18 5.09 10.60 5.54 5.51

ET1 0.27 4.7 0.58 1.06 3.04 0.25 0.24

9 (4-2) ET2 1.98 0.48 1.67 1.70 1.45 1.95 1.52

ET 1.48 1.72 1.35 1.51 1.92 1.44 1.09

ET1 0.59 0.73 0.72 0.80 1.42 0.65 0.58

10 (5-1) ET2 4.44 4.88 9.94 0.87 17.25 4.78 4.23

ET 1.43 1.64 2.73 2.53 4.88 1.55 1.28

ET1 3.09 3.06 1.26 3.87 5.59 1.64 1.52

11 (5-2) ET2 10.08 13.76 18.88 12.32 14.86 21.97 12.83

ET 3.82 4.18 3.11 4.76 6.56 3.77 3.20

ET1 1.18 7.15 0.67 4.08 6.78 1.38 1.35

12 (5-3) ET2 31.97 10.51 38.44 23.97 23.90 26.17 20.67

ET 2.43 7.29 2.19 4.88 7.47 2.25 1.98

ET1 2.51 3.44 1.76 2.06 4.90 2.23 2.16

13 (5-4) ET2 2.05 2.79 2.51 2.81 3.52 2.31 2.26

ET 2.27 3.09 2.16 2.46 4.16 2.19 2.10

ET1 0.51 1.70 0.20 0.42 1.54 0.61 0.55

14 (6-1) ET2 10.70 4.98 22.39 16.75 24.54 8.12 8.01

ET 0.86 1.81 0.96 0.98 2.33 0.73 0.75

ET1 0.99 0.35 0.78 0.38 0.96 1.04 0.99

15 (7-1) ET2 6.84 8.98 15.88 15.20 25.42 6.43 6.56

ET 1.65 1.33 2.49 2.06 3.73 1.62 1.68

ET1 2.13 4.49 1.64 2.63 5.28 1.93 1.24

Mean ET2 4.47 5.63 9.97 7.60 10.70 7.98 5.16

ET 2.97 4.11 2.74 3.42 5.33 2.93 2.61
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Fig. 8. The Qualitative Evaluation of the Proposed Network in Filtering ISPRS Data: Sample 1-1, (b) Sample 1-2, (c) Sample 2-1, (d) Sample 2-2, 
(e) Sample 2-3, (f) Sample 2-4, (g) Sample 3-1, (h) Sample 4-1, (i) Sample 4-2, (j) Sample 5-1, (k) Sample 5-2, (l) Sample 5-3, (m) Sample 5-
4, (n) Sample 6-1, (o) Sample 7-1
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Table 3. The Quantitative Evaluation of Procedures Generated Through the Modified PSO Algorithm and the Other Famous Interpolation 
Methods

Bilinear 

(cm)

Cubic

(cm)

Kriging

(cm)

IDW

(cm)

Spline

(cm)

PSO

(cm)

Modified PSO

(cm)

Area 2 9.34 8.54 10.42 5.23 5.03 1.03 0.10

Area 3 8.89 8.23 10.21 4.88 4.23 0.94 0.09

Area 4 12.32 11.98 14.41 6.69 7.14 1.56 0.114

Area 5 14.43 13.56 15.98 7.56 9.65 3.24 0.156

Area 6 11.32 11.95 14.47 5.90 7.44 4.15 0.294

Fig. 9. The Qualitative Evaluation of the Proposed Procedure for Extracting the DTM from the DSM: (a) Area 2, (b) Area 3, (c) Area 4, (d) Area 5, 
(e) Area 6, (i) the final DTM, (ii) the Differential Map of the Extracted DTMs and the Reference DTMs
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Fig. 9. (continued)

Fig. 10. Comparing Different Filtering Algorithms in Their Results of Dealing with Objects in Areas with Drastic Height Changes: (a) A Part of the 
DSM, (b) Results of the gLidar Algorithm, (c) Results of the LAStools Algorithm, (d) Results of the CSF Algorithm, (e) Results of the Proposed 
Deep Encoder-Decoder Network, (f) Results of the Proposed Hierarchical Deep Networks.
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0.150 cm error rate, which is far better than those of the other 
interpolation methods.
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