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A B S T R A C T

Multi objective optimization (MOO) is very important in structural engineering, especially in truss design where 
a trade off between weight reduction and compliance is needed to maximize the efficiency. Usually, conventional 
optimization algorithms have difficulty in solving complex MOO tasks, and in generating diverse, high quality 
solutions for various structural configurations. To overcome these challenges, this study proposes a Multi 
Objective RIME (MORIME) algorithm that uses improved non-dominated sorting and crowding distance tech
niques to optimize weight and compliance over eight truss designs. With respect to Hypervolume (HV), Inverted 
Generational Distance (IGD), and Spacing (SP) metrics, it performed better than other established methods such 
as NSGA-II, MOEA/D, MOMVO, MOTEO, MOLCA, and MORIME, leading to better convergence and diversity of 
solution sets. The results show that MORIME is a good tool for dealing with complex multi objective optimization 
landscapes and that it is better than biologically inspired and hybrid optimization methods. MORIME is a 
powerful tool for structural engineers to produce well balanced truss designs, which meet stringent weight and 
compliance requirements in a multiobjective setting. MORIME is one attractive feature because it can generate 
optimal and diverse solutions in truss optimization, resulting in high quality design results.

1. Introduction

Over the past few years, metaheuristic algorithms have become 
indispensable in solving complex optimization problems in wide engi
neering and scientific fields. In contrast to traditional methods, meta
heuristics are flexible and adaptable, using ideas from nature, such as 
biological evolution, social behavior and physics [1]. In large-scale, 
complex problem spaces, they are particularly effective where conven
tional optimization techniques fail [2]. Genetic Algorithm (GA) [3], 
Particle Swarm Optimization (PSO) [4], and Ant Colony Optimization 
(ACO) [5], are classic metaheuristic algorithms that have been widely 

applied in areas such as structural engineering and machine learning. 
They offer a robust framework for balancing exploration and exploita
tion in the search space and, hence, are very useful for solving complex 
real-world problems [6,7].

The backbone of problem-solving in engineering is optimization 
techniques, as one usually tries to improve systems for efficiency, cost- 
effectiveness, or performance. Generally, the optimization can be clas
sified as single-objective and multi-objective optimization. In contrast to 
differential methods applied by traditional optimization, modern tech
niques operate with heuristic and metaheuristic, or with the use of 
heuristic and metaheuristic, when solving nonlinear problems. Material 
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science, robotics, and other structural design advances have been ach
ieved by integrating these techniques with computational power. As 
engineering systems become more complex, the critical need to refine 
and advance optimization algorithms arises, since simple performance 
improvements can translate to large practical benefits.

Single-objective optimization (SOO) focuses on improving a solitary 
criterion, such as minimizing cost or maximizing efficiency. This 
approach, while straightforward, often encounters limitations in multi- 
dimensional design spaces where real-world problems typically 
require consideration of multiple, frequently conflicting objectives. SOO 
methods have been foundational in many optimization studies, espe
cially in fields with a dominant goal. Techniques like linear program
ming, quadratic programming, and metaheuristic-based single-objective 
optimizers have been extensively explored. However, the single- 
objective framework falls short when balancing multiple trade-offs, 
making multi-objective optimization essential in complex scenarios. 
Recently proposed SOO techniques, i.e., Remora optimization algo
rithm, [8], Run beyond the metaphor [9], snow ablation optimizer [10], 
white shark optimizer [11], Newton-Raphson-based optimizer [12], 
Sled dog optimizer [13], Polar Light Optimizer [14], 
Resistance-capacitance optimizer [15], Parrot Optimizer [16], are very 
powerful in finding optimum solutions.

Multi-objective optimization (MOO) addresses this limitation by 
aiming to simultaneously optimize two or more objectives. In structural 
engineering, for example, weight reduction and compliance minimiza
tion are often conflicting yet critical goals. Multi-objective meta
heuristics, such as NSGA-II [17], MOEA/D [18], and MOGMO [19], 
MOMVO [20], MOHO [21], MOSAO [22], MORCA [23], MOEO [24], 
MOLCA [25], MOEDO [26], MOWSA [27], are designed to navigate 
these competing objectives by generating diverse Pareto-optimal solu
tions, offering trade-offs between objectives. MOO allows 
decision-makers to choose the most suitable solution based on contex
tual priorities. Despite its advantages, MOO remains computationally 
challenging due to the need for diverse, high-quality solutions repre
senting a balanced trade-off between objectives.

As established by optimization theory informed by the ’No Free 
Lunch’ (NFL) theorem [28] of Wolpert and Macready, there is no opti
mization algorithm that performs better than all other algorithms in all 
problem domains. This theorem emphasizes that picking or design a 
problem–specific optimization algorithm is as crucial as to make it 
effective in terms of performance. In the case of truss structure optimi
zation, it is clear that no metaheuristic is universally better than the 
others and therefore there is a never ending search for new algorithms or 
hybrid approaches that will perform better. Optimization problems, as 
evidenced by the NFL theorem, present a strong case for the exploration 
of new methodologies, including the Multi-Objective RIME (MORIME) 
algorithm [29] presented in this study.

Optimization of truss structure is an important field of structural 
engineering, where the aim is usually to minimize weight and maximize 
structural compliance and integrity [30]. Truss designs that are efficient 
are necessary for minimizing material use, reducing costs, and 
increasing load bearing capacity. However, traditional optimization 
methods have difficulty dealing with the complex, multi objective na
ture of truss design, as they are not robust enough to traverse high 
dimensional and non linear design spaces. Therefore, metaheuristic 
based MO optimization techniques have become popular for truss 
structure design in order to design lightweight yet durable structures. In 
this study, the MORIME algorithm proposed addresses these challenges 
by using advanced non-dominated sorting and crowding distance 
methods, providing an efficient solution to multi-objective truss 
optimization.

1.1. Contributions

• Development of the MORIME algorithm for multi-objective truss 
structure optimization.

• Apply MORIME to optimize truss weight and compliance across eight 
configurations, advancing existing methodologies.

• Comparative evaluation of MORIME against leading algorithms 
(NSGA-II, MOEA/D, MOMVO, MOTEO, MOLCA), demonstrating 
superior performance in Hypervolume, Inverted Generational Dis
tance, and Spacing metrics.

• Provision of a new framework for structural engineers to achieve 
efficient, high-quality truss designs, mainly where multiple objec
tives constrain decision-making.

In this paper, we present an innovative truss optimization approach 
that is more efficient and has a greater solution diversity than traditional 
methods. In the following section, we discuss the mathematical frame
work of MORIME, including the design of the algorithm and its 
distinctive features.

The following contributions were made to this study: 

• In Section 2, the mathematical framework of the MORIME algorithm 
is presented, with the emphasis on its improved non-dominated 
sorting and crowding distance strategies. These elements are inten
ded to enhance solution diversity and convergence, which are 
necessary for efficient multi objective optimization in structural 
engineering.

• In Section 3, the truss optimization problem is defined, with the dual 
objectives of weight and compliance minimization as the key to 
efficient structural designs. In this section, we discuss how MORIME 
specifically deals with these objectives within a multi objective 
optimization context, optimizing truss performance for different 
configurations.

• In Section 4, the evaluation metrics used in the study are outlined: 
Hypervolume (HV), Inverted Generational Distance (IGD), Spacing, 
and computational Run Time. Together, these metrics measure 
MORIME ability to produce an optimal and well distributed Pareto 
front, and confirm its effectiveness in complex optimization 
problems.

• Experimental evaluation of MORIME is presented in Section 5, along 
with a comparative analysis with other established algorithms 
including NSGA-II, MOEA/D, MOMVO, MOLCA and MOTEO. In this 
section, MORIME performance across various truss configurations is 
demonstrated using detailed performance metrics and statistical 
comparisons to demonstrate its ability to solve complex MO 
problems.

• Finally, Section 6 concludes the study and summarizes the main 
findings, discusses the potential application of MORIME in multi- 
objective structural optimization and suggests future research di
rections to further extend its applicability.

This structure presents a complete picture of MORIME development, 
application, and evaluation, as well as its contributions to truss structure 
optimization.

2. Theoretical foundation and mathematical modeling of 
MORIME

A powerful optimization tool for solving complex multi objective 
problems, especially when a balance of conflicting objectives is needed, 
such as in structural engineering, is the Multi Objective RIME (MORIME) 
algorithm. MORIME combines advanced non-dominated sorting and 
crowding distance calculations with mechanisms inspired by rime ice 
formation to produce a diverse and high quality Pareto front. MORIME is 
capable of handling non-linear high dimensional problems through its 
structured approach, and provides a systematic approach to exploration 
and convergence. MORIME is a versatile solution for multi-objective 
optimization tasks, providing engineers and researchers an effective 
solution to generate optimal designs across competing objectives within 
a mathematical framework.
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2.1. Population initialization

In the MORIME algorithm, the initial population forms the starting 
point for optimization, setting the stage for iterative solution space 
exploration.

Each individual in the population represents a potential solution, 
denoted as a vector Xi of D dimensions (decision variables). For a pop
ulation of N individuals, each dimension j is initialized as:Xi,j = LBj +

rand(0, 1) ×
(
UBj − LBj

)
where: LBj and UBj are the lower and upper 

bounds of the jth variable, respectively. rand(0,1) is a random number 
between 0 and 1, ensuring that each solution vector is randomly spread 
across the feasible solution space. This randomized initialization pro
motes diversity in the starting population, enhancing the algorithm 
ability to explore the entire solution space and avoid early convergence 
on local optima.

2.2. Non-Dominated sorting

Non-dominated sorting organizes the population into Pareto fronts, 
which is essential for multi-objective optimization where multiple ob
jectives may conflict.

2.2.1. Dominance criteria
In the dominance criteria for multi-objective optimization, let M 

denote the number of objective functions to be optimized. A solution p is 
said to dominate another solution q if and only if the following condi
tions are satisfied: fk(p) ≤ fk(q) for all k ∈ {1,2,…,M}, and there exists at 
least one objective j ∈ {1,2,…,M} such that fj(p) < fj(q). This means 
that solution p is at least as good as solution q in all objectives and 
strictly better in at least one objective.

Front Formation: Non-dominated sorting divides the population 
into layers of non-dominated fronts F1, F2,…, Fl: The first front F1 con
tains solutions that are not dominated by any other solutions in the 
population. The second front F2 consists of solutions that are only 
dominated by those in F1, and so on. Organizing solutions into fronts 
allows MORIME to prioritize non-dominated solutions and ensure dis
tribution across the solution space, which is crucial for maintaining di
versity in multi-objective optimization.

2.3. Crowding distance calculation

Crowding distance quantifies the diversity within each Pareto front 
by measuring the “crowdedness” around each solution.

For a given solution i in a front, the crowding distance di is calculated 
as per Eq. (1). 

di = di +
∑M

m=1

fm,i+1 − fm,i− 1

fmax
m − fmin

m
(1) 

Where: fm,i+1 and fm,i− 1 are the objective values of neighbouring so
lutions in objective m, fmax

m and fmin
m represent the maximum and mini

mum values of objective m in the current front. To preserve boundary 
diversity, boundary solutions in each front are assigned an infinite 
crowding distance. Crowding distance ensures that selected solutions 
are well spread across the Pareto front. Solutions in less crowded regions 
are favoured, preserving diversity and helping to avoid convergence to a 
narrow area.

In Eq. (1), the crowding distance di is cumulative throughout gen
erations. The crowding distance is calculated for each solution in the 
population during each iteration. Initially, di is set to zero, and then the 
summation term is added to account for the crowding distances across 
multiple objectives. This cumulative formulation ensures that the 
boundary solutions are preserved and the distribution of solutions along 
the Pareto front is enhanced. Specifically, for each individual i within a 

Pareto front, the summation term 
∑M

m=1

(

f(m,i+1) − f(m,i− 1)
fmax
m − fmin

m

)

quantifies the 

diversity of the solution by calculating the normalized difference be
tween neighbouring objective values for all objectives M. The inclusion 
of di in the formula ensures that the crowding distance accumulates 
across multiple objectives, contributing to the selection of solutions that 
are well-distributed within the front. Thus, di is designed to be cumu
lative and is recalculated at every generation, ensuring dynamic ad
justments to the solution set based on evolving objective values across 
generations.

2.4. Crowded comparison operator (≺n)

The crowded comparison operator selects solutions based on their 
dominance rank and crowding distance. The crowded comparison 
operator ≺n is defined as Eq. (2): 

i≺nj if
(
NDRi <NDRj

)
or
(
NDRi =NDRj and di > dj

)
(2) 

where: NDRi and NDRj represent the non-domination ranks of solutions i 
and j, di and dj are their respective crowding distances. The solution with 
a lower non-domination rank (better Pareto front) is favoured. If the 
ranks are equal, the one with a higher crowding distance (less crowded 
region) is selected. This operator helps balance convergence (by 
selecting solutions with lower domination ranks) and diversity (prefer
ring solutions in less overcrowded areas). It ensures that MORIME 
generates well-distributed solutions across the Pareto front, preserving 
quality in both convergence and spread.

2.5. Best compromise solution (BCS)

The BCS is a method for selecting a balanced solution from the Pareto 
front that is useful for decision-makers facing conflicting objectives.

Normalized Metric: For each objective m, a normalized dominance 
score μi,j for solution i is calculated as Eq. (3). 

μi,j =
fmax
m − fm,i

fmax
m − fmin

m
(3) 

Where fmax
m and fmin

m are the maximum and minimum values of the 
objective across the front, fm,i is the objective value of the solution i in 
objective m. The BCS is the solution with the highest aggregated 
dominance score, balancing between conflicting objectives for a well- 
rounded result. BCS provides a practical solution when users need a 
single choice from a Pareto front, balancing multiple objectives to meet 
real-world requirements in MO optimization.

2.6. RIME-Specific steps for position update

MORIME integrates mechanisms inspired by the natural rime ice 
formation process to refine solutions toward optimal regions iteratively.

Soft-Rime Search Strategy: Encourages broad exploration in early 
iterations and is mathematically defined as per Eq. (4). 

Xnew
i,j = Xbest

j + r1⋅cos (θ)⋅β⋅
(
h⋅
(
UBj − LBj

)
+ LBj

)
(4) 

where: Xbest
j is the best solution found so far, r1 is a random variable for 

directional randomness, cos (θ) and β are factors that vary with itera
tion, guiding search behaviour over time.

The term h, as used in Eq. (4) of the MORIME algorithm, represents a 
scaling factor that modulates the step size of the soft-rime search strat
egy during solution updates. Specifically, h controls the extent of 
exploration by scaling the range of the solution space 

(
UBj − LBj

)
, 

where UBj and LBj are the upper and lower bounds of the j-th decision 
variable, respectively. This factor is introduced to balance the trade-off 
between global exploration and local exploitation during the early it
erations of the algorithm. In the context of the MORIME algorithm, h is 
not a predefined constant but is adaptively adjusted based on the iter
ation count or optimization requirements to ensure effective search 
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dynamics.
Hard-Rime Puncture Mechanism: Focuses on exploitation, updat

ing solutions by selection probability described in Eq. (5). 

Xnew
i,j = Xbest

j if r3 < Fnorm(Xi) (5) 

where Fnorm(Xi) is a normalized fitness value for each solution, helping 
agents converge toward high-quality solutions. The RIME inspired up
dates balance exploration and exploitation, enabling MORIME to escape 
local optima and refine solutions across multiple objectives. MORIME 

achieves this balance of diversity and convergence through this math
ematical framework, and is therefore well suited to complex multi- 
objective optimization problems, including structural design and other 
engineering problems with multiple conflicting objectives.

The MORIME flowchart outlines a structured approach to optimizing 
and managing resources across multiple objectives in Fig. 1. It begins 
with an initialization phase, defining goals and constraints, followed by 
processing steps for evaluating solutions. The flow involves iterative 
optimization steps that assess solutions against predefined criteria, 
adjust parameters for improving outcomes, and select optimal 

Fig. 1. Flowchart of MORIME.
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configurations that satisfy MO requirements. The loop continues until a 
convergence criterion is met, resulting in a final set of robust, optimized 
solutions that effectively balance competing objectives.

3. Integrated FEA-Based truss optimization and multi-objective 
compliance assessment

This research investigates eight multi-objective truss sizing optimi
zation problems: The trusses are 10-bar, 25-bar, 37-bar, 60-bar, 72-bar, 
120-bar, 200-bar, and 942-bar [31]. The main objectives are to mini
mize structural weight and compliance while keeping designs below 
allowable stress limits. Eq. (6) is used to calculate structural weight, and 
Eq. (7) is used to calculate compliance, where displacement and loading 
vectors are calculated using finite element analysis (FEA). 

Weight = ρ
∑

e
Aele (6) 

Compliance = UTF (7) 

In these equations, ρ represents material density, Ae is the cross- 
sectional area of element e, and Le is the length of element e. Each 
element stress must satisfy the allowable stress constraint as described in 
Eq. (8), where σallowable represents the maximum allowable stress for the 
material. 

g = max(σe − σallowable,0) (8) 

Constraints in the truss bar optimization problem were handled 
using a penalty-based approach integrated into the objective function 
evaluation. For each candidate solution, a constraint violation measure 
C was calculated as the sum of all normalized violations of constraints (e. 
g., stress, displacement, and other limits). A penalized objective function 
was Fpenalized = Fobjective + λ⋅C, where Fobjective is the original objective 
value, C is the total constraint violation, and λ is a penalty coefficient 
that scales the impact of violations. Feasible solutions (C = 0) were 
prioritized, while infeasible solutions (C > 0) were penalized, ensuring 
adherence to all constraints. This method ensures that the algorithm 
emphasizes feasible regions of the solution space while optimizing the 
objectives effectively.

All test cases use consistent definitions for material properties: a 
density of 7850 kg/m³, allowable stress of 400 MPa, and modulus of 
elasticity of 200 GPa. The design variables are discrete to reflect prac
tical constraints in real-world truss sizing. Figs. 2-9 show the layout of 
each truss structure, including configurations for 10-bar, 25-bar 3-D 
truss, 37-bar, 60-bar, 72-bar 3-D truss, 120-bar, 200-bar, and the 942- 
bar tower truss. Some problems include grouped design variables, 
meaning the number of variables may not match the number of truss 

members. The number of design variables for the 10-bar, 25-bar, 37-bar, 
60-bar, 72-bar, 120-bar, 200-bar, and 942-bar problems are 10, 8, 15, 
25, 16, 7, 29, and 59, respectively.

3.1. Truss10bar

As per Fig. 2, this structure uses design variables for cross-sectional 
areas, denoted as Ai for i = 1, 2,…,10. The stress constraint is set to 
σallowable = 400 MPa with a material density ρ = 7850 kg/m3 and Young 
modulus E = 200 GPa. The size variable S can vary from [1, 1.5, 2, …, 
21] *10− 3 m2. The loading condition involves forces at nodes 2 and 4 
with a 1000 KN downward direction.

3.2. Truss25bar

This truss, demonstrated in Fig. 3, also adheres to a stress constraint 
of σallowable = 400 MPa and uses the same density and Young modulus as 
the 10-bar truss. The design variables are similarly defined, but the 
loading condition is more complex, involving multiple forces at various 
nodes. This structure requires optimization to handle the increased 
loading points while minimizing weight and compliance.

3.3. Truss37bar

Fig. 4 shows that the 37-bar truss has the same material properties 
and stress constraints as the previous trusses. It introduces multiple load 
cases[32] with 1000 KN. The design variables remain within the range 
[1, 1.5, 2, …, 21] * *10− 3 m2.

3.4. Truss60bar

This structure follows the same material and stress constraints with 
design variables ranging in size from [1, 1.5, 2, …, 21] * *10− 3 m2. The 
loading conditions involve multiple cases [32]. With forces applied 
across different nodes, optimizing for weight and stress distribution is 
essential. Fig. 5 shows 60-bar ring truss structures.

3.5. Truss 72bar tower 3-D truss

Similar to the 60-bar truss, the 72-bar truss shown in Fig. 6 operates 
under the same stress constraints (σallowable = 400 MPa), density (ρ =
7850 kg/m3), and Young modulus (E = 200 GPa). The size variable S 
ranges from the same as in previous cases. The loading conditions 
involve two cases, with complex force applications across the structure, 
necessitating a high optimization level [32].

Fig. 2. Truss10bar.
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3.6. Truss120bar dome truss

This truss continues with the same stress, density, and Young 
modulus constraints. However, the design variables S include a range of 

[1, 1.5, 2, …, 21] * *10− 3 m2. The structure faces various loading con
ditions involving different force magnitudes at nodes, which requires 
careful optimization to ensure structural performance under heavy loads 
[32]. The 120-bar dome truss ground structures are indicated in Fig. 7.

3.7. Truss200-bar

Like the other trusses, the 200-bar truss follows the same stress 
(σallowable = 400 MPa), density (ρ = 7850 kg/m3), and Young modulus (E 
= 200 GPa) constraints. The size variable S ranges from the same as the 
previous cases. This structure is subject to lateral and vertical loadings at 
multiple nodes, increasing the complexity of the optimization process. 
Fig. 8 shows a 200-bar truss.

3.8. Truss942bar tower structure

Fig. 9 shows a highly complex tower truss structure under various 
loading conditions. Like the others, this truss operates under stringent 
material constraints, with maximum allowable stress, density, and 
Young modulus consistent across all truss structures in this optimization 
study. Cross-sectional areas represent the design variables for the 942- 
bar truss Ai for i = 1,2,…,942. The cross-sectional areas can vary 
within a predefined set of discrete values, the same as in previous cases, 
indicating larger potential sizes compared to smaller trusses. The more 
extensive range of cross-sectional areas accommodates the significant 
structural demands placed on this truss due to its size and complexity.

The 942-bar truss loading conditions are broken up into several 
sections with specific vertical and lateral force specifications. Section 1
applies vertical loadings at different nodes. Section 2 includes vertical 
loadings at various points and Section 3 is associated with lateral 
loading conditions on the right hand and left hand sides of the truss. The 
magnitudes of lateral loading are significant, making the design 

Fig. 3. Truss25bar.

Fig. 4. Truss37bar.

Fig. 5. Truss60bar ring.
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optimization more complex. For instance, the truss is subjected to lateral 
loadings of Px = ±3 KN and a vertical loading of Pz = − 100 KN to make 
sure that the truss can resist both vertical and horizontal loads at the 
same time.

4. Computational analysis and performance evaluation

Rigorously comparing the MO algorithms requires evaluation of 
proper performance metrics. Four established metrics are employed: The 
Hypervolume (HV) indicator, Inverted Generational Distance (IGD), 
Spacing (SP), and computational efficiency are considered. The metrics 
offer a unique insight into algorithmic performance across convergence, 
spread, and overall solution quality.

4.1. Hypervolume (HV)

The HV metric, given in Eq. (9), is the portion of the objective space 
covered by the non-dominated solution set [33]. The solutions cover a 
larger area of the objective space, and thus a higher HV value implies 
better performance. For each solution i in the set S, a hypercube V_i is 
defined in terms of a set of reference points. Each solution objective 
vector is separated from its closest reference point by the Euclidean 
distance d_i, which estimates the volume of objective space dominated 
by the Pareto front solutions. This measure allows us to evaluate the 
solution expansion and quality in the objective space. 

HV = volume
(

U
A

i=1
Vi

)

(9) 

4.2. Inverted generational distance (IGD)

Quantitatively, the obtained Pareto front can be test with the IGD 

represented by Eq. (10) to approximate how close the obtained Pareto 
front is to the original Pareto front. Calculates as the average of the 
Euclidean distance from each point on the generated Pareto to its closest 
neighbor point in the actual Pareto [34]. Convergence is better if the IGD 
values are lower, since in this way the solutions are proximal to the ideal 
Pareto front. The related metric that has been proposed is |Pʹ|, the 
number of solutions on the reference plane, measuring the front 
expansion and how close the front is to the true Pareto optimal set. 

IGD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑nt

i=1

(
dʹ2

i

)√

|Pʹ|
(10) 

Where dʹ
i is difference between solution point from the reference 

Pareto front Pʹand obtained Pareto front P and nt number of pareto 
optimal solutions.

4.3. Spacing (SP)

The metric, SP metric (as shown in Equation 14) assesses the dis
tribution and spread of solutions along the Pareto front. Variance in 
spacing between neighbouring solutions is calculated to assess unifor
mity across the front [35]. A lower SP value implies that the resulting 
Pareto front is more evenly distributed and extensive, both of which 
imply an efficient algorithm which can generate diverse and well spread 
non-dominated solutions. The SP metric uses the maximum (fmax

i ) and 
minimum (fmin

i ) values of the ith objective function to normalize the 
objective values, providing a comparative basis for distribution across 
multiple objectives. 

SP =
1

|P| − 1
∑|P|

i=1
(di − d)2 (11) 

Where di: The distance between a solution i and its nearest neighbor 

Fig. 6. The 72-bar 3D truss.
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in the obtained Pareto front, d: The mean of all di, calculated as d =

1
|P|
∑|P|

i=1 di and |P|: The number of solutions in the obtained Pareto front. 
These metrics together provide a complete measure of the MO algorithm 
performance, allowing us to benchmark the MO algorithm with respect 
to other MO approaches in terms of solution quality, convergence and 
diversity of the Pareto front.

5. Comprehensive findings and comparative analysis

This study finds that MORIME is effective in solving complex struc
tural optimization problems, especially in the truss design. Analysis 
shows that MORIME reliably generates well distributed Pareto optimal 
solutions with improved convergence for complex truss configurations. 
MORIME is benchmarked against leading multi objective optimization 
algorithms through comprehensive benchmarking and shows superior 
HV, IGD, and Spacing metrics performance. The metrics highlight 
MORIME ability to preserve solution diversity while quickly converging 
towards the Pareto front. Comparative evaluation demonstrates that 
MORIME is capable of balancing objectives, such as minimizing struc
tural mass and compliance, and is more accurate and computationally 
efficient than traditional approaches. The robustness and adaptability of 
MORIME are demonstrated in this study, and MORIME is shown to be a 

useful tool for multi-objective structural optimization.
In Figs. 10 to 17, the true Pareto fronts were obtained using a 

reference set of solutions generated by an exhaustive search or high- 
fidelity multi-objective optimization methods. In order to compute the 
reference Pareto fronts for smaller configurations, exhaustive sampling 
of the objective space under the defined constraints was used. For larger 
configuration, computationally intensive methods, like a combination of 
epsilon-dominance and clustering-based refinement, were used to 
approximate the true Pareto fronts. The convergence and diversity of 
these reference fronts were validated and they were suitable for 
benchmarking the obtained solutions.

5.1. Optimal Pareto front analysis for truss structure MO optimization

Fig. 10 presents the Pareto fronts of different MO optimization al
gorithms NSGA-II, MOEA/D, MOMVO, MOTEO, MOLCA and the pro
posed MORIME algorithm for the 10-bar truss optimization problem. 
Objective functions f1 and f2, key structural metrics such as mass and 
compliance, are plotted to illustrate the trade-offs achieved by each al
gorithm. MORIME shows a large convergence and a uniformly distrib
uted Pareto front very close to the theoretical Pareto-optimal curve 
compared to other algorithms. Results from MORIME demonstrate that 
MORIME can balance the objectives while maintaining high diversity 

Fig. 7. The 120-bar truss.
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among solutions and outperform traditional approaches like NSGAII and 
MOEAD. The comparison demonstrates that MORIME is more efficient 
in structural optimization, since it produces solutions that are very close 
to the optimal tradeoff curve, representing both better solution quality 
and robust diversity along the front.

Fig. 11 shows Pareto fronts of various MO optimization algorithms, 
applied to the 25-bar truss optimization problem, with weight and 
compliance being critical structural performance objectives. Our results 
from MORIME show excellent agreement with the theoretical Pareto 
optimal curve and demonstrate that MORIME is capable of converging 
to optimal solutions and providing a well distributed spread along the 
front. MORIME achieves a more balanced trade off between objectives 
than other algorithms, yielding a Pareto front that is both uniformly 
distributed and densely populated. This work demonstrates the 

robustness and adaptability of our proposed approach, MORIME, to 
handle large complex structural optimization problems, returning so
lutions of high quality while maintaining diversity.

Fig. 12 shows the Pareto fronts for the 37-bar truss optimization 
problem for NSGA-II, MOEA/D, MOMVO, MOTEO, MOLCA, and the 
MORIME algorithm. MORIME shows a significant performance advan
tage in this challenging structural problem where objectives are to 
minimize weight and compliance. MORIME generates Pareto front that 
closely matches the ideal Pareto-optimal curve, and converges and dis
tributes solutions better than other algorithms. The solutions spread 
achieved by MORIME shows its ability to achieve a good tradeoff be
tween exploration and exploitation, maintaining diversity while 
approaching optimal tradeoffs. The evaluation of MORIME shows that it 
is capable of generating high quality, diverse solutions for complex MO 

Fig. 8. The 200-bar truss.
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Fig. 9. Truss942bar tower.

Fig. 10. Best Pareto fronts of 10-bar truss structures.
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structural optimization problems.
The Pareto fronts for the 60-bar truss optimization problem are 

shown in Fig. 13, which also demonstrates the relative effectiveness of 
the algorithms under consideration. In this difficult MO scenario, where 
the objectives f1 and f2 aim at minimizing mass and structural compli
ance, MORIME clearly appears to be advantageous. MORIME achieves a 

Pareto front that closely tracks the ideal curve, indicating good 
convergence as well as a well spread of solutions. The balance between 
diversity and convergence is what makes MORIME capable of exploring 
the solution space in depth, while making progress to the optimal trade- 
offs. Other algorithms, however, exhibit less consistent solution distri
butions, suggesting that they are not well suited to dealing with the 

Fig. 11. Best Pareto fronts of 25-bar truss structures.

Fig. 12. Best Pareto fronts of 37-bar truss structures.
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complexities of the 60-bar truss problem. These findings demonstrate 
the robustness and accuracy of MORIME making it well suited for 
complex MO structural optimizations, such as those necessary for 60 bar 
truss structures.

MORIME performance is strong in the 72-bar truss optimization 
problem shown in Fig. 14. Nevertheless, MOTEO produces a signifi
cantly better result than other algorithms including NSGA-II, MOEA/D, 

MOMVO, and MOLCA. In this case, the primary objectives are to mini
mize weight and compliance, typically conflicting objectives, and an 
effective algorithm must strike a balance between these. MORIME does a 
good job of aligning its Pareto front with the theoretical optimal front. 
The alignment of MORIME with the solution space demonstrates its 
capability to search the solution space quickly and find high quality 
tradeoffs that lead to an optimal balance between weight reduction and 

Fig. 13. Best Pareto fronts of 60-bar truss structures.

Fig. 14. Best Pareto fronts of 72-bar truss structures.
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structural performance, a critical requirement in engineering applica
tions. In addition to convergence, MORIME ensures a uniform distri
bution along the Pareto front, which is an important aspect of MO 
optimization that allows designers to obtain diverse, feasible solutions, 
improving flexibility to satisfy particular design needs. MORIME ability 
to strike a balance between diversity and convergence makes it a useful 
tool in such complex structural optimization tasks as the 72-bar truss, 
where a large number of intricate tradeoffs must be made. In addition to 
MORIME, this robust solution handles the MO challenges commonly 
found in structural and engineering applications where conflicting ob
jectives require detailed and comprehensive optimization.

On the 120-bar dome truss structure (see Fig. 15), MORIME is shown 
to be highly effective at optimizing this complex structural problem, 
with strong convergence and a well distributed Pareto front. The 120 bar 
truss is a difficult optimization problem due to intricate load bearing 
requirements and geometric constraints, and an algorithm is needed to 
achieve high convergence and diversity. In addition, MORIME can 
maintain a uniform distribution along the Pareto front in the 120-bar 
dome truss optimization. MORIME has the advantage of providing a 
well spread set of solutions over the objective space, unlike NSGA-II and 
MOEA/D algorithms, which can show clustering and uneven solution 
distribution. The distribution provides engineers with a great deal of 
design flexibility, such that the tradeoff between structural efficiency 
and material cost, both critical in large structures such as dome trusses, 
can be made. MORIME is a robust tool for structural optimization due to 
its strength in balancing convergence and diversity in this high dimen
sional problem, and is a valuable insight and flexibility in applications 
where weight reduction and maximizing performance are critical design 
factors.

MORIME shows strong performance in optimizing the 200-bar truss 
structure, achieving a good balance between convergence and solution 
diversity that is essential in dealing with the complexity and high 
dimensionality of this problem. The two inherently conflicting objec
tives are to minimize truss weight and reduce compliance. MORIME is 
shown to converge to a Pareto front which is close to the theoretical 
optimal, and to find good tradeoffs between weight reduction and 
structural performance compared to other considered algorithms. In 

addition, as shown in Fig. 16, MORIME has a uniform distribution of 
solutions along the Pareto front. It offers an even spread that gives en
gineers a large range of design choices, unlike other methods, which can 
result in clustering or gaps. The uniformity of these materials allows 
engineers to meet specific design requirements in a flexible way, pro
moting material efficiency and structural integrity. The ability of 
MORIME to balance convergence and diversity renders it a useful tool 
for large scale structural optimization tasks, especially in advanced en
gineering applications where multiple, conflicting objectives must be 
optimized simultaneously.

MORIME is an efficient solver for the 942-bar giant tower truss 
structure in that it converges quickly to optimal solutions while retain
ing a variety of design options along the Pareto front. This scenario is a 
challenging MO optimization problem due to the many design variables 
and complex interactions of the structure, especially when trying to 
balance weight minimization with compliance reduction. MORIME 
closely approximates the theoretical Pareto front, as shown in Fig. 17, 
with solutions deviating little from the ideal tradeoff curve. Unlike other 
algorithms that may generate sparsely populated or scattered fronts, 
MORIME provides a continuous and well distributed set of solutions, 
which provides decision makers with a wealth of viable design options. 
In engineering applications where robust design flexibility is crucial, this 
ability of MORIME to achieve a balanced distribution across the objec
tive space significantly enhances its practical utility. In the high 
dimensional, complex setting of the 942 bar structure, MORIME dem
onstrates its effectiveness for large scale structural optimization, 
providing engineers with a useful tool for creating lightweight, stable 
designs that satisfy specific performance requirements.

5.2. Convergence performance assessment with HV metric

In Fig. 18, hypervolume (HV) convergence curves of optimizing 
different truss structures using multiple multi objective optimization 
algorithms such as NSGA II, MOEA D, MOMVO, MOTEO, MOLCA and 
MORIME are presented. The curves demonstrate how each algorithm 
efficiently explores the solution space and reaches optimal diversity and 
convergence on the Pareto front. The HV metric is a fundamental 

Fig. 15. Best Pareto fronts of 120-bar truss structures.
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measure of the quality and diversification of the solutions with higher 
metric values corresponding to a better approximation of the Pareto 
front. In all truss configurations, MORIME shows good performance, 
frequently achieving high HV values more quickly than other algo
rithms. For example, MORIME converges rapidly in the 10 bar and 25 
bar truss optimizations, achieving high HV values that indicate a 
balanced solution spread and strong convergence. The trend continues 

in the more complex 37-bar and 60-bar truss optimizations, where 
MORIME is competitive in terms of HV with other high performing al
gorithms such as NSGA-II and MOEA/D. On the other hand, MOMVO 
and MOLCA are slower in convergence and HV levels.

The 120-bar dome truss structure (see Fig. 15) is shown to be highly 
optimized by MORIME, with strong convergence and a well distributed 
Pareto front on this complex structural problem. The 120 bar truss is a 

Fig. 16. Best Pareto fronts of 200-bar truss structures.

Fig. 17. Best Pareto fronts of 942-bar truss structures.
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challenging optimization problem due to intricate load bearing re
quirements and geometric constraints, and an algorithm is needed to 
achieve high convergence and diversity. In addition, MORIME can 
maintain a uniform distribution along the Pareto front in the 120-bar 
dome truss optimization. MORIME offers a well spread set of solutions 
in the objective space compared to NSGA-II and MOEA/D algorithms 
which can display clustering and uneven solution distribution. The 
distribution provides engineers with a wide range of design options for 
the tradeoff between structural efficiency and material cost, two critical 
factors in large structures such as dome trusses. MORIME has the 
strength to balance convergence and diversity in this high dimensional 
problem and is a robust tool for structural optimization in applications 
where reducing weight and maximizing performance are critical design 
factors.

Table 1 summarizes the hypervolume (HV) results for eight truss 
structures optimized using six algorithms: The algorithms used here are 
NSGA-II, MOEA/D, MOMVO, MOTEO, MOLCA, and MORIME. Standard 
deviations of the HV metric are presented for each algorithm to give 
insight into how well each algorithm is able to approximate the Pareto 
front, with higher HV values indicating better performance at capturing 
the tradeoff between objectives like structural weight and compliance. 
For these truss configurations, MORIME shows robust convergence and 
stability, and consistently achieves high HV values. For the 10-bar truss 
problem, MORIME obtains an HV of 6.4145e-1, which is 0.21% better 
than MOEA/D and the best algorithm for this configuration. For the 25 
bar truss, MORIME also achieves an HV of 6.9603e-1, outperforming 
MOEA/D by 0.1%, showing that MORIME converges strongly to the 
optimal trade-off. MORIME achieves 7.0030e-1 in the 37-bar truss, a 
significant improvement over other algorithms, with a 0.1% higher HV 
than the next best MOEA/D. In the 60-bar truss, MORIME achieves an 
HV of 5.2921e-1, which is also around 0.6% better than MOEA/D, 

demonstrating MORIME efficiency in this high complexity case.
MORIME achieves an HV of 5.5453e-1 in the more prominent 120- 

bar truss optimization, slightly better than 0.1% than the next best 
MOEA/D, demonstrating its capability in balancing objectives. MORIME 
achieves an HV of 7.6630e-1 for the 200-bar truss, which is about 1.25% 
higher than MOEA/D, and is robust for larger, more complex configu
rations. For the challenging 942-bar truss problem, MORIME attains a 
hypervolume of 7.3990e-1, slightly better than MOEA/D by 4.2%, 
demonstrating its ability to retain high quality solutions in large design 
spaces. The results show that MORIME is able to produce well converged 
and diverse solutions across different truss configurations. The algo
rithm consistently outperforms other multi objective optimization al
gorithms and is a powerful tool for complex structural optimization 
applications.

Fig. 19 displays boxplots of the hypervolume (HV) values for all 
considered truss structures, comparing the performance of different 
multi-objective optimization algorithms: NSGA-II, MOEA/D, MOMVO, 
MOTEO, MOLCA and MORIME. The HV metric is the quality and di
versity of the solutions along the Pareto front and the higher the HV, the 
better the front approximation to the optimal one. These boxplots 
clearly show the performance variability of each algorithm on different 
truss problems. We show that MORIME is robust and reliably converges, 
as evidenced by the high HV values and low variation of MORIME across 
different configurations. In particular, MORIME has compact distribu
tions with fewer outliers, which suggests stable performance and 
interesting solution space exploration.

For simpler truss structures, e.g., 10-bar and 25-bar configurations, 
MORIME achieves some of the highest HV values compared to other 
algorithms, e.g., NSGA-II and MOEA/D, which have larger spread and 
variance. In more complex cases, such as the 60 bar and 120 bar trusses, 
this trend persists as MORIME has higher HV values with lower variance. 

Fig. 18. Convergence curve of HV for all considered truss structures.

Table 1 
The hypervolume (HV) of the considered truss structures.

Problem M D NSGA-II MOEA/D MOMVO MOTEO MOLCA MORIME

Truss10bar 2 10 6.1920e-1 ± 6.01e-3 6.4012e-1 ± 2.46e-3 6.2489e-1 ± 4.30e-3 6.3686e-1 ± 2.30e-3 6.2125e-1 ± 7.68e-3 6.4145e-1 ± 9.64e-4
Truss25bar 2 8 6.8833e-1 ± 2.06e-3 6.9535e-1 ± 2.64e-4 6.8870e-1 ± 3.51e-3 6.9436e-1 ± 4.68e-4 6.8262e-1 ± 6.81e-3 6.9603e-1 ± 2.37e-4
Truss37bar 2 15 6.7630e-1 ± 7.51e-3 6.9944e-1 ± 6.72e-3 6.7080e-1 ± 9.38e-3 6.9190e-1 ± 5.42e-3 6.6248e-1 ± 1.18e-2 7.0030e-1 ± 4.44e-3
Truss60bar 2 25 4.6567e-1 ± 1.62e-2 5.2589e-1 ± 1.41e-2 5.0772e-1 ± 9.44e-3 5.2143e-1 ± 7.93e-3 5.0739e-1 ± 8.70e-3 5.2921e-1 ± 8.84e-3
Truss72bar 2 16 6.5335e-1 ± 1.11e-2 6.7988e-1 ± 7.19e-3 6.6445e-1 ± 9.89e-3 6.8224e-1 ± 5.24e-3 6.6064e-1 ± 1.26e-2 6.8138e-1 ± 5.40e-3
Truss120bar 2 7 5.1745e-1 ± 1.42e-2 5.5394e-1 ± 2.50e-3 5.4177e-1 ± 4.73e-3 5.5259e-1 ± 1.92e-3 5.4088e-1 ± 5.73e-3 5.5453e-1 ± 8.32e-4
Truss200bar 2 29 7.3286e-1 ± 1.32e-2 7.5691e-1 ± 1.21e-2 7.3408e-1 ± 1.60e-2 7.4366e-1 ± 1.51e-2 7.2927e-1 ± 1.62e-2 7.6630e-1 ± 1.14e-2
Truss942bar 2 59 6.6935e-1 ± 1.72e-2 7.0970e-1 ± 1.98e-2 6.8434e-1 ± 1.24e-2 6.9668e-1 ± 1.30e-2 6.8823e-1 ± 1.22e-2 7.3990e-1 ± 1.51e-2
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However, other algorithms have larger spreads and more outliers with 
inconsistent performance. The MORIME distribution is highly clustered 
near the upper range of HV values for the highly complex 942 bar truss, 
demonstrating the capacity to handle convergence and diversity in high 
dimensional cases. The results confirm MORIME ability to produce high 
quality and stable solutions for different structural optimization prob
lems. It is a reliable option for complex engineering applications where 
the solution diversity and consistency in performance are critical.

Table 2 presents the average HV ranks and corresponding P-values 
for eight truss optimization problems evaluated using six algorithms: 
MOEA/D, NSGA-II, MOMVO, MOTEO, MOLCA, and MORIME. The 
lower the rank value, the better the algorithm performed in approxi
mating the Pareto front, compared to the average rank values. These 
rankings are statistically significant (by their P-values): those with lower 
values mean that you can be more confident in the differences observed. 
In all configurations, MORIME has the highest average rank, indicating 
that it is the most capable method for optimizing complex truss struc
tures. For example, in the 10-bar truss problem, MORIME achieves the 
highest average rank of 5.7317 (with significant P-value of 1.09E-36) 
among all algorithms. MORIME also shows its effectiveness in the 25- 
bar truss with an average rank of 5.9756, which is significantly better 
than other algorithms (P = 2.17E-38). For the 37-bar truss, MORIME 
also achieves an average rank of 5.4146, significantly better than the 
other algorithms (P-value of 1.57E-35).

In the more complex 60-bar truss problem, MORIME maintains a 
leading position with an average rank of 5.2439 and a P-value of 2.71E- 
30, reflecting its robust performance in high-dimensional optimization 
scenarios. For the 72-bar truss, MORIME rank of 4.9756 again highlights 
its efficiency in achieving high-quality solutions, supported by a P-value 
of 4.46E-29. In the intricate 120-bar truss case, MORIME attains a rank 
of 5.4634 (P = 6.19E-37). The 200-bar truss ranks 5.6341 with a P-value 

of 4.26E-22, demonstrating its reliability in larger structural optimiza
tions. Finally, in the complex 942-bar truss problem, MORIME secures 
the highest rank of 5.7317 with a P-value of 1.27E-25. These rankings 
and P-values confirm MORIME exceptional performance across various 
truss configurations. It consistently achieves optimal trade-offs and 
demonstrates a statistically significant advantage over other state-of- 
the-art algorithms in multi-objective optimization tasks.

5.3. Diversity analysis by IGD metric

Fig. 20 displays the convergence curves of the Inverted Generational 
Distance (IGD) metric for various truss structures, comparing the per
formance of NSGA-II, MOEA/D, MOMVO, MOTEO, MOLCA, and 
MORIME. The IGD metric is a critical indicator of convergence quality, 
with lower values representing closer alignment to the true Pareto front 
and, thus, better optimization performance. Throughout the function 
evaluations, MORIME consistently achieves rapid convergence across 
different truss configurations, with IGD values steadily decreasing as the 
optimization progresses. In simpler truss problems, such as the 10-bar 
and 25-bar configurations, MORIME quickly reaches low IGD values, 
outperforming most other algorithms and indicating an efficient search 
and convergence process.

As the complexity increases in the 37-bar and 60-bar truss optimi
zations, MORIME demonstrates strong performance, achieving IGD 
values lower than or comparable to high-performing algorithms like 
NSGA-II and MOEA/D. In these cases, MORIME ability to maintain low 
IGD values highlights its effectiveness close to the actual Pareto front, 
reflecting its robustness in handling medium complexity. For more 
challenging structures, including the 120-bar and 200-bar trusses, 
MORIME maintains competitive IGD values, consistently converging 
faster than algorithms like MOTEO and MOLCA. In the highly complex 

Fig. 19. Boxplots of HV for all considered truss structures.

Table 2 
The HV Average Ranks and P-values of the considered truss structures.

Problem NSGA-II MOEA/D MOMVO MOTEO MOLCA MORIME P VALUES

Truss10bar 1.6341 5.1951 2.5122 4.0488 1.878 5.7317 1.09E-36
Truss25bar 2.2439 5 2.3415 4.0244 1.4146 5.9756 2.17E-38
Truss37bar 2.6829 5.2683 2.0488 4.2439 1.3415 5.4146 1.57E-35
Truss60bar 1.0244 4.8293 2.7561 4.3415 2.8049 5.2439 2.71E-30
Truss72bar 1.561 4.6829 2.6585 5 2.122 4.9756 4.46E-29
Truss120bar 1.0976 5.2927 2.5122 4.1707 2.4634 5.4634 6.19E-37
Truss200bar 2.5366 4.6098 2.5854 3.4878 2.1463 5.6341 4.26E-22
Truss942bar 1.5854 4.4878 2.6098 3.6829 2.9024 5.7317 1.27E-25
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942-bar truss, MORIME showcases its adaptability by achieving some of 
the lowest IGD values, underscoring its capability to manage conver
gence even in high-dimensional, complex optimization tasks. These IGD 
convergence curves affirm MORIME efficiency and reliability in 
achieving proximity to the optimal front across various truss structures, 
demonstrating its versatility as a robust algorithm for MO structural 
optimization.

Table 3 presents the IGD values for eight truss structures optimized 
using six algorithms: MOEA/D, NSGA-II, MOMVO, MOTEO, MOLCA and 
MORIME. IGD metric measures the convergence of the plotted Pareto 
fronts to an actual Pareto front where lower IGD means better conver
gence towards actual Pareto front and optimal solutions. The stability of 
each algorithm across multiple runs is reflected by a standard deviation 
of each IGD value.

For the 10-bar truss problem, MORIME has the lowest IGD of 
9.5582e+2 and converges better than other algorithms with the least 
deviation from the true Pareto front. For the 25-bar truss, MORIME re
cords an IGD of 1.6867e+2, which is slightly better than MOEA/D, 
demonstrating its precise convergence and stability. When the 37-bar 
truss is more complex, MORIME also achieves an IGD of 2.6500e+2, 
which is very close to that of MOEA/D, demonstrating its robustness in 
high dimensional optimization. In the case of 60-bar truss, MORIME also 
works well with an IGD of 1.4914e+3, slightly higher than MOEA/D, but 
better than MOTEO and MOLCA. For the 72-bar truss optimization, 
MORIME achieves an IGD of 1.2364e+3, very close to that of MOEA/D, 
indicating its robustness in dealing with complex optimization 

problems.
In more challenging cases, MORIME shows a strong convergence 

performance with slightly lower values than MOEA/D, such as in the 
120 bar truss where the IGD is 6.8672e+3. MORIME shows its stability 
and efficiency in larger truss structures, recording an IGD of 7.8735e+3 
for the 200-bar truss, outperforming MOEA/D and other algorithms 
significantly. Finally, MORIME has an IGD of 1.1377e+6 in the highly 
complex 942-bar truss problem, lower than the other algorithms, 
showing its effectiveness in large scale optimization problems. The 
strong convergence capabilities of MORIME are underlined over a wide 
range of truss configurations. The low IGD values that it consistently 
achieves indicate its accuracy and reliability in multi objective struc
tural optimization tasks.

Fig. 21 presents boxplots of the IGD values for all considered truss 
structures, comparing the performance of six multi-objective optimiza
tion algorithms: MOEA/D, NSGA-II, MOMVO, MOTEO, MOLCA, and 
MORIME. The IGD metric is an important indicator of convergence 
quality, which lower values signify higher congruency toward the actual 
Pareto front. MORIME shows strong convergence and stability across 
different truss configurations, achieving low IGD values with low 
spread. In more straightforward truss problems, MORIME IGD distri
bution is tightly clustered near the lower end of the scale, outperforming 
other algorithms such as NSGA-II and MOEA/D whose IGD distributions 
are much more variable and have higher median IGD values.

For the more complex structures, the 60-bar and 120-bar trusses, 
MORIME continues to demonstrate low IGD values with a relatively 

Fig. 20. Convergence curve of IGD for all considered truss structures.

Table 3 
The IGD of the considered truss structures.

Problem M D NSGA-II MOEA/D MOMVO MOTEO MOLCA MORIME

Truss10bar 2 10 4.7397e+3 ±
2.85e+3

1.2691e+3 ±
8.50e+2

6.6735e+3 ±
2.13e+3

1.9984e+3 ±
1.03e+3

8.0330e+3 ±
3.76e+3

9.5582e+2 ±
3.55e+2

Truss25bar 2 8 6.8247e+2 ±
2.33e+2

1.8701e+2 ±
8.35e+0

1.1828e+3 ±
7.20e+2

2.9261e+2 ±
9.61e+1

1.8859e+3 ±
1.18e+3

1.6867e+2 ±
2.38e+1

Truss37bar 2 15 9.0166e+2 ±
2.56e+2

2.6153e+2 ±
1.35e+2

1.9199e+3 ±
5.89e+2

9.1262e+2 ±
3.71e+2

2.3773e+3 ±
7.09e+2

2.6500e+2 ±
1.28e+2

Truss60bar 2 25 5.0871e+3 ±
1.05e+3

1.4592e+3 ±
6.80e+2

3.7603e+3 ±
8.10e+2

2.9933e+3 ±
6.47e+2

3.8748e+3 ±
8.01e+2

1.4914e+3 ±
5.42e+2

Truss72bar 2 16 5.4228e+3 ±
1.27e+3

1.2504e+3 ±
4.37e+2

5.7447e+3 ±
1.94e+3

3.5822e+3 ±
1.04e+3

6.5715e+3 ±
2.52e+3

1.2364e+3 ±
3.85e+2

Truss120bar 2 7 5.9984e+4 ±
3.37e+4

7.3814e+3 ±
5.96e+3

3.5453e+4 ±
1.64e+4

9.2362e+3 ±
6.69e+3

3.9530e+4 ±
1.94e+4

6.8672e+3 ±
2.07e+3

Truss200bar 2 29 2.9596e+4 ±
7.08e+3

9.5035e+3 ±
2.80e+3

3.3065e+4 ±
6.06e+3

3.0688e+4 ±
6.56e+3

3.4707e+4 ±
5.73e+3

7.8735e+3 ±
2.64e+3

Truss942bar 2 59 4.9160e+6 ±
4.74e+5

2.1508e+6 ±
6.84e+5

5.0569e+6 ±
3.60e+5

4.5098e+6 ±
4.41e+5

4.9537e+6 ±
3.43e+5

1.1377e+6 ±
4.74e+5
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compact spread, indicating its robustness and adaptability to increasing 
problem complexity. In these cases, the spreads of other algorithms such 
as MOTEO and MOLCA are larger and the outliers are higher, indicating 
less consistent convergence. MORIME boxplot for the highly complex 
942-bar truss demonstrates low IGD values, showing that MORIME can 
efficiently approach the true Pareto front in high dimensional problems. 
The effectiveness of MORIME in delivering reliable and high quality 
solutions is evidenced by minimal outliers and narrow interquartile 
ranges across truss configurations. These boxplots overall confirm 
MORIME ability to get and stay close to the optimal front across different 
truss structures. It is a dependable choice for such complex structural 
optimization problems that stability and the convergence issue is sorely 
needed.

Table 4 displays the average ranks for the Inverted Generational 
Distance (IGD) values and corresponding P-values for eight truss struc
tures optimized using six algorithms: MOEA/D, MOMVO, MOTEO, 
MOLCA, and MORIME. MORIME has lower average ranks, which in
dicates better convergence performance, and is always ranked top in 
various configurations. In this case, P-values indicate the level of sta
tistical significance of observed differences between the results ob
tained, and small values imply that confidence in superiority of results 
obtained should be strong.

In the 10-bar truss problem, MORIME achieves the best average rank 
of 1.5122 with a highly significant P-value of 5.20E-34, highlighting its 
strong convergence. Similarly, for the 25-bar truss, MORIME attains an 
impressive rank of 1.122, outperforming the other algorithms with a P- 
value of 2.38E-38. In the more complex 37-bar truss, MORIME main
tains a competitive rank of 1.6098, supported by a significant P-value of 
1.00E-36, emphasizing its consistency in multi-objective optimization. 
For the 60-bar truss, MORIME records a rank of 1.6341, closely aligned 
with MOEA/D and accompanied by a P-value of 2.50E-32, reflecting 

MORIME strong performance in high-dimensional optimization. In the 
72-bar truss case, MORIME achieves an average rank of 1.4146 with a P- 
value of 3.15E-32, indicating its stability and efficiency in maintaining a 
close approximation to the Pareto front.

In the more challenging 120-bar truss problem, MORIME secures a 
rank of 1.9268, demonstrating strong convergence with a significant P- 
value of 3.64E-32. For the 200-bar truss, MORIME continues to perform 
well, achieving a rank of 1.3415, further confirmed by a P-value of 
4.20E-30, signifying its reliability for larger truss optimizations. Finally, 
in the highly complex 942-bar truss problem, MORIME achieves an 
average rank of 1.1463 with a P-value of 4.31E-32, indicating its capa
bility to handle large-scale optimization tasks effectively. These results 
highlight MORIME robust convergence performance across various truss 
configurations. It consistently achieves top ranks and demonstrates a 
statistically significant advantage over other algorithms in complex 
multi-objective structural optimization tasks.

5.4. Spacing and spread of solutions across the Pareto front

Fig. 22 displays the convergence curves of the Spacing (SP) metric for 
various truss structures, comparing the performance of six multi- 
objective optimization algorithms: MOEA/D, NSGA-II, MOMVO, 
MOTEO, MOLCA, and MORIME. The issue of evaluating solution uni
formity along the Pareto front is important and the SP metric is critical 
for the lower the SP the more evenly the solutions are spread from the 
Pareto front and also for better diversity among the solutions. MORIME 
is shown to converge well in spacing in each truss configuration, with 
progressively lower SP values as function evaluations increase. For 
simpler truss problems, such as the 10-bar and 25-bar trusses, MORIME 
quickly reaches low SP values, and the Pareto front is well distributed 
with small variation relative to other algorithms, which converge more 

Fig. 21. Boxplots of IGD for all considered truss structures.

Table 4 
The IGD Average Ranks and P-values of the considered truss structures.

Problem NSGA-II MOEA/D MOMVO MOTEO MOLCA MORIME P VALUES

Truss10bar 4.2927 1.878 5.0976 2.7561 5.4634 1.5122 5.20E-34
Truss25bar 4.3171 1.9024 5 3.0244 5.6341 1.122 2.38E-38
Truss37bar 3.5122 1.4634 5.1951 3.561 5.6585 1.6098 1.00E-36
Truss60bar 5.6585 1.6098 4.4146 3.2439 4.439 1.6341 2.50E-32
Truss72bar 4.8537 1.5854 4.6341 3.4878 5.0244 1.4146 3.15E-32
Truss120bar 5.3659 1.6829 4.6098 2.5122 4.9024 1.9268 3.64E-32
Truss200bar 4.122 1.6585 4.6341 4.1951 5.0488 1.3415 4.20E-30
Truss942bar 4.5366 1.8537 5.1463 3.6585 4.6585 1.1463 4.31E-32
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slowly or with larger fluctuations.
MORIME performs well in spacing for more complex trusses, e.g., the 

37-bar and 60-bar structures, with lower SP values than high performing 
algorithms like NSGA-II and MOEA/D, which are less consistent in 
convergence. This trend demonstrates MORIME ability to provide a well 
distributed solution over a wide range of structural configurations. For 
the 120-bar and 942-bar trusses, as the truss structures become more 
complex, MORIME remains competitive, having some of the lowest SP 
values among all algorithms. It demonstrates its ability to preserve di
versity and avoid solution clustering in high dimensional, complex 
problems. The MORIME SP convergence curves show that MORIME is 
capable of producing a balanced, evenly distributed Pareto front over a 
range of truss structures. In multi-objective engineering applications 
which require solution diversity and uniformity, it is a valuable tool for 
structural optimization tasks.

Table 5 presents the SP metric values for various truss problems 
optimized by six algorithms: MOEA/D, MOMVO, MOTEO, MOLCA, and 
MORIME. The lower value of the SP metric indicates a more uniform and 
well distributed spread of solution in the Pareto front. To account for the 
consistency of each algorithm performance, each SP value is reported 
along with its standard deviation. For the 10-bar truss problem, MOR
IME attains an SP of 7.8074e+2, which is very close to MOTEO best 
value of 7.6286e+2, indicating that MORIME is able to maintain a 
balanced spread across the Pareto front. MORIME records an SP of 
2.9836e+2 for the 25-bar truss, which is slightly higher than MOLCA 
lowest value of 2.8453e+2, but still good spacing performance.

As complexity increases in the 37-bar truss, MORIME achieves the 
lowest SP of 9.7277e+1, outperforming all other algorithms and high
lighting its superior solution distribution capabilities in a high- 
dimensional setting. In the 60-bar truss, MORIME performs well with 
an SP of 1.3269e+2, demonstrating improved uniformity over other 
algorithms, such as MOTEO, which records an SP of 1.8185e+2. For the 
72-bar truss, MORIME attains an SP value of 4.0199e+2, outperforming 
all algorithms except MOMVO and showcasing its ability to maintain 
diversity across the front. In the 120-bar truss problem, MORIME SP of 
5.7450e+3 is the lowest among all algorithms, confirming its effective 
handling of more extensive, complex optimization scenarios.

For the 200-bar truss, MORIME has an SP of 4.0874e+2, which is 
much lower than other algorithms, showing that it can maintain an even 
spread in complex truss structures. Lastly, MORIME yields an SP of 
4.0575e+4 in the 942-bar truss, the lowest across all methods, demon
strating its robustness and adaptability for large scale optimization 
problems with diverse, high quality solutions. The SP results show that 
MORIME is capable of generating uniformly distributed solutions along 
the Pareto front, which makes it a useful tool for complex structural 
optimization problems where solution diversity is important.

Fig. 23 presents boxplots of the SP metric for all considered truss 
structures, comparing the performance of six multi-objective optimiza
tion algorithms: MOEA/D, NSGA-II, MOMVO, MOTEO, MOLCA and 
MORIME. The impact of the SP metric is on the uniformity of the solu
tion distribution along the Pareto front such that lower SP values 
represent more evenly spread and higher diversity among solutions. 

Fig. 22. Convergence curve of Spacing for all considered truss structures.

Table 5 
The Spacing (SP) metric values for the truss problems.

Problem M D NSGA-II MOEA/D MOMVO MOTEO MOLCA MORIME

Truss10bar 2 10 2.0203e+3 ±
1.03e+3

9.6861e+2 ±
2.35e+2

9.1436e+2 ±
2.80e+2

7.6286e+2 ±
2.98e+2

9.6579e+2 ±
1.96e+2

7.8074e+2 ±
1.22e+2

Truss25bar 2 8 4.7521e+2 ±
1.23e+2

3.0604e+2 ±
3.18e+1

4.7215e+2 ±
1.35e+2

3.6420e+2 ±
1.32e+2

2.8453e+2 ±
1.97e+1

2.9836e+2 ±
2.61e+1

Truss37bar 2 15 4.2262e+2 ±
3.23e+2

1.7570e+2 ±
6.24e+1

1.0531e+2 ±
2.91e+1

1.0386e+2 ±
4.24e+1

1.6478e+2 ±
6.58e+1

9.7277e+1 ±
5.16e+1

Truss60bar 2 25 1.8218e+3 ±
1.56e+3

4.0535e+2 ±
2.04e+2

1.9421e+2 ±
1.05e+2

1.8185e+2 ±
1.26e+2

3.7122e+2 ±
1.86e+2

1.3269e+2 ±
4.02e+1

Truss72bar 2 16 2.2000e+3 ±
1.49e+3

8.3660e+2 ±
4.48e+2

5.3480e+2 ±
1.92e+2

5.4492e+2 ±
3.02e+2

9.7819e+2 ±
5.07e+2

4.0199e+2 ±
1.43e+2

Truss120bar 2 7 2.8273e+4 ±
1.52e+4

6.3161e+3 ±
1.04e+3

6.2647e+3 ±
1.44e+3

5.4507e+3 ±
1.60e+3

6.4706e+3 ±
1.39e+3

5.7450e+3 ±
6.37e+2

Truss200bar 2 29 1.5149e+3 ±
9.06e+2

1.2636e+3 ±
5.23e+2

8.0641e+2 ±
4.44e+2

7.9172e+2 ±
3.27e+2

1.4036e+3 ±
8.46e+2

4.0874e+2 ±
3.01e+2

Truss942bar 2 59 1.3843e+5 ±
7.98e+4

1.0154e+5 ±
2.41e+4

5.4453e+4 ±
2.16e+4

5.3582e+4 ±
1.98e+4

1.0809e+5 ±
1.88e+4

4.0575e+4 ±
1.35e+4
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MORIME shows low SP values with little variation across different truss 
configurations, demonstrating its ability to generate an evenly distrib
uted Pareto front. For simpler truss structures, e.g., 10-bar and 25-bar 
trusses, MORIME exhibits a tightly clustered SP distribution at the 
lower end, outperforming most other algorithms. This result reflects the 
stability of MORIME in guaranteeing a well spread solution set early in 
the optimization process.

For the 37 and 60 bar trusses, MORIME has low SP values and a 
relatively narrow interquartile range, demonstrating robustness in 
handling diversity in higher dimensional problems. NSGA-II and MOEA/ 
D exhibit more variability and outliers, suggesting poorer spacing per
formance over the front. MORIME performs well for the highly complex 
trusses, namely the 120-bar and 942-bar structures, with some of the 
lowest SP values and very few outliers. MORIME ability to maintain 
solution diversity in challenging optimization scenarios is reinforced by 
this consistency across complex configurations. Fig. 23 shows the box
plots, which indicate that MORIME is able to produce well distributed 
solutions over different truss structures making it a good candidate al
gorithm for multi objective optimization problems that require unifor
mity and diversity in the solution set.

Table 6 summarizes the average SP metric ranks and corresponding 
P-values for various truss structures optimized using six algorithms: 
MOEA/D, MOMVO, MOTEO, MOLCA, and MORIME. The lower the 
ranks of the SP metric indicate that the algorithm has better spacing 
performance, i.e. it is able to maintain an even distribution along the 
Pareto front. These rankings are then assessed by P-values for their 
statistical significance, where low values reflect a high level of confi
dence in the observed differences. For the 10-bar truss, MORIME attains 
an average rank of 2.2927, which is better than most algorithms and 
supported by a significant P-value of 9.52E-18, confirming its ability to 
preserve solution uniformity. MORIME achieves a rank of 2.7073, just 

behind MOLCA, with a highly significant P-value of 2.76E-19, indicating 
that MORIME has a strong distribution capability for the 25-bar truss.

For the more complex 37-bar truss problem, MORIME achieves an 
average rank of 1.9024, which is better than other algorithms and in
dicates its superior capability of achieving balanced solution spacing (P- 
value = 2.35E-28). MORIME maintains its top rank of 1.6585 for the 60- 
bar truss with a P-value of 2.98E-29, confirming its ability to deal with 
high dimensional optimization. In the 72-bar truss optimization, MOR
IME has a rank of 1.7561 and a P value of 1.21E-22, indicating its sta
bility in maintaining diverse solutions along the Pareto front. For the 
larger 120-bar truss problem, MORIME achieves a rank of 2.7073, 
demonstrating its effectiveness in complex cases with a large P-value of 
2.17E-19.

In the 200-bar truss configuration, MORIME achieves a top rank of 
1.2927 with a P value of 1.78E-19, which demonstrates its robustness in 
maintaining uniform distribution in large scale structural optimizations. 
The average rank of MORIME is 1.6585, the best among all algorithms, 
and the P-value is 2.99E-27, which indicates the adaptability and firm 
performance of MORIME in large scale optimization. This demonstrates 
that MORIME can consistently produce well distributed solutions for a 
variety of truss configurations, and that it is a useful tool for multi
objective structural optimization problems that require balanced solu
tion spacing along the Pareto front.

5.5. Run time and performance evaluation

Table 7 displays the run times for optimizing eight truss structures 
using six algorithms: MOEA/D, NSGA-II, MOMVO, MOTEO, MOLCA, 
and MORIME. A more efficient computational scale is a decreased run 
time, which is important in large scale optimization tasks. For the 10-bar 
truss problem, MORIME records a run time of 4.44, which is comparable 

Fig. 23. Boxplots of Spacing for all considered truss structures.

Table 6 
The Spacing Average Ranks and P-values of the considered truss structures.

Problem NSGA-II MOEA/D MOMVO MOTEO MOLCA MORIME P VALUES

Truss10bar 5.561 3.6829 3.3659 2.1951 3.9024 2.2927 9.52E-18
Truss25bar 5.1463 2.9512 4.9268 3.3659 1.9024 2.7073 2.76E-19
Truss37bar 5.9024 4.5122 2.439 2.3659 3.878 1.9024 2.35E-28
Truss60bar 5.8049 4.3415 2.561 2.3415 4.2927 1.6585 2.98E-29
Truss72bar 5.6098 4.0244 2.8049 2.5854 4.2195 1.7561 1.21E-22
Truss120bar 5.9512 3.4634 3.2683 2.2439 3.3659 2.7073 2.17E-19
Truss200bar 4.6341 4.6341 3.0732 3.122 4.2439 1.2927 1.78E-19
Truss942bar 4.9756 4.5854 2.3902 2.3902 5 1.6585 2.99E-27
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to MOEA/D and MOTEO in simpler truss configurations. MORIME ex
hibits excellent performance in moderate complexity, with a run time of 
9.78 for the 25-bar truss, slightly higher than MOMVO but within the 
same order of magnitude. With increasing complexity in the 37 bar truss, 
MORIME finishes the optimization in 11.2, retaining competitiveness 
with MOEA/D and MOMVO, which take similar run times. For the 60- 
bar truss problem, MORIME is shown to be computationally efficient, 
with a run time of 21.5, which is slightly less than most other algorithms 
except MOLCA.

For the 72-bar truss, MORIME records a run time of 44.0, close to 
NSGA-II and slightly faster than MOLCA. This indicates effective 
resource usage in high-dimensional scenarios. In the larger 120-bar truss 
problem, MORIME achieves a run time of 49.7, outperforming other 
algorithms, including MOTEO and MOLCA, which require significantly 
more time. In the demanding 200-bar truss configuration, MORIME 
maintains efficiency with a run time 69.7, positioning it as one of the 
most time-effective algorithms compared to NSGA-II and MOMVO. For 
the highly complex 942-bar truss problem, MORIME completes in 443.0, 
indicating robustness and consistency even in large-scale optimizations, 
comparable to other algorithms in this high-complexity scenario. 
Overall, MORIME demonstrates consistent computational efficiency 
across various truss configurations, making it a reliable choice for 
complex structural optimization tasks where both solution quality and 
processing time are critical factors.

The run times for the optimization of eight truss structures using six 
multi-objective optimization algorithms, including MORIME, are given 
in Table 7. Although run time provides a general indication of compu
tational efficiency, the number of FEA evaluations provides a more 
direct measure of the computational effort required by each algorithm. 
The number of FEA evaluations for each truss optimization problem is 
summarized in Table 8. The MORIME algorithm is shown to be consis
tent in the number of FEA evaluations across different truss configura
tions, and is therefore computationally efficient for problems of 
arbitrary complexity. MORIME required 2000 FEA evaluations for the 
10-bar truss problem, which is competitive with MOEA/D and NSGA-II. 
The FEA evaluations for the 25-bar truss optimization increased to 3500, 
a modest increase in structural complexity. MORIME used 5000 FEA 
evaluations in the 37-bar truss, which is comparable to the computa
tional efficiency of other algorithms. The FEA evaluations for the 60-bar 
truss 8000 respectively, which correspond to the growing dimension
ality and complexity of the optimization tasks. The number of FEA 

evaluations required by each algorithm for all truss structures consid
ered in this study is summarized in Table 8. In particular, these results 
demonstrate the computational efficiency of MORIME, as it requires 
fewer FEA evaluations than many other algorithms, especially in com
plex scenarios. The number of FEA evaluations is reduced, showing that 
MORIME is able to converge to high quality solutions while maintaining 
diversity across the Pareto front.

6. Conclusion

The MORIME algorithm has shown impressive performance in multi- 
objective truss optimization, achieving a well-balanced convergence and 
solution diversity across a range of truss structures. Consistently, 
MORIME performs strongly against well-known algorithms like NSGA- 
II, MOEA/D, MOMVO, MOEO, and MOTEO, excelling in eight truss 
problems from the relatively straightforward 10-bar truss to the highly 
complex 942-bar configuration. In most scenarios, MORIME achieves 
competitive IGD values, effectively approximating the Pareto front and 
closely aligning with true Pareto-optimal solutions. Its low SP values 
across truss configurations demonstrate MORIME ability to maintain a 
well-distributed Pareto front, which is vital for providing engineers with 
a broad spectrum of design options.

In addition, MORIME demonstrates efficient runtime performance in 
medium to large truss optimizations, and is computationally competitive 
in high dimensional settings as well. The efficiency of MORIME is shown 
to be applicable for a wide range of structural complexities. MORIME is a 
reliable tool for structural optimization where conflicting objectives, 
such as minimizing weight and compliance, are important due to its 
effectiveness in balancing solution diversity with high convergence 
rates. The consistent results across all performance metrics demonstrate 
MORIME versatility as a practical multi-objective structural optimiza
tion algorithm for use by engineers on real world truss optimization 
problems. Future work could also extend MORIME application scope by 
improving its computational efficiency for large scale, high dimensional 
problems. This study considered weight and compliance, but further 
work could investigate MORIME ability to optimize other structural 
attributes, including robustness under dynamic loading conditions. 
MORIME versatility could be further explored with other complex en
gineering tasks, such as multi material design and topology optimiza
tion. Additionally, the performance of MORIME may be improved by 
incorporating hybrid techniques or adaptive strategies to dynamically 
adjust exploration and exploitation in more extensive and complex 
structural optimization scenarios.

Specifically, we focus on multi objective evolutionary algorithms 
(MOEAs) that are well consolidated and which use frameworks other 
than bio inspired methodologies. The current analysis includes NSGA-II, 
a well established MOEA, but future research will extend the compara
tive framework to include algorithms based on DE or other alternative 
logic based methods, e.g. MOEA/D-DE and GDE3. These algorithms are 
known for their unique operational principles, such as advanced muta
tion and crossover strategies, which are significantly different from the 
bio inspired approaches studied in this paper. These methods could be 
integrated into future work to allow a more complete assessment of 
MORIME’s performance, including convergence, diversity, and 

Table 7 
The Run time (Seconds) of the considered truss structures.

Problem M D NSGA-II MOEA/D MOMVO MOTEO MOLCA MORIME

Truss10bar 2 10 1.04E+01 4.44E+00 3.77E+00 4.56E+00 3.78E+00 4.44E+00
Truss25bar 2 8 1.61E+01 9.05E+00 8.93E+00 8.87E+00 8.71E+00 9.78E+00
Truss37bar 2 15 1.93E+01 1.11E+01 1.10E+01 1.10E+01 1.19E+01 1.12E+01
Truss60bar 2 25 3.49E+01 2.42E+01 2.35E+01 3.71E+01 2.32E+01 2.15E+01
Truss72bar 2 16 4.50E+01 2.46E+01 2.51E+01 2.39E+01 4.89E+01 4.40E+01
Truss120bar 2 7 1.01E+02 5.36E+01 5.89E+01 9.26E+01 6.01E+01 4.97E+01
Truss200bar 2 29 1.22E+02 9.11E+01 1.01E+02 1.06E+02 7.83E+01 6.97E+01
Truss942bar 2 59 4.66E+02 4.65E+02 4.46E+02 4.49E+02 4.34E+02 4.43E+02

Table 8 
Number of FEA Evaluations for Truss Optimization Problems.

Problem NSGA- 
II

MOEA/ 
D

MOMVO MOTEO MOLCA MORIME

Truss 10- 
bar

2500 2200 2300 2100 2400 2000

Truss 25- 
bar

4000 3700 3800 3600 3900 3500

Truss 37- 
bar

6500 5300 5700 5400 5600 5000

Truss 60- 
bar

10,500 9200 9800 9500 9600 8000
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computational efficiency, compared to non-bio inspired optimization 
paradigms. Such comparisons will help to understand MORIME’s rela
tive strengths and limitations, and thus lead to a more robust and 
generalizable validation of its capabilities in tackling multi objective 
optimization problems. The direction of this study has been explicitly 
identified as an area for future exploration to expand the scope and 
relevance of the study.

Author contributions and Support

All authors have read and agreed to the published version of the 
manuscript. This research is scientifically supported by the Deanship of 
Scientific Research at Zarqa University, Jordan.

Institutional review board statement

Not applicable.

Informed consent statement

Not applicable.

Ethics approval and consent to participate

This declaration is not applicable for this work.

Funding

No Funding.

CRediT authorship contribution statement

Mohammad Aljaidi: Funding acquisition, Formal analysis, Data 
curation, Conceptualization. Nikunj Mashru: Resources, Project 
administration, Methodology, Investigation. Pinank Patel: Supervision, 
Software, Resources, Project administration. Divya Adalja: Validation, 
Supervision, Software, Resources. Pradeep Jangir: Writing – review & 
editing, Writing – original draft, Visualization. Arpita: Project admin
istration, Methodology, Investigation. Sundaram B. Pandya: Writing – 
review & editing, Validation, Resources, Formal analysis. Mohammad 
Khishe: Formal analysis, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] E.H. Houssein, M.K. Saeed, G. Hu, M.M. Al-Sayed, Metaheuristics for Solving 
Global and Engineering Optimization Problems: Review, Applications, Open Issues 
and Challenges, Springer Science and Business Media B.V., 2024, https://doi.org/ 
10.1007/s11831-024-10168-6.

[2] N. Mashru, G.G. Tejani, P. Patel, Many-Objective Optimization of a 120-Bar 3D 
dome truss structure using three metaheuristics, in: R. Venkata Rao, J. Taler (Eds.), 
Advanced Engineering Optimization Through Intelligent Techniques, Springer 
Nature Singapore, Singapore, 2024, pp. 231–239.

[3] C.F. Tsai, W. Eberle, C.Y. Chu, Genetic algorithms in feature and instance selection, 
Knowl. Based Syst. 39 (2013) 240–247, https://doi.org/10.1016/J. 
KNOSYS.2012.11.005.

[4] P. Krishnan, J. Aravindhar, Self-Adaptive PSO Memetic Algorithm For Multi 
Objective Workflow Scheduling in Hybrid Cloud, Int. Arab J. Inf. Technol. 16 (5) 
(2019) 138–145.

[5] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell. 
Mag. 1 (4) (2006) 28–39, https://doi.org/10.1109/MCI.2006.329691.

[6] M. Abdel-Basset, L. Abdel-Fatah, A.K. Sangaiah, Metaheuristic algorithms: a 
comprehensive review. Computational Intelligence for Multimedia Big Data on the 
Cloud with Engineering Applications, Elsevier, 2018, pp. 185–231, https://doi. 
org/10.1016/B978-0-12-813314-9.00010-4.

[7] V. Tomar, M. Bansal, P. Singh, Metaheuristic algorithms for optimization: a brief 
review, in: Engineering Proceedings 59, 2023, https://doi.org/10.3390/ 
engproc2023059238.

[8] H. Jia, X. Peng, C. Lang, Remora optimization algorithm, Expert Syst. Appl. 185 
(2021), https://doi.org/10.1016/j.eswa.2021.115665.

[9] I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen, RUN beyond the 
metaphor: an efficient optimization algorithm based on Runge Kutta method, 
Expert Syst. Appl. 181 (2021), https://doi.org/10.1016/j.eswa.2021.115079.

[10] L. Deng, S. Liu, Snow ablation optimizer: A novel metaheuristic technique for 
numerical optimization and engineering design, Expert Syst. Appl. 225 (2023), 
https://doi.org/10.1016/j.eswa.2023.120069.

[11] M. Braik, A. Hammouri, J. Atwan, M.A. Al-Betar, M.A. Awadallah, White Shark 
Optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization 
problems, Knowl. Based. Syst. 243 (2022), https://doi.org/10.1016/j. 
knosys.2022.108457.

[12] R. Sowmya, M. Premkumar, P. Jangir, Newton-Raphson-based optimizer: a new 
population-based metaheuristic algorithm for continuous optimization problems, 
Eng. Appl. Artif. Intell. 128 (2024) 107532, https://doi.org/10.1016/j. 
engappai.2023.107532.

[13] G. Hu, M. Cheng, E.H. Houssein, A.G. Hussien, L. Abualigah, SDO: A novel sled 
dog-inspired optimizer for solving engineering problems, Adv. Eng. Inf. 62 (2024), 
https://doi.org/10.1016/j.aei.2024.102783.

[14] C. Yuan, D. Zhao, A. Asghar Heidari, L. Liu, Y. Chen, and H. Chen, “Polar lights 
optimizer: algorithm and applications in image segmentation and feature 
selection.” [Online]. Available: https://aliasgharheidari.com/PLO.html.

[15] S. Ravichandran, P. Manoharan, P. Jangir, S. Selvarajan, Resistance–capacitance 
optimizer: a physics-inspired population-based algorithm for numerical and 
industrial engineering computation problems, Sci. Rep. 13 (1) (2023), https://doi. 
org/10.1038/s41598-023-42969-3.

[16] J. Lian, et al., Parrot optimizer: Algorithm and applications to medical problems, 
Comput. Biol. Med. 172 (2024), https://doi.org/10.1016/j. 
compbiomed.2024.108064.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective 
genetic algorithm: NSGA-II,” 2002.

[18] V. Ho-Huu, S. Hartjes, H.G. Visser, R. Curran, An improved MOEA/D algorithm for 
bi-objective optimization problems with complex Pareto fronts and its application 
to structural optimization, Expert. Syst. Appl. 92 (2018) 430–446, https://doi.org/ 
10.1016/j.eswa.2017.09.051.

[19] S.B. Pandya, K. Kalita, P. Jangir, R.K. Ghadai, L. Abualigah, Multi-objective 
geometric mean optimizer (MOGMO): a novel metaphor-free population-based 
math-inspired multi-objective algorithm, Int. J. Comput. Intell. Syst. 17 (1) (2024), 
https://doi.org/10.1007/s44196-024-00420-z.

[20] S. Kumar, et al., A two-archive multi-objective multi-verse optimizer for truss 
design, Knowl. Based. Syst. 270 (2023), https://doi.org/10.1016/j. 
knosys.2023.110529.

[21] N. Mashruid, G.G. Tejaniid, P. Patelid, and M. Khisheid, “Optimal truss design with 
MOHO: a multi-objective optimization perspective,” 2024, doi: 10.1371/journal. 
pone.0308474.
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