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Abstract: Background/Objectives: Accurate classification in cancer research is vital for devising
effective treatment strategies. Precise cancer classification depends significantly on selecting the
most informative genes from high-dimensional datasets, a task made complex by the extensive
data involved. This study introduces the Two-stage MI-PSA Gene Selection algorithm, a novel
approach designed to enhance cancer classification accuracy through robust gene selection methods.
Methods: The proposed method integrates Mutual Information (MI) and Particle Swarm Optimization
(PSO) for gene selection. In the first stage, MI acts as an initial filter, identifying genes rich in
cancer-related information. In the second stage, PSO refines this selection to pinpoint an optimal
subset of genes for accurate classification. Results: The experimental findings reveal that the MI-
PSA method achieves a best classification accuracy of 99.01% with a selected subset of 19 genes,
substantially outperforming the MI and SVM methods, which attain best accuracies of 93.44%
and 91.26%, respectively, for the same gene count. Furthermore, MI-PSA demonstrates superior
performance in terms of average and worst-case accuracy, underscoring its robustness and reliability.
Conclusions: The MI-PSA algorithm presents a powerful approach for identifying critical genes
essential for precise cancer classification, advancing both our understanding and management of this
complex disease.

Keywords: cancer classification; Mutual Information; Particle Swarm Optimization; Support
Vector Machine

1. Introduction

Human genetic data can significantly enhance the detection and classification of dis-
eases like cancer, with microarray analysis being one of the most precise methods available.
This technique structures data into a matrix, where rows represent samples and columns
denote genes, often resulting in thousands of genes but only a few hundred samples. This
imbalance can lead to high computational costs and challenges in generalizing classifica-
tions, while irrelevant genes may introduce “background noise,” obscuring the impact of
biologically relevant genes [1]. To combat these issues, current research aims to improve
classification accuracy by adopting innovative strategies, reducing dataset size, and elimi-
nating unnecessary noise and redundant information [2,3]. Researchers are increasingly
exploring meta-innovative optimization algorithms due to the growing complexity of data
dimensions, as the challenge of feature selection and classification in microarray data repre-
sents a difficult non-polynomial optimization problem. Successfully identifying unique
genes and enhancing classifier performance heavily relies on employing suitable optimiza-
tion techniques [4]. Consequently, many studies focus primarily on improving classification
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accuracy, while also considering objectives like minimizing the number of features and
removing redundancy. Multi-objective optimization methods can significantly enhance
classifier effectiveness by addressing both feature reduction and redundancy issues [5–8].

In this study, we present a novel hybrid two-stage gene selection algorithm designed
to enhance cancer classification accuracy by combining Particle Swarm Optimization (PSO)
with the Mutual Information (MI) measure. Our proposed MI-PSO algorithm operates
in two distinct stages to systematically identify the most relevant genes for classification.
The first stage employs Mutual Information to select genes with high relevance to cancer
classification. In the second stage, Particle Swarm Optimization (PSO) refines this selection
to identify the most promising subset of genes from the initial candidates. To further
improve classification accuracy, we use a Support Vector Machine (SVM) classifier, known
for its effectiveness in handling complex datasets, to accurately classify the cancer samples.
This hybrid approach leverages the complementary strengths of PSO and MI to achieve
superior performance in cancer classification tasks [9–11].

1.1. Paper Organization

The remaining sections of this paper are organized as follows: Section 2 outlines the
proposed algorithms for gene selection and classification, offering a detailed explanation
of their methodologies. In Section 3, we present the experimental outcomes derived from
applying these algorithms to three distinct microarray datasets, along with the insights
garnered from the analyses. Furthermore, Section 4 delves into a thorough discussion of
the experimental results, elucidating their implications and significance. Finally, Section 5
offers final thoughts, encapsulating the study’s results and proposing possible avenues for
future research in this area [12].

1.2. Motivation for This Study

Accurate cancer classification is a cornerstone of effective treatment planning and per-
sonalized medicine. However, the high dimensionality and complexity of gene expression
data pose significant challenges in identifying the most relevant genetic markers for precise
diagnosis and prognosis. Traditional gene selection methods often struggle to balance
accuracy and computational efficiency, leading to suboptimal classification outcomes [13].

The motivation behind developing the Two-stage MI-PSA Gene Selection algorithm is
to address these challenges by providing a robust and efficient solution for gene selection
and cancer classification. By leveraging the strengths of Mutual Information (MI) for
preliminary filtering and Particle Swarm Optimization (PSO) for refining the gene set, this
novel approach aims to enhance classification accuracy and provide deeper insights into
the genetic underpinnings of cancer.

This innovative method enables researchers and clinicians to identify key genes more
effectively, aiding early diagnosis, deeper insights into cancer biology, and targeted therapy
development. MI-PSA’s success with the breast cancer dataset highlights its potential as
a valuable tool in cancer research, encouraging broader exploration in various oncologi-
cal settings.

2. Related Work

In this section, we review the existing literature on breast cancer classification and
diagnosis, focusing on recent advancements in deep learning and machine learning method-
ologies. We explore various techniques and models that have been proposed to enhance
the accuracy and efficiency of breast cancer detection, including feature extraction methods,
ensemble learning strategies, and the application of transfer learning. By synthesizing
these studies, we aim to highlight the progress made in the field and identify potential
gaps that our research seeks to address. Hanan et al. present a computer-aided diagnosis
method for breast cancer classification using deep neural networks (ResNet 18, ShuffleNet,
Inception-V3Net) and transfer learning. The method achieves binary classification accu-
racies of 99.7%, 97.66%, and 96.94%, and multi-class accuracies of 97.81%, 96.07%, and
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95.79%, respectively [14]. Moloud Abdar et al. introduced two uncertainty quantification
methods, DE and EMC, to analyze skin cancer datasets and reduce overconfidence in
diagnoses. The final solution achieved accuracies of 88.95% and 90.96% and F1-scores
of 89.00% and 91.00% for the first and second datasets, respectively, demonstrating the
effectiveness of their TWDBDL model in medical image analysis [15]. Mahmoud Ragab
et al. developed the EDLCDS-BCDC for breast cancer diagnosis using ultrasound images.
The method preprocesses images, segments them with the Chaotic Krill Herd Algorithm,
extracts features using VGG-16, VGG-19, and SqueezeNet, and classifies them with Cat
Swarm Optimization and a Multilayer Perceptron. Simulations demonstrate its superior
performance over recent methods [16]. Ruxandra Stoean introduces a method for tuning
CNN convolutional layers and ranking hyperparameter importance using surrogate mod-
els: random forests (RF), support vector machines (SVM), and Kriging. Convolutional
configurations are generated through Latin hypercube sampling, with accuracy derived
from real CNN runs. The approach evaluates hyperparameter fitness, with RF offering
implicit selection, SVM enhanced by an additional algorithm, and Kriging providing rank-
ings. The method is tested on histopathological image interpretation for colorectal cancer
diagnosis [17]. Shallu Sharma et al. developed two machine learning approaches for multi-
classification of breast cancer in the BreakHis dataset. One approach uses handcrafted
features (Hu moments, color histograms, Haralick textures), while the other employs trans-
fer learning with pre-trained networks (VGG16, VGG19, ResNet50). The transfer learning
approach outperformed the handcrafted method, with VGG16 and linear SVM achieving
the highest accuracies: 93.97% (patch-based) and 93.25% (patient-based) for 40× magnifi-
cation. “Fibro-adenoma” (benign) and “Mucous Carcinoma” (malignant) were the most
complex classes [18]. Devakishan Adla et al. proposed the DLCAL-SLDC, an automated
deep learning model for skin lesion detection and classification using dermoscopic images.
The model employs hair removal and noise reduction during pre-processing, followed
by Tsallis entropy-based segmentation to identify lesions. Features are extracted using a
Capsule Network with a class attention layer and the Adagrad optimizer. Classification
is performed using a Swallow Swarm Optimization-based Convolutional Sparse Autoen-
coder. Validated on the ISIC dataset, the DLCAL-SLDC achieved 98.50% accuracy, 94.5%
sensitivity, and 99.1% specificity, outperforming other methods [19]. Maad M. Mijwil de-
veloped a deep learning network using a convolutional neural network (ConvNet) model
to analyze over 24,000 skin cancer images with three architectures: InceptionV3, ResNet,
and VGG19. The high-resolution images were sourced from the ISIC archive (2019–2020).
Among the tested architectures, InceptionV3 emerged as the best, achieving a diagnostic
accuracy of approximately 86.90%, precision of 87.47%, sensitivity of 86.14%, and speci-
ficity of 87.66% [20]. Nonita Sharma et al. propose a snapshot ensembling technique to
create an efficient model for disease diagnosis. Using t-SNE for enhanced scatter plots, the
model integrates predictions from various base models to improve accuracy. Applied to
the Wisconsin Breast Cancer Dataset (WBCD), it achieved 86.6% accuracy, outperforming
state-of-the-art models like averaging (81%) and stacked ensemble (84.7%), showcasing its
effectiveness [21]. Lei Cui et al. developed a survival analysis system using deep learning,
consisting of three components: (1) A cellular feature learning module with a deep neural
network and global average pooling that aggregates biologically relevant information into
patient-level feature vectors. (2) A Cox proportional hazards model with an elastic net
penalty for robust feature selection. (3) A biomarker interpretation module that identifies
key image regions influencing the model’s decisions. The system demonstrated strong
predictive power on The Cancer Genome Atlas lung cancer dataset, assessed using the
log-rank test and concordance index [22].

3. Materials and Methods
3.1. Proposed Cancer Classification Approach

In our proposed cancer classification approach, the selection of genes crucially deter-
mines the classification of cancer samples. We employ a two-stage method: initially using
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Mutual Information (MI) for feature selection to identify informative features, followed by
Particle Swarm Optimization (PSO) to optimize these features. Subsequently, a Support
Vector Machine (SVM) classifier utilizes hyperplanes to classify each sample in the microar-
ray data, where “0” represents “No Cancer” and “1” represents “Cancer”. The gene subset
identified by the MI-PSO method is further processed using Support Vector Machine (SVM)
with different kernel functions. Analyzing various microarray cancer datasets presents
several challenges, as using a single kernel function may not effectively capture all patterns.
To enhance classification adaptability across various microarray datasets, multiple kernel
functions are employed. The optimal kernel function for the cancer microarray data is
determined and chosen for classification, ensuring enhanced suitability and adaptability in
the analysis process [23–26].

3.2. Selecting Informative Genes Using Mutual Information

In probability theory, Mutual Information measures the relationship between two
random variables by evaluating how much knowledge of one variable reveals about the
other within a shared context. Take, for instance, a system involving two discrete random
variables, X and Y, where X is the input variable with NX possible values (x ∈ X), and
Y is the output variable with NY possible values (y ∈Y). Mutual Information, denoted as
I(X:Y), reflects the extent to which uncertainty in one variable is reduced upon knowing the
other variable’s value. This metric can be expressed in terms of entropy and conditional
entropy, where entropy represents the uncertainty associated with a single random variable,
and conditional entropy reflects the uncertainty remaining in one variable after the other
variable’s value is known. The computation of Mutual Information provides important
insights into the relationship between the variables aiding in various statistical analyses
and information-theoretic applications [27].

I(X : Y) = H(Y)− H(
Y
X
) (1)

In this context, H(Y) represents the uncertainty level in the output variable Y, as
defined in Equation (2), while H(Y|X) denotes the remaining uncertainty in Y when the
input variable X is known, as defined in Equation (3). The difference between these two
quantities reflects the amount of information gained about the output variable Y when the
input variable X is known.

H(Y) = −∑Ny
J=1 P(yj)× log[P

(
yj
)
] (2)

In this context, P(yj) represents the probability of event Y occurring with outcome
yj, while P(xi) signifies the likelihood of event X occurring with outcome xi within the
provided dataset. Additionally, P (YJ/XI) refers to the conditional probability, indicating
the likelihood of event Y resulting in outcome yj when event X occurs with outcome xi [28].

H(X\Y) = −∑Nx
J=1 P(xi)[∑Ny

J=1 P(YJ/XI)× log[P(YJ/XI)] (3)

Higher mutual information indicates a better understanding of the output variable and
less uncertainty. In microarray cancer data, genes with greater mutual information provide
more significant insights, leading to more accurate classification. These genes possess
enhanced discriminatory power, enabling them to effectively distinguish between different
classes of cancer samples. As such, prioritizing genes with higher mutual information
enhances the precision and dependability of classification models, ultimately contributing
to improved cancer diagnosis and treatment strategies [29].

In this approach, MI is used to evaluate the statistical dependency between each gene
and the target class (cancerous or non-cancerous). The higher the MI value, the stronger
the relationship between a gene and the class label.
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The filtering process begins with the calculation of MI values for each gene in the
dataset. These values are used to rank genes based on their relevance to the target variable.
To ensure that only significant features are selected, genes with higher MI values are
retained, while those with lower MI values, which exhibit redundancy or low relevance,
are discarded. The selection process also includes the identification of redundant features
by analyzing the correlation between the genes. Genes that are highly correlated with one
another are removed to avoid multicollinearity, thus ensuring that the selected subset is
both informative and non-redundant.

The formal implementation of this MI filtering process is outlined as follows:

1. MI Calculation: For each gene in the dataset, calculate the MI between the gene and
the target class (cancerous or non-cancerous).

2. Gene Ranking: Rank genes in descending order based on their MI values. Higher MI
values indicate stronger relevance to the target class.

3. Feature Selection: Select the top genes based on their MI ranking. The number of
selected genes is determined by the desired level of dimensionality reduction.

4. Redundancy Removal: Remove genes that are highly correlated with others to avoid
redundancy in the selected gene subset.

This filtering process reduces the dimensionality of the dataset by selecting the most
relevant and non-redundant features, thus setting the stage for the subsequent optimization
and classification steps.

Figure 1 illustrates the process flow for the two-stage MI-PSO gene selection method.
In the initial stage, key features are identified based on their Mutual Information values,
serving as a filtering method to select genes with high information gain relevant to the
cancer class. These selected genes are then input into the Particle Swarm Optimization
(PSO) process, which acts as a wrapper method to refine and determine the most optimal
gene subset. By eliminating redundant and irrelevant genes in the first stage, the final
gene subset from the second stage comprises only the most informative genes, thereby
improving classification effectiveness. The proposed approach has two main objectives:
first, to identify the optimal gene subset from various microarray cancer datasets, and
second, to achieve the precise classification of cancer samples using this selected gene subset,
thereby improving classification accuracy across different microarray cancer datasets. This
method addresses the challenges posed by the variability and complexity of cancer data by
efficiently selecting relevant genes to improve cancer sample classification accuracy. After
completing the hybrid two-stage gene selection algorithm, the resulting gene subset is
passed on to the final classification stage, which employs the MI-PSO-based gene selection
method. This final stage culminates in accurately classifying cancer samples using the
identified gene subset. The subsequent subsections provide detailed insights into the MI-
PSO-based gene selection approach, elaborating on its methodologies and procedures, and
highlighting its contributions to more effective cancer diagnosis and treatment strategies.
Figure 1 below shows the process flow of gene selection stage.



Diagnostics 2024, 14, 2632 6 of 19Diagnostics 2024, 14, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 1. Flowchart of gene selection stage. 

3.3. Particle Swarm Optimization (PSO)-Based Feature Selection 
Particle Swarm Optimization (PSO) is an optimization technique inspired by the so-

cial dynamics of bird flocks and fish schools. In PSO, particles explore a search space to 
locate an optimal solution, adjusting their positions and velocities based on their own ex-
perience and that of neighboring particles. The velocity update (Equation (4)) considers 
each particle�s current velocity, its distance from its best-known position, and its proxim-
ity to the global best position: 𝑣(𝑡 + 1) = 𝑤. 𝑣(𝑡) +  𝑐ଵ. 𝑟ଵ . ൫𝑝(𝑡) െ  𝑥(𝑡)൯ + 𝑐ଶ. 𝑟ଶ . ൫𝑔(𝑡) െ  𝑥(𝑡)൯ (4)

where 𝑣(𝑡)  is the velocity of particle i at iteration t, w represents the inertia weight,  𝐶ଵ𝑎𝑛𝑑 𝐶ଶ  are the coefficients for acceleration, 𝑟ଵ  𝑎𝑛𝑑 𝑟ଶ  𝑎𝑟𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒𝑠  sampled 
from a uniform distribution, 𝑝(𝑡) is the most favorable position discovered by the parti-
cle i, 𝑥(𝑡) is the present location of the particle i, and 𝑔(𝑡) is the best position found 
globally [30]. After updating the velocities, the particle positions are updated accordingly 
in Equation (5): 𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣(𝑡 + 1) (5)

Figure 1. Flowchart of gene selection stage.

3.3. Particle Swarm Optimization (PSO)-Based Feature Selection

Particle Swarm Optimization (PSO) is an optimization technique inspired by the social
dynamics of bird flocks and fish schools. In PSO, particles explore a search space to locate an
optimal solution, adjusting their positions and velocities based on their own experience and
that of neighboring particles. The velocity update (Equation (4)) considers each particle’s
current velocity, its distance from its best-known position, and its proximity to the global
best position:

vi(t + 1) = w.vi(t) + c1.r1.(pi(t)− xi(t)) + c2.r2.(g(t)− xi(t)) (4)

where vi(t) is the velocity of particle i at iteration t, w represents the inertia weight, C1 and C2
are the coefficients for acceleration, r1 and r2 are random values sampled from a uniform
distribution, pi(t) is the most favorable position discovered by the particle i, xi(t) is the
present location of the particle i, and g(t) is the best position found globally [30]. After
updating the velocities, the particle positions are updated accordingly in Equation (5):

xi(t + 1) = xi(t) + vi(t + 1) (5)
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Each particle evaluates its fitness and updates its best-known position if a better
solution is found by using Equation (6):

pi(t + 1) = argmin( f xi(t + 1), f pi( t)) (6)

The swarm also updates its global best position based on the best-known positions of
all particles using Equation (7):

g(t + 1) = argmin( f (pi(t + 1), f (g( t)))) (7)

SO terminates when a predetermined stopping condition is met, such as reaching a
maximum number of iterations or achieving the desired level of solution quality. Parame-
ters like the number of particles, inertia weight, and acceleration coefficients must be set
beforehand prior to executing the algorithm. Through this iterative process of exploration
and exploitation, PSO effectively converges towards an optimal solution [31].

Particle Representation in Feature Selection
In the context of feature selection, each particle in the PSO swarm represents a potential

subset of features. The position of a particle, xi(t), is encoded as a binary or real-valued
vector, where each dimension corresponds to a specific feature in the dataset. For binary
encoding, xi(t) can be {0,1}, indicating whether a feature is excluded (0) or included (1) in
the selected subset. In the case of real-valued encoding, a threshold is applied to determine
inclusion or exclusion.

Objective Function for Fitness Evaluation
The fitness of a particle, f (xi(t)), is evaluated based on the classification performance

(e.g., accuracy, F1-score) of a machine learning model trained on the selected subset of
features. Alternatively, fitness can incorporate criteria like minimizing the subset size while
maximizing classification performance. For instance:

f (xi(t)) = α.Error((xi(t)) + β
|xi(t)|

D

where Error xi(t) is the classification error, |xi(t)| is the number of selected features, D is
the total number of features, and α, β are weight parameters balancing classification
performance and subset size.

Velocity and Position Updates for Feature Selection
The velocity update equation adapts to feature selection by considering the search

space constraints. In binary encoding, velocities vi(t + 1) are transformed into probabilities
using a sigmoid or similar activation function, and positions xi(t + 1) are updated based
on these probabilities:

xi(t + 1) =
{

1 i f rand( ) < sigmoid(vi(t + 1))
0 otherwise

Connection Between MI Filtering, PSO, and SVM
To clarify the interconnections between MI filtering, Particle Swarm Optimization

(PSO), and Support Vector Machine (SVM), we have expanded on how these techniques
are integrated to form a cohesive workflow for gene selection and classification.

3.4. Classification Based on Support Vector Machine

Support Vector Machine (SVM) is a robust supervised learning algorithm commonly
applied in classification and regression tasks. SVM’s primary objective is to determine the
optimal hyperplane that effectively separates data points belonging to different classes
within a high-dimensional space. Given a set of training data consisting of input–output
pairs ( xi, yi) where xi represents the input feature and yi is the corresponding class label with
yi∈{−1,+1} for binary classification. SVM aims to discover the hyperplane characterized by
w·x + b = 0. Here, w signifies the weight vector, and b represents the bias term. The goal is
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to maximize the margin, which is the distance between the hyperplane and the closest data
points of each class. This is formulated as an optimization problem [32]:

Minimize
1
2
||w||2 (8)

Subject to the constraints

yi(w · x + b) ≥ 1 for i = 1, 2, 3 . . . n (9)

When the data cannot be separated linearly, SVM employs a kernel trick to map
the input features into a higher-dimensional space, allowing for the identification of a
linear decision boundary. The kernel function K( xi, yi) calculates the dot product of
the mapped feature vectors. Commonly used kernel functions include the linear kernel
K( xi, yi) = (
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        best_ gene_ set = PSO_ Refinement (Data [selected_ genes], Labels) 
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function MI_ Selection (Data, Labels): 

        // Calculate mutual information between each gene and class labels 

       mutual_ information_ scores = calculate _ mutual_ information (Data, Labels) 

        // Select top genes based on mutual information scores 

        selected_ genes = select _top _genes (mutual _ information _scores) 

        return selected_ genes 

function PSO_ Refinement (Data, Labels): 
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||xi−yi ||2. The selection of the kernel function impacts both the decision
boundary and the classification accuracy of the SVM. By optimizing this process, SVM
efficiently learns a boundary that maximizes the separation between classes, establishing
it as a versatile and widely adopted tool in machine learning [33–35]. Table 1 displays
the parameter configuration of the proposed hybrid method. Algorithm 1 outlines the
pseudocode for the proposed method, which combines Mutual Information (MI)-based
gene selection and Particle Swarm Optimization (PSO) to identify informative genes crucial
for accurate cancer classification using Support Vector Machine (SVM) as the classifier.

Algorithm 1: Pseudocode for the proposed method

function MI_PSA_ Gene_ Selection (Data, Labels):
// Stage 1: Mutual Information (MI) based gene selection
selected_ genes = MI_ Selection (Data, Labels)
// Stage 2: Particle Swarm Optimization (PSO) refinement
best_ gene_ set = PSO_ Refinement (Data [selected_ genes], Labels)
return best_ gene_ set

function MI_ Selection (Data, Labels):
// Calculate mutual information between each gene and class labels
mutual_ information_ scores = calculate _ mutual_ information (Data, Labels)
// Select top genes based on mutual information scores
selected_ genes = select _top _genes (mutual _ information _scores)
return selected_ genes

function PSO_ Refinement (Data, Labels):
// Initialize particle swarm
particles = initialize_ particles ()
global_ best_ position = null
// PSO optimization loop
while not convergence _criteria _met ():

for particle in particles:
// Evaluate fitness of particle’s gene selection
fitness = evaluate _fitness (particle. position, Data, Labels)
// Update particle’s best position and global best position
if fitness > particle. best_ fitness:

particle. best_ position = particle. position
particle. best_ fitness = fitness

if fitness > global_ best_ fitness:
global_ best_ position = particle. position
global_ best_ fitness = fitness

// Update particle positions using velocity and global best position
update_ particle_ positions (particles, global_ best_ position)

return global_ best_ position
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Table 1. Parameter settings for the proposed method.

Stage Parameter Value

Filter Approach to Selecting Genes Mutual information

Chosen Genes (k) 100

Wrapper SVM (kernel) Linear

Size for Testing Data 20%

Random State 42 (Seed for reproducibility)

SVM Classifier C Default (1.0)

Standardization Method Standard Scaler

Training Size 80%

3.5. Experimental Setup and Data Structure

In this study, we used Ubuntu 20.04.5 LTS with WSL and Visual Studio Code (VS Code)
1.82.0 for coding in Python 3.11.0. Leave-One-Out Cross-Validation (LOOCV) was applied
for model evaluation. Experiments were conducted on a high-performance system with
an Intel Core i9-12900k processor, 64 GB RAM, and an Nvidia RTX Quadro A5000 GPU.
Detailed characteristics and specifics of these datasets are listed in Table 2. The dataset,
detailed in Table 2 formed the foundation of our research on gene selection from a high-
dimensional biological dataset, which can be accessed at https://csse.szu.edu.cn/staff/
zhuzx/Datasets.html, accessed on 19 September 2024.

Table 2. Comprehensive details regarding a dataset focused on gene expression.

Data Description Sample Classes Genes

Breast Cancer [36]
Breast cancer originates in the cells of breast tissue

and ranks as one of the prevalent cancer types
affecting women.

97 2 24,481

4. Results and Discussion

Table 3 presents the performance assessment of the proposed approach alongside
two established techniques, Mutual Information and Support Vector Machine (SVM), in
the task of selecting genes, likely for predictive modeling or classification purposes in a
biological context. Each row corresponds to a different scenario where a specific set of genes
is chosen for analysis ranging from 13 to 47. The accuracy metrics provided in the table
offer insights into how well each method performs across various scenarios, with values
provided for the best, average, and worst cases. These metrics serve as indicators of the
dependability and efficiency of each method in selecting genes that substantially contribute
to the predictive accuracy or classification accuracy of the model. Examining the results, it is
evident that the proposed method consistently outperforms or matches the performance of
Mutual Information and SVM across different numbers of selected genes. This superiority
is particularly notable in scenarios involving larger gene sets, where the proposed method
maintains higher accuracy metrics even in the worst-case scenarios. For instance, when
selecting 19 genes, the proposed approach achieves a level of accuracy of 99.01% in the
best case, surpassing both Mutual Information (93.44%) and SVM (91.26%). This trend
continues across various gene selection scenarios, with the proposed method consistently
demonstrating superior accuracy, especially in more challenging situations where another
method falters. Moreover, the proposed method’s robustness is highlighted by its ability to
maintain high accuracy across different scenarios, whereas Mutual Information and SVM
exhibit more variability in their performance. This suggests that the proposed method may
offer more reliable and consistent results, making it a promising choice for gene selection
tasks in practical applications. Table 3 presents the classification accuracy of proposed
method and other algorithms individually.

https://csse.szu.edu.cn/staff/zhuzx/Datasets.html
https://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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Table 3. The classification accuracy of the breast cancer dataset using the proposed method, Mutual
Information, and SVM.

Selected
Genes Accuracy

Proposed Method Mutual Information SVM

Best Average Worst Best Average Worst Best Average Worst

13 89.29 81.93 75.91 83.55 75.22 69.37 81.91 75.96 65.67

17 96.63 87.86 77.89 88.35 78.65 68.76 87.86 77.89 67.76

19 99.01 91.26 82.93 93.44 82.54 71.44 91.26 82.93 70.44

20 96.87 89.66 81.53 92.30 91.04 81.44 89.66 81.53 80.44

22 96.54 88.08 80.98 97.34 88.65 79.77 88.08 80.98 78.77

23 94.68 84.94 77.97 95.45 85.23 77.81 84.94 77.97 73.81

27 93.16 83.78 76.23 93.57 83.08 75.39 83.78 76.23 71.39

31 92.84 82.58 74.35 91.29 81.35 71.21 82.58 74.35 70.21

35 90.77 80.38 73.36 88.76 79.22 69.48 80.38 73.36 68.48

39 88.96 78.97 71.17 87.06 77.02 67.78 78.97 71.17 65.78

43 87.15 76.99 69.31 84.35 74.37 64.12 76.99 69.31 63.2

47 86.29 75.12 67.76 83.65 73.58 65.31 75.12 67.76 62.31

When comparing the different gene selection methods, the proposed approach con-
sistently demonstrates strong performance, particularly in achieving high accuracy across
various scenarios. Further validation and testing may be necessary to confirm these findings
and assess the method’s applicability to specific biological datasets and research objectives.

4.1. Confusion Matrix

Figure 2 presents a key metric used to evaluate classification model performance: the
confusion matrix. This tool provides a comprehensive view of the model’s accuracy by
comparing its predictions with actual outcomes in a grid format. The matrix consists of four
main elements: true positives (TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs). True positives are cases correctly predicted as positive, while true negatives
are those correctly predicted as negative. False positives occur when negative instances are
incorrectly predicted as positive, and false negatives happen when positive instances are
misclassified as negative. This matrix offers valuable insights into the model’s performance,
helping researchers understand its strengths and identify areas for improvement.

The confusion matrix is a valuable tool for assessing a model’s performance, revealing its
strengths and weaknesses. By examining its components—true positives, true negatives, false
positives, and false negatives—researchers can compute key metrics like accuracy, precision,
recall, and F1-score. These metrics offer a thorough evaluation of the model’s classification ability.
Insights from the confusion matrix help refine models and guide decisions on their practical use.
Equations (10)–(13) describe how these metrics are calculated from the matrix data.

ACC =
TP + TN

TP + TN + FP + FN
(10)

P =
TP

TP + FP
(11)

Sn =
TP

TP + FN
(12)

F − score = 2 × P × Sn
P + Sn

(13)
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4.2. Precision Recall Curve

To strengthen its results, this study includes key visual components, notably, Figure 3,
which displays the precision–recall (PR) curve. This tool provides a detailed analysis of the
proposed method’s performance by illustrating the balance between precision (the accuracy
of positive predictions) and recall (the proportion of true positives correctly identified). The
PR curve offers researchers valuable insights into the method’s effectiveness, facilitating a
comprehensive assessment of its overall performance.
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4.3. Area Under the Curve

A high Area Under the Curve (AUC) in Receiver Operating Characteristic (ROC)
curves reflects strong model performance. These curves showcase the balance between
sensitivity (true positive rate) and the false positive rate, providing insights into classifica-
tion accuracy at various thresholds. Furthermore, ROC curves emphasize the proposed
method’s effectiveness in distinguishing between positive and negative instances, which
is crucial in cases with imbalanced class distributions. This demonstrates the method’s
reliability and robustness for real-world applications.

Similarly, Figure 4 displays the Receiver Operating Characteristic (ROC) curve, a vital
tool for evaluating classifiers. This graph demonstrates the trade-off between sensitivity
(true positive rate) and the inverse of specificity (false positive rate), providing key insights
into the model’s ability to distinguish between classes. A higher AUC-ROC score indicates
better class differentiation. The ROC curve from the proposed method highlights its strong
ability to discriminate between classes. The impressive AUC values observed in both
the precision–recall (PR) and ROC curves confirm the effectiveness and reliability of the
combined approach in accurately classifying cancer types. These visual tools offer strong
evidence of the method’s success and its potential for clinical applications.
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4.4. Box Plot

Figure 5 presents a box plot analysis to evaluate the performance of the proposed
Two-phase MI-PSA Gene Selection algorithm in cancer data classification. The plot shows
the distribution of classification accuracies achieved by the MI-PSA method across different
iterations or datasets, providing an overview of its consistency and effectiveness. Each
box illustrates the interquartile range of accuracies, with the median accuracy indicated
by a horizontal line inside the box. The upper and lower whiskers represent the highest
and lowest accuracy values, respectively, highlighting the performance range. The box
plot clearly shows that the MI-PSA approach consistently achieves superior accuracy
compared to existing methods, underscoring its reliability and effectiveness in cancer
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data classification. This visual representation emphasizes the potential of the proposed
algorithm in supporting cancer management and treatment decisions.
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4.5. Discussion of Alternative Methods to MI, PSO, and SVM

In this section, we explore several alternative methods to the Mutual Information (MI)
filtering, Particle Swarm Optimization (PSO), and Support Vector Machine (SVM) tech-
niques used in our proposed approach. The purpose of this discussion is to evaluate other
potential algorithms that can be applied to gene selection and cancer classification tasks.

4.6. Alternative Optimization Algorithms

While MI-based filtering and PSO have shown promising results in gene selection,
there are other optimization algorithms that could potentially enhance the feature selec-
tion process.

1. Genetic Algorithms (GAs): Genetic Algorithms (GAs) are popular evolutionary al-
gorithms inspired by natural selection. GAs use crossover, mutation, and selection
operations to evolve a population of candidate solutions over successive generations.
The GA approach has been widely used for feature selection due to its ability to search
large and complex spaces for optimal solutions. The potential advantage of GAs
over PSO lies in their robustness to local optima, as they explore the solution space
by combining different solutions, which can sometimes lead to better performance.
However, GAs can be computationally expensive, especially when dealing with high-
dimensional data, and require careful tuning of parameters such as population size
and mutation rates.

2. Ant Colony Optimization (ACO): Ant Colony Optimization (ACO) is a swarm-based
optimization algorithm inspired by the foraging behavior of ants. ACO is effective
for solving combinatorial optimization problems, including feature selection. Like
PSO, ACO is capable of exploring a large solution space, but uses pheromone trails
to guide the search for optimal solutions. ACO could potentially offer advantages in
terms of discovering new solutions, but it is also computationally intensive. Further-
more, ACO’s performance can be sensitive to the choice of parameters, such as the
pheromone decay rate and the number of ants.
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3. Other Optimization Algorithms: Beyond GAs and ACO, other optimization algo-
rithms like Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Dif-
ferential Evolution (DE) can be considered for feature selection. Each has its strengths,
but PSO has been preferred in our approach due to its balance between convergence
speed and solution quality in high-dimensional search spaces.

4.7. Alternative Classifiers

In addition to the Support Vector Machine (SVM), there are several alternative classifiers
that can be considered for cancer classification tasks, which may offer improved performance or
computational efficiency depending on the dataset and problem characteristics.

1. Random Forest (RF): Random Forest is an ensemble learning method that constructs
multiple decision trees and outputs the mode of their predictions. RF is widely
regarded for its ability to handle high-dimensional data and deal with overfitting. It
is computationally less expensive compared to SVM, especially when dealing with
large datasets. The ability of RF to handle non-linear relationships and interactions
between features makes it a suitable alternative to SVM. However, it might be less
effective than SVM in cases where the decision boundaries are highly complex or
when the dataset is very sparse.

2. Deep Learning (DL): Deep learning models, particularly neural networks, have gained
considerable attention in cancer classification due to their ability to learn hierarchi-
cal representations of data. Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) are powerful models that can learn complex patterns in
large-scale datasets. Deep learning models could potentially offer superior perfor-
mance in classification tasks, especially in cases where the relationships between
features are highly non-linear. However, deep learning models tend to require much
larger datasets for training and are computationally more intensive compared to
traditional methods like SVM and RF. They also demand significant computational
resources, making them less feasible for real-time applications or scenarios with
limited data.

3. Logistic Regression (LR): Logistic Regression is a simpler and less computationally
demanding model compared to SVM and RF. It performs well for binary classification
problems and can be a good baseline for evaluating more complex models. However,
its performance tends to degrade when there are high levels of feature interaction or
non-linear relationships between features, which is common in gene expression data.

4. k-Nearest Neighbors (k-NN): The k-Nearest Neighbors algorithm is a non-parametric
method that classifies new instances based on the majority vote of the k nearest data
points. While it is simple to implement and computationally efficient for smaller
datasets, k-NN can struggle with high-dimensional data due to the “curse of dimen-
sionality,” where the distance between data points becomes less meaningful as the
number of features increases.

4.8. Impact of Alternatives on Performance

The comparison of the proposed approach to alternative optimization algorithms and
classifiers provides a better understanding of the strengths and weaknesses of each method.
MI-based feature selection combined with PSO for optimization and SVM for classification
offers a balanced approach, effectively handling high-dimensional gene expression data.
However, alternative methods could be explored for specific scenarios:

• Accuracy: Deep learning models and Random Forest may achieve higher accuracy in
large-scale datasets with complex patterns, especially when a large volume of training
data is available. However, for smaller datasets, SVM and PSO-based approaches tend
to be more reliable.

• Computational Efficiency: The proposed MI-PSO-SVM method is computationally
efficient compared to deep learning models, which require extensive computational
resources for training. Random Forest also tends to be more efficient than SVM in
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handling larger datasets, but it might not always provide the same level of accuracy,
particularly when dealing with sparse or imbalanced data.

• Interpretability: Methods like Logistic Regression, Random Forest, and SVM provide
a level of interpretability that is crucial in clinical settings, where understanding the
importance of specific features (e.g., genes) is essential. Deep learning models, on the
other hand, are often regarded as “black-box” models, making them less interpretable.

In conclusion, based on the discussions, we have summarized the key findings in
Table 4. The choice of alternative optimization methods and classifiers depends on the
specific characteristics of the data and the requirements of the classification task. While MI-
PSO-SVM provides a strong approach for gene selection and cancer classification, exploring
alternative methods may offer improvements in certain scenarios, particularly in terms of
classification accuracy and computational efficiency. Table 4 shows a comparison between
the proposed method and various other methods.

Table 4. Comparison based on different algorithms.

References Algorithms Gene No. Accuracy

Proposed method MI-PSO 19 99.01

[37] GBC 19 92.19

[38] mAnt 38 91.5

[39] mRMR.PSO 43 90.32

[40] GBC 15 97.38

[41] mRMR.ABC 25 96.77

[42] PSO 27 85.48

[43] LGBM 12 98.6

[44] AAElastic 29 96.4

4.9. Discussion

The Two-stage MI-PSA Gene Selection algorithm demonstrates a compelling approach
to tackling the challenges inherent in cancer gene selection and classification, offering sig-
nificant advancements over traditional methods. By integrating Mutual Information (MI)
and Particle Swarm Optimization (PSO), the MI-PSA algorithm harnesses the strengths of
both feature relevance assessment and optimization-based refinement. In the first stage, MI
effectively filters out genes with limited predictive power, ensuring that only those contain-
ing rich cancer-related information progress to the second stage. This initial reduction is
crucial for managing the dimensionality of the data, which often poses a challenge in high-
throughput genomic datasets. In the second stage, PSO fine-tunes the gene selection by
iteratively searching for the optimal subset of genes, striking a balance between maximizing
relevance and minimizing redundancy among selected genes. This dual-stage approach
not only enhances classification performance, but also addresses the risk of overfitting by
maintaining a compact, high-quality gene subset. The study’s experimental results substan-
tiate the effectiveness of MI-PSA in cancer classification tasks. Achieving a best accuracy of
99.01% with only 19 genes, the algorithm markedly surpasses the baseline performance
of MI and SVM, which achieve 93.44% and 91.26%, respectively. This significant improve-
ment suggests that the synergy of MI and PSO in MI-PSA allows for a more refined gene
selection that is better aligned with the underlying biological differences between cancer
and non-cancer samples. Furthermore, MI-PSA’s performance stability—demonstrated
by its consistently high average and worst-case accuracies—highlights the algorithm’s
robustness, making it a reliable option for clinical applications where consistent and precise
classification is paramount. Another critical consideration in gene selection and cancer
classification is computational efficiency. MI-PSA’s two-stage approach effectively miti-
gates the computational burden often associated with high-dimensional data, especially
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in comparison to traditional methods that may require intensive resources for exhaustive
search or purely statistical filtering. By leveraging MI as a pre-filter, MI-PSA minimizes
the number of features entering the PSO stage, thus reducing computational costs and
facilitating faster processing times. This efficiency is particularly advantageous in clinical
contexts, where timely decision-making is essential.

Moreover, the results obtained in this study underscore the broader implications of
MI-PSA in advancing precision medicine. By enabling accurate classification based on a
minimal subset of highly informative genes, MI-PSA supports the development of targeted
treatment strategies and early diagnostic tools. The algorithm’s ability to identify key genes
that correlate strongly with cancer-related variations suggests its potential application in
biomarker discovery, contributing valuable insights into cancer biology and aiding in the
identification of novel therapeutic targets. In summary, the MI-PSA algorithm presents
a powerful tool for gene selection in cancer research, combining the filtering precision
of MI with the optimization strength of PSO to achieve superior classification accuracy.
Its robustness, efficiency, and potential clinical applicability make MI-PSA a promising
approach for advancing cancer diagnostics and treatment. Future research could focus on
adapting MI-PSA to a broader range of cancer types and testing its scalability on larger
datasets, further validating its utility in diverse biomedical contexts.

5. Conclusions

Classifying cancer samples is inherently complex, influenced by factors such as mi-
croarray DNA samples, cancer types, gene selection, and inherent gene subset information.
In this study, we introduce an effective gene selection methodology tailored for breast
cancer classification datasets. The proposed MI-PSO gene selection approach comprises
two stages: Mutual Information-based gene selection followed by PSO-based refinement.
Evaluation using a Support Vector Machine (SVM) classifier demonstrates the superior
performance of the MI-PSO method across all datasets, achieving maximal classification ac-
curacy. Future research could explore integrating machine learning techniques like Particle
Swarm Optimization (PSO) with Fuzzy Logic and Neural Networks to further enhance mi-
croarray data classification. Such hybrid approaches hold promise for refining classification
models, potentially improving accuracy while reducing the computational load.

6. Future Directions

Based on the promising results of the Two-stage MI-PSA Gene Selection algorithm,
several future research directions can be proposed to further enhance its utility and appli-
cability in cancer classification and other biomedical research areas.

1. Integration with Deep Learning Models:

• Investigate the potential of integrating the MI-PSA gene selection method with
deep learning architectures, such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs). This integration could help capture
complex relationships and patterns in gene expression data, leading to even
higher classification accuracy and robustness.

2. Application to Other Cancer Types and Multi-Class Scenarios:

• Extend the application of the MI-PSA algorithm to other cancer types beyond
breast cancer, including multi-class classification scenarios. This would demon-
strate the generalizability and effectiveness of the method across different cancer
datasets with varying complexities.

3. Incorporation of Clinical and Multi-Omics Data:

• Explore the integration of clinical data (e.g., patient demographics, clinical his-
tory) and multi-omics data (e.g., proteomics, metabolomics) with the MI-PSA
approach. This holistic view could offer a more comprehensive understanding of
cancer mechanisms and improve personalized treatment strategies.
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4. Dynamic Adaptation of PSO Parameters:

• Develop adaptive mechanisms for dynamically adjusting PSO parameters, such
as inertia weight and acceleration coefficients, based on dataset characteristics.
This could optimize the performance of the PSO algorithm in diverse gene expres-
sion datasets, enhancing gene selection efficiency and classification outcomes.

5. Real-Time Gene Selection for Personalized Medicine:

• Investigate the feasibility of using the MI-PSA algorithm in a real-time clinical
setting for personalized medicine. This could involve developing a user-friendly
software tool that clinicians can use to quickly identify key genetic markers and
recommend targeted therapies based on individual patient profiles.

6. Combination with Other Feature Selection Techniques:

• Explore the combination of MI-PSA with other feature selection methods, such
as Recursive Feature Elimination (RFE) or Genetic Algorithms (GAs), to create
hybrid models. This could further refine gene selection and lead to even better
classification performance.

7. Handling Imbalanced Datasets:

• Develop strategies within the MI-PSA framework to effectively handle class
imbalance in cancer datasets, such as incorporating synthetic data generation
techniques like SMOTE (Synthetic Minority Over-sampling Technique) to im-
prove the classification of minority classes.

8. Exploring Gene-Gene Interaction Networks:

• Extend the MI-PSA approach to account for gene–gene interaction networks by
incorporating network-based feature selection techniques. This would help in
understanding the synergistic effects of gene sets and their impact on cancer
progression and classification.

9. Longitudinal and Prognostic Studies:

• Apply the MI-PSA algorithm to longitudinal cancer datasets to identify genes associated
with disease progression and prognosis. This could contribute to the development of
predictive models for patient outcomes and inform long-term treatment planning.

10. Benchmarking Against State-of-the-Art Methods:

• Conduct extensive benchmarking of the MI-PSA algorithm against other state-
of-the-art gene selection and classification methods using a variety of cancer
datasets. This would provide a comprehensive evaluation of its strengths and
potential areas for improvement.

By pursuing these directions, future research can continue to refine and expand the
capabilities of the MI-PSA algorithm, contributing to more accurate cancer diagnostics and
effective therapeutic strategies.
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