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Abstract 

For an ordered subset { }kβββ=β ...,,, 21  of vertices and v in a 

connected graph ( ) ,, EVG =  the k-vector 

( ) ( ) ( ) ( )( )kvdvdvdvr βββ=β| ,,,,, 21  

is the metric representation of vertex v with respect to .β  β  is              

a resolving set for G if various vertices of G have different 

representations with respect to .β  A minimum resolving set is the 

lowest cardinality resolving set and ( )Gdim  is the cardinality of the 

dimension of G. A resolving set B of G is connected if the subgraph 

B  produced by B is a nontrivial connected subgraph of G. The 

cardinality of the minimal resolving set is the metric dimension of          

G, while the cardinality of the lowest connected resolving set is the 
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connected metric dimension of G. A connected metric dimension          

of G, denoted by ( ) ,cdim G  is the lowest cardinality of a connected 

resolving set. The connected resolving number of a graph can be 

found using the algorithm presented in this work. 

1. Introduction 

Graphs considered are simple, connected, undirected, with a lot of edges 

but no loop. The study of connected resolving number is the fastest growing 

area in graph theory because of its numerous and varied applications in 

fields like algorithmic designs, communications networks, social sciences, 

and other areas. 

The challenge of figuring out a graph’s metric dimension was discussed 

by Harary and Melter [1]. Slater [2] discussed the use of this concept to 

long-range navigational aids. Melter and Tomescu [3] investigated the metric 

dimension problem of grid graphs. Khuller et al. [4] have studied the metric 

dimension problem for multi-dimensional grids and trees. Batiha et al. [5] 

studied the connected metric dimension types of ladder graphs, namely, 

ladder, circular, open, and triangular ladder graphs, as well as open diagonal 

and slanting ladder graphs. The metric dimension of the Jahangir graph ,2nJ  

as well as the partition and connected dimension of the wheel graph ,nW  

were calculated by Tomescu et al. [6]. Paths on n vertices constitute a  

family of graphs with constant metric dimension since Chartrand et al. 

demonstrated in [7] that a graph G has metric dimension 1 if and only if 

.nPG =  According to Javaid et al. in [8], the planar graph antiprism nA  is a 

family of regular graphs with a constant metric dimension, such that for any 

,5≥n  ( ) .3dim =nA  Ahmad et al. [9] calculated the metric dimension of 

( ) .2, 1KnP ⊙  Kurniawati et al. [10] determined the resolving domination 

number of friendship graphs and its operation. Muhammad and Susilowati 

[11] proposed the computer program for determining the basis and 

dimension of a graph. In [12], the connected metric dimension of path graph 

,nP  cycle graph ,nC  wheel graph ,nW  star graph ,1,1 −nK  and complete 
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graph nK  is investigated. It is shown that the connected metric dimension of 

cycle graph ,nC  3≥n  is 2, wheel graph ,nW  7≥n  is ,1
5

22 +




 +n

 star 

graph ,1,1 −nK  4≥n  is ,1−n  complete graph ,nK  3≥n  is 1−n  and path 

graph ,nP  2≥n  is 2. In [13], it is shown that the connected metric 

dimension at a vertex of tree T is 1 if v is an end vertex and 2 if v is not          

an end vertex, Petersen graph P is 4, and wheel graph ,nW  7≥n  is 

.1
5

22 +




 +n

 For more results, see [14-22]. 

In Section 2, we introduce the basic concepts. In Section 3, we present 

an algorithm for finding the connected resolving number of a graph. Finally, 

Section 4 presents the conclusion of this paper. 

2. Preliminaries 

Lemma 2.1 [23]. Let G be a connected graph and ( ).GVS ⊆  If S 

contains a resolving set of G, then S is a resolving set of G. 

Proposition 2.2. For a variety of well-known graph types, this 

proposition shows some results obtained from ( )Gcdim  [24]. 

(1) For triangular book graph nT  with n vertices, ( ) .2−= nTcdim n  

(2) For quadrilateral book graph 
4
nB  with n vertices, ( ) .

2
4 n

Bcdim n =  

(3) For knots graph nK  with n vertices, ( ) .3=nKcdim  

(4) For crystal planar map nC  with n vertices and k blocks, 

( ) .3=nCcdim  

3. Algorithm to Determine Connected Resolving Set of a Graph 

The algorithm consists of two steps: first, it determines the induced 

subgraph from a connected graph, and second, it determines the resolving set 

for the graph’s connected subgraph. 
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3.1. An algorithm to determine the connection between each pair of 

unique vertices 

Using a as the initial vertex and b as the destination vertex, the 

algorithm’s first step is to determine the relationship between two vertices, a 

and b, in G. 

After initializing all singleton subsets { } ( ){ },GVxxB ∈|=  we examine 

the vertex, and if we find a disconnection with other vertices, the procedure 

is terminated. Otherwise, we construct the new set 

{ } ( ){ }.,, 2121 GVxxxxB ∈|=  

If two of the vertices in ( )GV  are connected, the process will                     

be continued until we get {{ } ( ) },1,...,,, 21 jiGVxxxxB ij ≤≤∈|=  

where there are no two connected vertices in ( ).GV  Then we declare 

{ }jxxx ...,,, 21  as connected subgraph G. 

3.2. An algorithm for identifying a connected resolving set 

When defining a collection of subsets of ( ),GV  say 

{ } ( ){ },,, 2121 GVxxxxB ∈|=  

we examine how each connected vertex is represented in relation to a subset 

of ( ).GV  The process is finished if no two vertices in ( )GV  have the same 

representation with regard to a subset of ( ).GV  Given a subset of ( ),GV  if 

two vertices in ( )GV  will have the same representation, then construct the 

new set {{ } ( )},,,,, 321321 GVxxxxxxB ∈|=  the process will be continued 

until we get 

{{ } ( ) },1,...,,, 21 jiGVxxxxB ij ≤≤∈|=  

while, in ( ),GV  no two vertices have the same representation with respect to 

{ }....,,, 21 jxxx  Then we declare { }jxxx ...,,, 21  as connected resolving set. 
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Algorithm 1. Check connect pseudo code 

Function Check Connect of set of vertices (Adjacency matrix, Chosen Points 

Representation, X ) 

1. 1←X  

2. Xr ←  

3. 0←C  

4. for 0←i  to length ( ) 1−r  do 

5.   for 1+← ij  to length ( )r  do 

6. if ( ) ( )( ) 1, =jrirA  then ( ) ( ) 1+← iCiC  

7. end 

8.   end 

9. end 

10. 0>= CFS  

11. Out FS∏=  
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Algorithm 2. Pseudo code to determine connected resolving set 

Function Check a set of vertices is a resolving set ( )XG,  

XS ←  

←n  number of points in graph 

1←X  

subset X←  

for ←i  length(subset) 

for ←j  length(n) 

    Resolving Set ( ) ( ) ( )jGiXmin PPDji →= =1,  

End for 

End for 

for 1←i  to length(Resolving Set)-1 

for 1+← ij  to length(Resolving Set) 

if Resolving Set ( ) =j:,  Resolving Set ( )i:,  then output 0=  

else 

output 1=  

end if 

      end for 

end for 

4. Conclusion 

Numerous fields, including image processing, combinatorial 

optimization, wireless sensor network localization, robot navigation,  

network discovery and verification, and image processing, have utilized the 

connected metric dimension. The connected resolving number of a graph can 

be found using the algorithm we proposed in this work. 
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