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1. Introduction

In this paper, we study the oscillation of a class of second-order differential equations (DEs) with
mixed neutral terms of the form(

a (s)ϖ′ (s)
)′
+ h (s) u (ϵ (s)) = 0, s ≥ s0, (1.1)

where
ϖ (s) = u (s) + ρ1 (s) u (δ (s)) + ρ2 (s) u (λ (s)) .

Throughout this paper, we will assume that the following conditions hold:

(H1) a ∈ C ([s0,∞) , (0,∞)) satisfies condition∫ ∞

s0

1
a (ξ)

dξ < ∞; (1.2)
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(H2) ϵ ∈ C ([s0,∞) , (0,∞)) , ϵ (s) ≤ s, ϵ′ (s) > 0, and lims→∞ ϵ (s) = ∞;

(H3) ρ1, ρ2 ∈ C ([s0,∞) , [0, 1)) , h ∈ C ([s0,∞) , [0,∞)) and h (s) is not identically zero in any interval
of [s0,∞);

(H4) δ, λ ∈ C ([s0,∞) , (0,∞)) , δ (s) ≤ s, λ (s) ≥ s and lims→∞ δ (s) = lims→∞ λ (s) = ∞.

By a solution of (1.1), we mean a function u ∈ C1 ([su,∞) ,R) su ≥ s0, which has the property that
a (s) (ϖ′ (s)) are continuously differentiable for s ∈ [su,∞). We only consider those solutions u (s)
of (1.1) satisfying sup {|u (s)| : s ≥ s∗} > 0 for all s∗ ≥ su, and we assume that (1.1) possesses such
solutions.

A solution of (1.1) is called oscillatory if it has arbitrarily many zeros on [su,∞); and is called
nonoscillatory otherwise. Equation (1.1) is said to be oscillatory if all of its solutions are oscillatory.

The problem of the oscillation of solutions of differential equations has been widely studied by many
authors and by many techniques since the pioneering work of Sturm on second-order linear differential
equations. As we know, many recent studies have been interested in studying the oscillatory behavior
of solutions of functional DEs of various orders. The reader can refer to the papers [1–5] for second-
order equations, the papers [6–9] for third-order equations, and the papers [10–14] for higher-order
equations.

One of the major branching issues of DEs is the oscillatory behavior of ordinary DEs. The
oscillation problems of ordinary DEs can be used to describe the oscillatory problems in the plane’s
wings. There are many uses for DEs with arguments in the natural sciences and engineering (for
additional information, see [15–18]).

The advancement of modern science and technology, including economics, aerospace, and modern
physics, as well as social development, has led to an increasing interest in delay DEs in recent decades.
As is often known, delayed DEs use the reliance on the past state to forecast the future state with
accuracy and efficiency. In the meantime, many qualitative characteristics, such as periodicity, stability,
and boundedness, can be explained. The delay effect will be important in expressing the time required
to complete a concealed procedure if we include it in the models. Conversely, unlike genetic systems,
advanced DEs can be used in practically every field of the actual world. Applications of such DEs
can be found in fields such as population dynamics in mathematical biology, mechanical control in
engineering, or economic difficulties [19].

The oscillatory behavior of DEs, particularly those of the neutral type, is a topic of growing interest.
The fact that these equations may replicate a wide range of situations, such as electrical networks, a
vibrating mass connected to an elastic rod, etc., makes them practically significant [20].

It is known that some studies have been interested in studying the oscillatory behavior of second-
order neutral DEs, and we mention some of them, for example:

Tunc et al. [21] considered the second-order neutral DE(
a (s)

(
(u (s) + ρ1 (s) u (δ (s)) + ρ2 (s) u (λ (s)))′

)α)′
+ h (s) uα (ϵ (s)) = 0, s ≥ s0, (1.3)

where α is the ratio of odd positive integers. They set new sufficient conditions for the oscillation of
the solutions of (1.3) under the condition∫ ∞

s0

1
a1/α (ξ)

dξ = ∞. (1.4)
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The results they obtain improve and complete some well-known results in the relevant literature.
Grace et al. [22] established some sufficient conditions for the oscillation of the DEs(

a (s)
((

u (s) + ρ1 (s) uβ1 (δ (s)) − ρ2 (s) uβ2 (δ (s))
)′)α)′

+ h (s) uβ3 (ϵ (s)) + c (s) uβ4 (ϵ1 (s)) = 0,

and presented new results that extend, generalize and simplify the results found in the literature. They
also analyzed the oscillatory and asymptotic behavior of solutions of the equation(

a (s)
((

u (s) + ρ1 (s) uβ1 (δ (s)) − ρ2 (s) uβ2 (δ (s))
)′)α)′

= h (s) uβ3 (ϵ (s)) + c (s) uβ4 (ϵ1 (s)) ,

under the condition (1.4), where s ≥ s0, ϵ1 (s) ≥ s, lims→∞ ϵ1 (s) = ∞, α, β1, β2, β3, and β4 are the ratios
of odd positive integers with 0 < β1 < 1 and β1 > 1.

Moaaz et al. [23] discussed the oscillation behavior of solutions of the DE(
a (s)

(
(u (s) + ρ1 (s) u (δ (s)) + ρ2 (s) u (λ (s)))′

)α)′
+ h (s) uα (ϵ (s)) = 0, s ≥ s0, (1.5)

where α is the ratio of odd positive integers. The authors have developed new oscillation theorems to
test the oscillation of solutions of DE (1.5). These theorems aim to complement and simplify related
results in the literature. They have also provided an example of the application of their results. For the
convenience of the reader, we mention one of their results.

Theorem 1.1. Assume that

1 − ρ1 (s) − ρ2 (s)
µ (λ (s))
µ (s)

≥ 1 − ρ1 (s)
η (δ (s))
η (s)

− ρ2 (s) > 0. (1.6)

If

lim sup
s→∞

ηα (s)
∫ s

s1

h (ϱ)
(
1 − ρ1 (ϱ)

η (δ (ϱ))
η (ϱ)

− ρ2 (ϱ)
)

dϱ > 1, (1.7)

where

η (s) =
∫ ∞

s

1
a (ξ)

dξ and µ (s) =
∫ s

s0

1
a (ξ)

dξ,

then (1.5) is oscillatory.
Grace et al. [24] studied the oscillatory behavior of nonlinear noncanonical neutral DEs(

a (s) (u (s) + ρ1 (s) u (δ (s)))′
)′
+ h (s) uα (ϵ (s)) = 0, (1.8)

where s ≥ s0 > 0 and α is the ratio of odd positive integers with 0 < α ≤ 1. They provided sufficient
conditions for all solutions to be oscillatory. For the convenience of the reader, we mention one of their
results.

Theorem 1.2. If ∫ ∞

s0

η (ξ) h (ξ) dξ = ∞, (1.9)
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and

lim sup
s→∞

(
η (s)

∫ s

s0

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

)α
dϱ

+η−α (ϵ (s))
∫ ∞

s
η (ϱ) h (ϱ)

(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

)α
ηα (ϵ (ϱ)) dϱ

)
>

{
1, if α = 1,
0, if 0 < α < 1,

(1.10)

where
η (s) =

∫ ∞

s

1
a (ξ)

dξ,

then (1.8) is oscillatory.
Based on the above, in this paper, we aim to establish new conditions using some relations and

inequalities to obtain new oscillation criteria for the studied equation using the comparison method
with first-order differential equations. We also compare our results with previous studies by providing
examples to show that our results improve those studies.

2. Main results

Our first oscillation result is as follows:

Theorem 2.1. If∫ ∞

s1

(
1

a (θ)

(∫ θ

s1

h (ϱ) η (ϵ (ϱ))
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

))
dθ = ∞, (2.1)

where
ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

+ ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

< 1,

then (1.1) is oscillatory.

Proof. Assume that (1.1) has a positive solution u (s). Thus, there exists a s1 ≥ s0 such that u (δ (s))
> 0 and u (ϵ (s)) > 0 for s ≥ s1. Since u(s) > 0 and ρ1, ρ2 ∈ [0, 1), we see that ϖ(s) > 0, and(

a (s)ϖ′ (s)
)′
= −h (s) u (ϵ (s)) ≤ 0, (2.2)

thus, we see that a (s)ϖ′ (s) has one sign. Therefore, we have two cases.
(i) Assume that ϖ′ (s) < 0. Hence,

ϖ (s) ≥ −
∫ ∞

s

1
a (ζ)

(
a (ζ)ϖ′ (ζ)

)
dξ

≥ −a (s)ϖ′ (s) η (s) , (2.3)

since a (s)ϖ′ (s) is decreasing, we find

a (s)ϖ′ (s) ≤ a (s1)ϖ′ (s1) := −K < 0, (2.4)

where K > 0, using (2.3) and (2.4), we obtain

ϖ (s) ≥ Kη (s) . (2.5)
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From (2.3), we obtain:
d
ds

(
ϖ (s)
η (s)

)
=
η (s) a (s)ϖ′ (s) +ϖ (s)

η2 (s) a (s)
≥ 0. (2.6)

From definition ϖ (s) , we conclude that

u (s) = ϖ (s) − ρ1 (s) u (δ (s)) − ρ2 (s) u (λ (s)) ≥ ϖ (s) − ρ1 (s)ϖ (δ (s)) − ρ2 (s)ϖ (λ (s)) , (2.7)

using (2.6) and (H4), we have

u (s) ≥ ϖ (s) − ρ1 (s)
ϖ (s) η (δ (s))
η (s)

− ρ2 (s)ϖ (s) = ϖ (s)
(
1 − ρ1 (s)

η (δ (s))
η (s)

− ρ2 (s)
)
,

and so

u (ϵ (s)) ≥ ϖ (ϵ (s))
(
1 − ρ1 (ϵ (s))

η (δ (ϵ (s)))
η (ϵ (s))

− ρ2 (ϵ (s))
)
, (2.8)

using (2.2) and (2.8), we obtain:

(
a (s)ϖ′ (s)

)′
≤ −h (s)ϖ (ϵ (s))

(
1 − ρ1 (ϵ (s))

η (δ (ϵ (s)))
η (ϵ (s))

− ρ2 (ϵ (s))
)
, (2.9)

from (2.5), we obtain

(
a (s)ϖ′ (s)

)′
≤ −h (s) Kη (ϵ (s))

(
1 − ρ1 (ϵ (s))

η (δ (ϵ (s)))
η (ϵ (s))

− ρ2 (ϵ (s))
)
. (2.10)

Since µ′ (s) > 0, we conclude that
µ (λ (ϵ (s))) ≥ µ (ϵ (s)) . (2.11)

Integrating (2.10) from s1 to s; and using (2.11), we find

a (s)ϖ′ (s) ≤ −K
∫ s

s1

h (ϱ) η (ϵ (ϱ))
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ. (2.12)

Integrating (2.12) from s1 to s, we obtain:

ϖ (s) ≤ ϖ (s1)−K
∫ s

s1

(
1

a (θ)

(∫ θ

s1

h (ϱ) η (ϵ (ϱ))
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

))
dθ.

(2.13)
By comparing (2.1) and (2.13), we conclude that ϖ (s) → −∞ as s → ∞, and this contradicts

ϖ (s) > 0.
(ii) Assume that ϖ′ (s) > 0. Thus, we see that ϖ (s) ≥ ϖ (δ (s)) ≥ u (δ (s)) , and hence,

ϖ (s) = ϖ (s1) +
∫ s

s1

1
a (ζ)

(
a (ζ)ϖ′ (ζ)

)
dξ ≥

(
a (s)ϖ′ (s)

) ∫ s

s1

1
a (ζ)

dξ

≥ a (s)ϖ′ (s) µ (s) ,

and so
d
ds

(
ϖ (s)
µ (s)

)
=
µ (s) a (s)ϖ′ (s) −ϖ (s)

µ2 (s) a (s)
≤ 0, (2.14)
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using (2.7) and (2.14), we see that

u (s) ≥ ϖ (s) − ρ1 (s)ϖ (s) − ρ2 (s)
ϖ (s) µ (λ (s))
µ (s)

= ϖ (s)
(
1 − ρ1 (s) − ρ2 (s)

µ (λ (s))
µ (s)

)
,

and so

u (ϵ (s)) ≥ ϖ (ϵ (s))
(
1 − ρ1 (ϵ (s)) − ρ2 (ϵ (s))

µ (λ (ϵ (s)))
µ (ϵ (s))

)
. (2.15)

Using (2.2) and (2.15), we obtain:

(
a (s)ϖ′ (s)

)′
≤ −h (s)ϖ (ϵ (s))

(
1 − ρ1 (ϵ (s)) − ρ2 (ϵ (s))

µ (λ (ϵ (s)))
µ (ϵ (s))

)
. (2.16)

Since η′ (s) < 0, we conclude that
η (δ (ϵ (s))) ≥ η (ϵ (s)) . (2.17)

Integrating (2.16) from s1to s, and using (2.17), we have

a (s)ϖ′ (s) ≤ −
∫ s

s1

h (ϱ)ϖ (ϵ (ϱ))
(
1 − ρ1 (ϵ (ϱ)) − ρ2 (ϵ (ϱ))

µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

+a (s1)ϖ′ (s1)

≤ −ϖ (ϵ (s1))
∫ s

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ)) − ρ2 (ϵ (ϱ))

µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

+a (s1)ϖ′ (s1)

≤ −ϖ (ϵ (s1))
∫ s

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

+a1 (s1)ϖ′ (s1) . (2.18)

Since η′ (s) < 0, we find∫ s

s1

η (ϵ (ϱ)) h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

≤ η (ϵ (s1))
∫ s

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ .(2.19)

It follow from (2.1) and (H1) that
∫ s

s1
h (ϱ) η (ϵ (ϱ))

(
1 − ρ1 (ϵ (ϱ)) η(δ(ϵ(ϱ)))

η(ϵ(ϱ)) − ρ2 (ϵ (ϱ)) µ(λ(ϵ(ϱ)))
µ(ϵ(ϱ))

)
dϱmust

be unbounded. Hence, from (2.19), we get∫ s

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ→ ∞ as s→ ∞. (2.20)

Thus, and from (2.18), we conclude that ϖ′ (s) → −∞ as s → ∞, and this contradicts ϖ′ (s) > 0. The
proof is completed. □

Theorem 2.2. Assume that∫ ∞

s0

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ = ∞, (2.21)
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and

ϖ′ (s) +
1

a (s)

(∫ s

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

)
ϖ (ϵ (s)) = 0 (2.22)

is oscillatory. Then, (1.1) is oscillatory.

Proof. As in the proof of Theorem 2.1, we find that a (s)ϖ′ (s) is of one sign.
(i) Assume that ϖ′ (s) < 0; therefore, we have (2.9) and (2.11) hold. Integrating (2.9) from s1to s, and
using (2.11), we see that

a (s)ϖ′ (s) ≤ a (s1)ϖ′ (s1) −
∫ s

s1

h (ϱ)ϖ (ϵ (ϱ))
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ,

and so

ϖ′ (s) ≤ −
ϖ (ϵ (s))

a (s)

(∫ s

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

)
.

Hence, we see that ϖ is a positive solution of

ϖ′ (s) +
1

a (s)

(∫ s

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

)
ϖ (ϵ (s)) ≤ 0. (2.23)

In view of [25, Lemma 1], we see that (2.22) has a positive solution, a contradiction.
(ii) Assume that ϖ′ (s) > 0, then (2.21) leads to (2.20). The rest of this proof is comparable to the
proof of Theorem 2.1. The proof is completed. □

We now present a new criterion for the oscillation of (1.1) using the results of [25].

Corollary 2.1. If (2.21) holds, and

lim inf
s→∞

∫ s

ϵ(s)

1
a (θ)

(∫ θ

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

)
dθ >

1
e
, (2.24)

then (1.1) is oscillatory.

Example 2.1. Consider the DE(
s2

[
u (s) +

1
32

u
( s
2

)
+

1
64

u (2s)
]′)′
+ h0u

( s
3

)
= 0, (2.25)

where a (s) = s2, ρ1 (s) = 1/32, ρ2 (s) = 1/64, δ (s) = s/2, λ (s) = 2s, ϵ (s) = s/3, and h (s) = h0. Now,
we see that

η (s) =
1
s

, η (ϵ (s)) =
3
s

, η (δ (ϵ (s))) =
6
s
,

µ (s) = −
1
s
, µ (ϵ (s)) = −

3
s

and µ (λ (ϵ (s))) = −
3
2s
.
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Therefore, the condition (2.21) is satisfied, where∫ ∞

s0

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

= h0

(
1 −

1
32

(2) −
1

64

(
1
2

)) ∫ ∞

s0

dϱ = ∞,

and the condition (2.24); becomes

lim inf
s→∞

∫ s

ϵ(s)

1
a (θ)

(∫ θ

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

)
dθ

= h0

(
1 −

1
16
−

1
128

)
ln 3 >

1
e
,

thus, by using Corollary 2.1, we see that (2.25) is oscillatory if h0 > 0.36018.
On the other hand, we see that condition (1.6) is satisfied, where

0.96094 ≥ 0.92188 > 0,

also, the condition (1.7) becomes

lim sup
s→∞

ηα (s)
∫ s

s1

h (ϱ)
(
1 − ρ1 (ϱ)

η (δ (ϱ))
η (ϱ)

− ρ2 (ϱ)
)

dϱ

= h0

(
1 −

1
16
−

1
64

)
> 1,

then, by using Theorem 1.1, we see that (2.25) is oscillatory if h0 > 1.0847.
From the above, we notice that our results improved [23].

Example 2.2. Let us assume the special case(
s2

[
u (s) +

1
8

u
( s
3

)]′)′
+ h0u

( s
4

)
= 0 (2.26)

for equation (1.1), where ρ2 (s) = 0. Now, we see that

η (s) =
1
s
, η (ϵ (s)) =

4
s

and η (δ (ϵ (s))) =
12
s
.

Therefore, the condition (2.21) is satisfied, where∫ ∞

s0

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

=

∫ ∞

s0

h0

(
1 −

1
8

(3)
)

dϱ = ∞,

and the condition (2.24); becomes

lim inf
s→∞

∫ s

ϵ(s)

1
a (θ)

(∫ θ

s1

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

− ρ2 (ϵ (ϱ))
µ (λ (ϵ (ϱ)))
µ (ϵ (ϱ))

)
dϱ

)
dθ
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= h0

(
1 −

1
8

(3)
)

ln 4 >
1
e
,

thus, by using Corollary 2.1, we see that (2.26) is oscillatory if h0 > 0.42459.
On the other hand, we see that condition (1.9) is satisfied, where∫ ∞

s0

η (ξ) h (ξ) dξ =
∫ ∞

s0

1
ξ

h0dξ = ∞,

also, the condition (1.10) becomes

lim sup
s→∞

(
η (s)

∫ s

s0

h (ϱ)
(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

)α
dϱ

+η−α (ϵ (s))
∫ ∞

s
η (ϱ) h (ϱ)

(
1 − ρ1 (ϵ (ϱ))

η (δ (ϵ (ϱ)))
η (ϵ (ϱ))

)α
ηα (ϵ (ϱ)) dϱ

)
=

(
h0

(
1 −

1
8

(3)
)
+ h0

(
1 −

1
8

(3)
))
> 1,

then, by using Theorem 1.2, we see that (2.26) is oscillatory if h0 > 0.8
From the above, we notice that our results improved [24].

Remark 2.1. If h0 = 1/2 in (2.26), we find that Grace et al. in [24] fail to study the oscillation of Eq
(2.26) at h0 = 1/2 because condition (1.10) is not satisfied. But by applying our results, we find that
condition (2.24) is satisfied; thus, our results succeed in studying the oscillation Eq (2.26) at h0 = 1/2.
Therefore, our results improve the results of Grace et al. in [24].

3. Conclusions

This research improves the oscillation criteria for second-order DEs with mixed neutral terms.
These equations describe situations where the rate of change depends not only on the current state but
also on an advanced version of it. These new criteria allow a wider range of equations to be studied.
Future research may involve applying the same approach to even-order DEs with mixed neutral terms
in the canonical case as well as the non-canonical case and exploring more novel criteria.
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