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A B S T R A C T

This study presents a nonlinear dynamic analysis of functionally graded (FG) Triply Periodic Minimal Surface
(TPMS) double-curved panels under various excitation conditions. The TPMS structures, characterized by their
complex geometry and favorable strength-to-weight ratio, are increasingly used in advanced engineering ap-
plications. Using time-domain and phase-space analysis, the influence of structural parameters and excitation
frequencies on the transverse displacement and velocity responses of the FG-TPMS panels was examined. Results
reveal that modifications in the excitation frequency significantly affect the panels’ vibrational behavior, leading
to complex oscillatory patterns and nonlinear phase trajectories. This study introduces the SVM-DNN-RF algo-
rithm, a hybrid model combining Support Vector Machine (SVM), Deep Neural Network (DNN), and Random
Forest (RF) techniques to predict nonlinear dynamic behaviors from mathematically simulated datasets. By
leveraging the strengths of each model—SVM’s classification accuracy, DNN’s deep feature extraction, and RF’s
robustness—the proposed algorithm achieves high predictive accuracy and generalization in capturing complex
nonlinear dynamics. Results demonstrate that SVM-DNN-RF effectively handles nonlinear relationships and
improves predictive performance compared to standalone models. This approach offers a powerful tool for ap-
plications requiring precise dynamic analysis, such as structural engineering, physics simulations, and complex
system modeling. This complexity highlights the sensitivity of FG-TPMS panels to design and operational pa-
rameters, providing insight into optimizing these structures for improved resonance control and damping in
applications requiring lightweight yet strong materials. These findings contribute to the design of advanced
structural systems with tailored dynamic properties.

1. Introduction

Functionally graded materials (FGMs) are becoming increasingly
important in the field of engineering due to their unique properties that
offer significant advantages over conventional materials [1]. These
materials are characterized by a gradual variation in composition and
structure, which allows for tailored performance across different regions
of a component. FGMs are particularly valuable in applications that
require specific mechanical, thermal, or chemical properties in different

parts of a structure, such as in aerospace, automotive, and biomedical
engineering [2]. One of the key benefits of FGMs is their ability to
provide improved thermal resistance, making them ideal for environ-
ments with extreme temperature gradients, such as turbine blades or
heat shields [3,4]. Engineers can design functionally graded structures
that optimize the distribution of materials, combining the strengths of
each phase to achieve superior overall performance [5]. For instance, an
FGM can have a high-strength material on one side for mechanical
load-bearing and a more heat-resistant material on the other side for

* Corresponding author.
E-mail address: wangzhen@wzu.edu.cn (Z. Wang).

Contents lists available at ScienceDirect

Aerospace Science and Technology

journal homepage: www.elsevier.com/locate/aescte

https://doi.org/10.1016/j.ast.2024.109785
Received 29 August 2024; Received in revised form 13 November 2024; Accepted 27 November 2024

Aerospace Science and Technology 158 (2025) 109785 

Available online 5 December 2024 
1270-9638/© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:wangzhen@wzu.edu.cn
www.sciencedirect.com/science/journal/12709638
https://www.elsevier.com/locate/aescte
https://doi.org/10.1016/j.ast.2024.109785
https://doi.org/10.1016/j.ast.2024.109785
https://doi.org/10.1016/j.ast.2024.109785
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2024.109785&domain=pdf


thermal protection, without the need for joints or interfaces that could
fail under stress [6]. The ability to fine-tune material properties in this
way helps reduce the risk of failure and increases the efficiency of the
component [7]. Additionally, FGMs often exhibit superior wear and
corrosion resistance, reducing maintenance costs and increasing the
service life of critical parts in harsh environments [8]. The flexibility of
FGMs extends to their ability to reduce the weight of components while
maintaining high performance, which is crucial in industries such as
aerospace and automotive, where weight reduction leads to improved
fuel efficiency [9]. Functionally graded materials also enable the crea-
tion of complex geometries that are difficult to achieve with traditional
manufacturing methods [10]. Advances in additive manufacturing and
processing technologies have further enhanced the feasibility of pro-
ducing FGMs, enabling engineers to create highly customized compo-
nents with intricate material gradients [11]. By using FGMs, engineers
can achieve a balance between cost-effectiveness, performance, and
sustainability [12]. The capability to tailor properties such as electrical
conductivity, thermal expansion, and hardness makes FGMs an invalu-
able tool in designing next-generation materials for high-performance
engineering applications [13]. As the demand for innovative, efficient,
and environmentally friendly solutions continues to rise, functionally
graded structures are poised to play a central role in shaping the future
of engineering [14].

Functionally graded (FG) Triply Periodic Minimal Surface (TPMS)
structures are increasingly valuable in engineering due to their unique
combination of strength, lightweight design, and complex geometry
[15]. These structures, which feature smooth, continuous surfaces with
minimal material use, offer an excellent strength-to-weight ratio, mak-
ing them ideal for applications where both durability and low mass are
critical. Engineers are particularly drawn to FG-TPMS structures for
their ability to withstand varied mechanical loads and resist deforma-
tion, enhancing the longevity and performance of structures [16]. The
functionally graded aspect allows for tailored material properties, with
gradual variations in composition or density, enabling precise control
over stiffness, thermal resistance, and other mechanical characteristics
[17]. This adaptability is highly beneficial in industries such as aero-
space, automotive, and biomedical, where materials are exposed to
demanding operational conditions [18]. Furthermore, the complex ge-
ometry of TPMS structures supports advanced energy absorption and
damping properties, critical for vibration control [19]. Consequently,
FG-TPMS structures provide engineers with innovative solutions for

designing resilient, efficient, and customizable components across
diverse engineering applications [20].

Nonlinear dynamics play a critical role in engineering, especially in
systems where large deformations, complex material behavior, or sig-
nificant changes in loading conditions occur [21]. Unlike linear systems,
nonlinear dynamic responses are often sensitive to initial conditions,
leading to complex behaviors like chaos, bifurcations, and resonance,
which engineers must understand to ensure reliability and stability [22].
This complexity is particularly important in fields such as aerospace,
mechanical, and civil engineering, where structures and materials are
subject to unpredictable forces and environmental conditions [23].

Nonlinear dynamics provide insights into how systems respond
under extreme or variable loads, helping engineers predict potential
failure modes and optimize designs for resilience [24]. Understanding
these dynamics also allows engineers to develop advanced damping and
control mechanisms, crucial for reducing vibrations and enhancing
performance in sensitive applications [25]. Additionally, nonlinear
analysis enables the design of structures that are not only strong but also
lightweight and efficient, meeting the increasing demand for sustainable
solutions [26]. Overall, mastering nonlinear dynamics is essential for
engineers aiming to innovate and improve safety, durability, and effi-
ciency in complex systems [27]. As well as this, topology optimization of
mechanical structures involves the computational design of material
layout within a given space to maximize performance metrics like
stiffness, strength, or weight efficiency under specific constraints [28].
By optimizing the distribution of material, engineers can create inno-
vative, lightweight structures with enhanced mechanical properties
tailored to withstand applied loads while reducing material usage [29].

Temperature-dependent material properties are crucial for accurate
engineering design and performance prediction, as materials often
exhibit varying mechanical, thermal, and electrical behaviors at
different temperatures [30]. Understanding how properties such as
strength, elasticity, and conductivity change with temperature ensures
that structures and components can function reliably in extreme envi-
ronments, preventing failures due to thermal stresses [31]. Incorpo-
rating temperature-dependent properties into designs allows engineers
to optimize materials for efficiency, durability, and safety across a wide
range of operating conditions [32].

In this work, functionally graded FG-TPMS double-curved panels are
subjected to a nonlinear dynamic analysis under different excitation
circumstances. Advanced engineering applications are using TPMS
structures more and more because of their complicated geometry and
advantageous strength-to-weight ratio. The effects of stimulation fre-
quencies and structural characteristics (such as the b/a ratio) on the
transverse displacement and velocity responses of the FG-TPMS panels
were investigated using time-domain and phase-space analysis. The
vibrational behavior of the panels is shown to be greatly impacted by
changes in the b/a ratio and excitation frequency, resulting in complex
oscillatory patterns and nonlinear phase trajectories. In order to forecast
nonlinear dynamic behaviors from mathematically generated datasets,
this paper presents the SVM-DNN-RF method, a hybrid model that
combines SVM, DNN, and RF approaches. The suggested technique
achieves excellent prediction accuracy and generalization in capturing
complicated nonlinear dynamics by using the advantages of each model,
including the resilience of RF, the deep feature extraction of DNN, and
the classification accuracy of SVM. In comparison to solo models, the
results show that SVM-DNN-RF enhances predictive performance and
manages nonlinear interactions well. For applications like complex
system modeling, physics simulations, and structural engineering that
need accurate dynamic analysis, this method provides a potent tool. This
study draws attention to how sensitive FG-TPMS panels are to opera-
tional and design factors, offering guidance on how to best optimize
these structures for better damping and resonance control in applica-
tions that need robust but lightweight materials. These discoveries aid in
the development of sophisticated structural systems with specific dy-
namic characteristics.

Fig. 1. A real schematic view and geometry of the curved panel and curved
panel made of TPMSM under frequency excitation.
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2. Mathematical modeling

Fig. 1 shows a schematic of a doubly curved panel made from a
material identified as TPMSM, subjected to a time-dependent force F(t).
The geometry of the panel is defined by two radii of curvature, RX

and RY in the X and Y directions, respectively, and a thickness h. The
force q(t) acts perpendicularly to the surface, potentially inducing vi-
brations or deformations depending on the frequency of excitation. The
three-dimensional coordinate system (X ,Y ,Z ) provides orientation,

with the X and Y directions lying in the plane of the panel, and the z-
axis perpendicular to it. This illustration likely supports a study on the
dynamic response or vibrational characteristics of the curved panel
structure under varying load conditions.

We investigate the geometrically nonlinear behaviors of functionally
graded sheet-based TPMS plates in the present study. These sheet-based
structures include three forms of TPMS: I-graph and wrapped package-
graph (IWP), Primitive (P), and Gyroid (G). In general, the following
equations [15] may be used to represent implicit mathematical func-
tions that define these TPMS structures.

Primitive : ϕ(X ,Y ,Z ) = cos(ωX X ) + cos(ωY Y ) + cos(ωZ Z ),

(1a)

Gyroid : ϕ(X ,Y ,Z )

= sin(ωX X )cos(ωY Y ) + sin(ωY Y )cos(ωZ Z )

+ sin(ωZ Z )cos(ωX X ), (1b)

where ωi indicates cyclic repeats of the TPMS cells, which are specified
as follows; X , Y and Z are the spatial coordinates of an arbitrary
location.

ωi =
2πni
li

, with i = X ,Y ,Z (2)

where ni and li stand for the number of unit cells and TPMS structure
lengths along the relevant axes, respectively. The following statement
may be used to specify the architecture of sheet-based TPMS structures
[33].

Fig. 2. An illustration of TPMS through the thickness of FG-TPMS double curved panels [34].

IWP : ϕ(X ,Y ,Z ) = 2(cos(ωX X )cos(ωY Y )+ cos(ωY Y )cos(ωZ Z )+ cos(ωZ Z )cos(ωX X )) − (cos(2ωX X )+ cos(2ωY Y )+ cos(2ωZ Z )). (1c)
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− c ≤ ϕ(X ,Y ,Z ) ≤ +c, (3)

where c is the TPMS architecture control parameter. The volume of the
TPMS unit may be easily changed by changing this parameter. In this
study, we may get a uniform TPMS unit by setting the periodicity
parameter for each of the three directions to the same value, such that
ωX = ωY = ωZ = ω. ϑ = lX /nX = lY /nY = lZ /nZ is the unit size of
a TPMS architecture, as a consequence. Next, we may calculate this
uniform unit’s relative density (ρ) by

ρ =
V
ϑ3

, (4)

where V is the volume of a sheet-based unit and ϑ3 is its surrounding
cube’s volume.

2.1. Modeling of triply periodic minimal surface

In this study, we investigate three TPMS designs (Fig. 2) that pertain
to the substrate layer structures: Primitive (P), Gyroid (G), and I-graph
and Wrapped Package-graph (IWP) kinds.

Assume that the constitutive material of the shallow SS is function-
ally graded triply periodic minimal surface (FG-TPMS). Depending on
the sheet-based architecture, three TPMS types are considered including
Primitive type (P), Gyroid type (G), and I-graph and Wrapped Package-
graph type (IWP) (see Fig. 2). In this paper, the effective properties such
as the elastic modulus E(Z ), shear modulus G(Z ), and Poisson’s ratio
ν(Z ) are determined according to the previous work [15] as follows:

• For type of Primitive (P)

E(Z ) =

{
Es
(
0.317D1.2640

)
for D0 ≤ 0.25

Es
(
1.007D2.0060 − 0.007

)
for D0 > 0.25

, (5a)

G(Z ) =

{
Gs
(
0.705D1.1890

)
for D0 ≤ 0.25,

Gs
(
0.953D1.7150 + 0.047

)
for D0 > 0.25

, (5b)

ν(Z ) =

{
0.314e− 1.004D0 + 0.119 for D0 ≤ 0.55,

0.152D20 − 0.235D0 + 0.383 for D0 > 0.55
, (5c)

• For type of Gyroid (G)

E(Z ) =

{
Es
(
0.596D1.4670

)
for D0 ≤ 0.45,

Es
(
0.962D2.3510 + 0.038

)
for D0 > 0.45

, (6a)

G(Z ) =

{
Gs
(
0.777D1.5440

)
for D0 ≤ 0.45,

Gs
(
0.973D1.9820 + 0.027

)
for D0 > 0.45

, (6b)

ν(Z ) =

{
0.192e− 1.349D0 + 0.202 for D0 ≤ 0.50,

0.402D20 − 0.603D0 + 0.501 for D0 > 0.50
, (6c)

• For type of I-graph and Wrapped Package-graph (IWP)

E(Z ) =

{
Es
(
0.597D1.2250

)
for D0 ≤ 0.35,

Es
(
0.987D1.7820 + 0.013

)
for D0 > 0.35

, (7a)

G(Z ) =

{
Gs
(
0.529D1.2870

)
for D0 ≤ 0.35,

Gs
(
0.960D2.1880 + 0.040

)
for D0 > 0.35

, (7b)

ν(Z ) =

{
2.597e− 0.157D0 − 2.244 for D0 ≤ 0.13,

0.201D20 − 0.227D0 + 0.326 for D0 > 0.13
. (7c)

In the above expressions, Es, Gs, and νs indicate the elastic modulus,
shear modulus, and Poisson’s ratio of the base material, respectively,
and D0 represents the relative density and is determined by

D0 =
ρ(Z )

ρs
, (8)

in which ρs is the mass density of the base material, and ρ(Z ) is the mass
density functional grading of TPMS and depends on the porosity dis-
tribution model. Regarding the mass density functional grading of TPMS
structures, the present research considers two porosity distributions
along the thickness direction. Two porosity distribution patterns may be
explicitly specified using the following formulae [15]:

Pattern PA : ρ(Z ) = ρmin + (ρmax − ρmin)
(
1
2
+

Z

h

)nA
, (9a)

Pattern PB : ρ(Z ) = ρmin + (ρmax − ρmin)
(

1 − cos
(

πZ

h

))nB
. (9b)

in where ni denotes the pattern power index, which describes the dis-
tribution of porosity along the thickness of the panel, and ρmin and ρmax
stand for the minimum and maximum of the relative density ρ. The
power indices for these porosity patterns in this investigation may be
described as follows [35]:

nA =
ρmax − M

ρsh
M

ρsh
− ρmin

, (10a)

M
ρbh

=

∫1

0

2ρmax(1 − ρ0 + ρ0(1 − u)nB )
π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − u2

√ du, (10b)

in which ρ0 = 1 − ρmin
ρmax

and u = cos
(

πZ
h

)

. Additionally, the parameterM

denotes the mass per surface determined as follows

M =

∫h/2

− h/2

ρ(Z )dZ . (11)

The FG-TPMS plate numerical results are shown in this section. The
basis material used in all of the following is Aluminum (Al), which has
the following characteristics: density ρs = 2702 [Kg /m3], Young’s
modulus Es = 70 [GPa], and Poisson’s ratio νs = 0.3. Since TPMSs are
made of a single solid material, it is well known that their thermal
expansion coefficient is equal to the material’s [36]. Based on Eq. (10),
the values of the relevant parameters for these circumstances are
detailed in Table 1.

3. Mathematical formulations

3.1. Displacement field of a sinusoidal shear deformation theory (SSDT)

Four independent variables are used in the research to develop the
SSDT’s novel sinusoidal shear deformation theory: u(X ,Y ,Z , t),
v(X ,Y ,Z , t), w(X ,Y ,Z , t) represent the shell’s displacement in the
X ,Y ,Z directions. The displacement field of the shell may be
expressed mathematically as follows:

Table 1
Six density distribution cases with the same average value of 0.35.

Pattern Case ρmin ρmax nA or nB

A A1 0.20 0.5 1.0
A2 0.20 0.8 3.0
A3 0.25 1.0 6.5

B B1 0.20 0.5 0.561
B2 0.20 0.8 1.757
B3 0.25 1.0 3.943
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u(X ,Y ,Z , t) = u0(X ,Y , t) − Z
∂w0
∂X + T (Z )

(
∂Y

∂X +
∂w0
∂X

)

, (12a)

v(X ,Y ,Z , t) = v0(X ,Y , t) − Z
∂w0
∂Y + T (Z )

(
∂Y

∂Y +
∂w0
∂Y

)

, (12b)

w(X ,Y ,Z , t) = w0(X ,Y , t). (21c)

where u0(X ,Y , t), v0(X ,Y , t), w0(X ,Y , t) represent the displacement
in middle surface, and Y(X ,Y , t) represents the normal transverse ro-

tations atZ = 0
(

∂u
∂Z |Z =0 = ∂Y

∂X , ∂v
∂Z |Z =0 = ∂Y

∂Y

)

. The displacement field is

chosen to satisfy the stress-free boundary conditions on the bottom and

top surfaces of the shell
(

σX Z |Z =±h/2 = σX Z |Z =±h/2 = 0
)
. In this

study, T (Z ) = − h
π cos

(
πZ
h +π

2

)

is nonlinear shear function that can be

obtained by two conditions for displacement field equaled to T (Z )|Z =0

= 0, dT (Z )

dZ |Z =0 = 1 and dT (Z )

dZ |Z =±h/2 = 0.

3.2. Constitutive relations

Von Kármán’s geometric nonlinearity of doubly curved shallow
shells is taken into consideration while defining the displacement–strain
relationship [37]:

⎧
⎨

⎩

E X

E Y

γX Y

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂X −

w

RX

+
1
2

(
∂w
∂X

)2

∂v
∂Y −

w

RY

+
1
2

(
∂w

∂Y

)2

∂u
∂Y +

∂v
∂X +

∂w
∂X

∂w
∂Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

{
γX Z

γY Z

}

=

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂Z +

∂w
∂X

∂v
∂Z +

∂w
∂Y

⎫
⎪⎪⎬

⎪⎪⎭

.

(13)

Substituting Eqs. (12) in Eq. (13) yields:

E = E
0
+ Z k1 + T (Z )k3, (14a)

γ = γ0 + g(Z )k2. (14b)

where

E
0
=

⎧
⎪⎪⎨

⎪⎪⎩

E
0
X

E
0
Y

γ0X Y

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u0
∂X −

w0

RX

+
1
2

(
∂w0
∂X

)2

∂v0
∂Y −

w0

RY

+
1
2

(
∂w0
∂Y

)2

∂u0
∂Y +

∂v0
∂X +

∂w0
∂X

∂w0
∂Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, γ0 =

{
γ0X Z

γ0Y Z

}

=

⎧
⎪⎪⎨

⎪⎪⎩

∂Y

∂X +
∂w0
∂X

∂Y

∂Y +
∂w0
∂Y

⎫
⎪⎪⎬

⎪⎪⎭

, (15a)

k1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k1X
k1Y
k1X Y

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∂2w0
∂X 2

−
∂2w0
∂Y 2

− 2
∂2w0

∂X ∂Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, k2 =

{
k2X Z

k2Y Z

}

=

⎧
⎪⎪⎨

⎪⎪⎩

∂Y

∂X +
∂w0
∂X

∂Y

∂Y +
∂w0
∂Y

⎫
⎪⎪⎬

⎪⎪⎭

, g(Z ) =
dT (Z )

dZ
− 1, (15b)

k3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k3X
k3Y
k3X Y

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2Y

∂X 2 +
∂2w0
∂X 2

∂2Y

∂Y 2 +
∂2w0
∂Y 2

2
∂2Y

∂X ∂Y + 2
∂2w0

∂X ∂Y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (15c)

The constitutive relations of the shell are given by:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σX

σY

σX Y

σY Z

σX Z

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M11 M12 0 0 0
M12 M22 0 0 0
0 0 M66 0 0
0 0 0 M44 0
0 0 0 0 M55

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E X

E Y

γX Y

γY Z

γX Z

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (16)

where

M11 =
E(Z )

1 − (v(Z ))
2, M12 =

v(Z )E(Z )

1 − (v(Z ))
2, M22 =

E(Z )

1 − (v(Z ))
2, (17a)

M44 = M55 = M66 = G(Z ). (17b)

3.3. Equations of motion

Hamilton’s principle may be used to develop the equations of motion
for the new sinusoidal deformation shear theory. The following is the
definition of the virtual strain energy:

δU =

∫

A

∫
h
2

−
h
2

(σX δE X + σY δE Y + σX Y δγX Y + σX Z δγX Z + σY Z δγY Z )

dZ dA.
(18)

Substituting Eq. (13) in Eq. (18) yields:

δU =

∫

A

∫
h
2

−
h
2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σX

(
δE 0

X + Zδk1X + T(Z)δk3X
)
+ σY

(
δE 0

Y + Zδk1Y + T(Z)δk3Y
)

+σX Y

(
δγ0X Y + Zδk1X Y + T(Z)δk3X Y

)
+ σX Z

(
δγ0X Z + g(Z)δk2X Z

)

+σY Z

(
δγ0Y Z + g(Z)δk2Y Z

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

∫

A

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
nX δE0X + mX δk1X + pX δk3X

)
+
(
nY δE0Y + mY δk1Y + pY δk3Y

)

+
(
nX Y δγ0X Y + mX Y δk1X Y + pX Y δk3X Y

)

+
(
qX Z δγ0X Z + kX Z δk2X Z

)
+
(
qY Z δγ0Y Z + kY Z δk2Y Z

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

dA. (19)
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where

(ni,mi,pi) =

∫
h
2

−
h
2

σi(1,Z ,T (Z ))dZ , {i=X ,Y ,X Y } (20a)

(qi,ki) =

∫
h
2

−
h
2

σi(1, g(Z ))dZ , {j=X Z ,Y Z } (20b)

Substituting Eqs. (15a), (15b), (15c) and (16) in Eqs. (20a), and (20b)
leads to:
⎧
⎨

⎩

n
m
p

⎫
⎬

⎭
=

⎡

⎣
[A] [B] [D]

[B] [C] [E]

[D] [E] [G]

⎤

⎦

⎧
⎨

⎩

E
0

k1
k3

⎫
⎬

⎭
, (21a)

{
q
k

}

=

[
[As] [Cs]

[Cs] [Es]

]{
γ0
k2
}

, (21b)

where

[A] =

⎡

⎣
A11 A12 0
A12 A22 0
0 0 A66

⎤

⎦, [B] =

⎡

⎣
B11 B12 0
B12 B22 0
0 0 B66

⎤

⎦, [C]

=

⎡

⎣
C11 C12 0
C12 C22 0
0 0 C66

⎤

⎦, (22a)

[D] =

⎡

⎣
D11 D12 0
D12 D22 0
0 0 D66

⎤

⎦, [E] =

⎡

⎣
E11 E12 0
E12 E22 0
0 0 E66

⎤

⎦, [G]

=

⎡

⎣
G11 G12 0
G12 G22 0
0 0 G66

⎤

⎦, (22b)

[As] =

[
A44 0
0 A55

]

, [Cs] =

[
C44 0
0 C55

]

, [Es] =

[
E44 0
0 E55

]

, (22c)

(
Aij,Bij,Cij,Dij,Eij,Gij

)
=

∫
h
2

−
h
2

qij
(
1,Z ,Z 2,T (Z ),Z T (Z ),T 2(Z )

)

dZ , (i, j=1to6),
(22d)

(
Asij,Csij,Esij

)
=

∫
h
2

−
h
2

qij
(
1, g(Z ), g2(Z )

)
dZ , (ij= 44,55). (22e)

The virtual work done by applied forces is determined by:

δV = −

∫

A

(q(t)δw0)dA, (23)

where q(t) represents the external force. Also, we have q(t) = q0sin(Ωt)
or q(t) = q0sin(Ωt), in which q0, and Ω, shows the intensity load, and
excitation frequency of the system.

The virtual kinetic energy is given by:

where mass inertias are defined by:

{L 0,L 1,L 2,J1,J2,J3}=
∫
h
2

−
h
2

ρ(Z )
{
1,Z ,Z 2,T (Z ),Z T (Z ),T 2

(Z )
}

dZ .

(25)

Hamilton’s principle can be stated in analytical form as:

∫T

0

(δU+ δV − δK)dt = 0, (26)

Replacing Eqs. (19), (23), and (24) in Eq. (26) and integrating by
parts obtain the following Euler–Lagrange equations:

δu0 : nX ,X + nX Y ,Y = L 0ü
¨
0 + (J1 − L 1)

∂ẅ¨0
∂X + J1

∂Ÿ¨

∂X , (27a)

δK =

∫

A

∫ h
2

−
h
2

ρ(Z )(u̇δu̇ + v̇δv̇ + ẇδẇ)dZ dA =

=

∫

A

{

L 0(u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0) − L 1

(

u̇0
∂δẇ0
∂X +

∂ẇ0
∂X δu̇0 + v̇0

∂δẇ0
∂Y +

∂ẇ0
∂Y δv̇0

)

+ L 2

(
∂ẇ0
∂X

∂δẇ0
∂X +

∂ẇ0
∂Y

∂δẇ0
∂Y

)

+J1

⎛

⎜
⎜
⎜
⎝

u̇0

(
∂δẎ

∂X +
∂δẇ0
∂X

)

+ δu̇0
(

∂Ẏ

∂X +
∂ẇ0
∂X

)

+v̇0

(
∂δẎ

∂Y +
∂δẇ0
∂Y

)

+ δv̇0
(

∂Ẏ

∂Y +
∂ẇ0
∂Y

)

⎞

⎟
⎟
⎟
⎠

− J2

⎛

⎜
⎜
⎜
⎝

∂δẇ0
∂X

(
∂Ẏ

∂X +
∂ẇ0
∂X

)

+
∂ẇ0
∂X

(
∂δẎ

∂X +
∂δẇ0
∂X

)

+
∂ẇ0
∂Y

(
∂δẎ

∂Y +
∂δẇ0
∂Y

)

+
∂δẇ0
∂Y

(
∂Ẏ

∂Y +
∂ẇ0
∂Y

)

⎞

⎟
⎟
⎟
⎠

+J3
((

∂δẎ

∂X +
∂δẇ0
∂X

)(
∂Ẏ

∂X +
∂ẇ0
∂X

)

+

(
∂Ẏ

∂Y +
∂ẇ0
∂Y

)(
∂δẎ

∂Y +
∂δẇ0
∂Y

))}

dA,

(24)
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δv0 : nY ,Y + nX Y ,X = L 0 v̈
¨
0 + (J1 − L 1)

∂ẅ¨0
∂Y + J1

∂Ÿ¨

∂Y , (27b)

δY :
(
pX ,X X +2pX Y ,X Y +pY ,Y Y

)

−
(
qX Z ,X +qY Z ,Y +kX Z ,X +kY Z ,Y

)

= J1

(
∂v̈¨0
∂Y +

∂ü¨0
∂X

)

+ (J3 − J2)

⎛

⎝∂2ẅ¨0
∂X 2+

∂2ẅ¨0
∂Y 2

⎞

⎠+ J3

(
∂2Ÿ¨

∂X 2 +
∂2Ÿ¨

∂Y 2

)

.

(27d)

Applying a stress function T (X ,Y , t) to the force resultants:

nX =
∂2T
∂Y 2, nY =

∂2T
∂X 2, nX Y = −

∂2T
∂X ∂Y . (28)

The in-plane strains should be compatible with the following con-
dition [37]:

∂2E 0
X

∂Y 2 +
∂2E 0

Y

∂X 2 −
∂2γ0X Y

∂X ∂Y =

(
∂2w0

∂X ∂Y

)2

−
∂2w0
∂X 2

∂2w0
∂Y 2 −

1
RX

∂2w0
∂Y 2

−
1
RY

∂2w0
∂X 2. (29)

By substituting Airy’s stress function in Eq. (28) in Eq. (21a) to obtain
in-plane strains as a function of T (X ,Y , t) variable, the results are
satisfied by the geometrical compatibility Eq. (29), as it is rewritten:

H11
∂4T
∂X 4 + H12

∂4T
∂Y 4 + H13

∂4T
∂X 2∂Y 2 + H14

∂4w0
∂X 4 + H15

∂4w0
∂Y 4

+ H16
∂4w0

∂X 2∂Y 2 + H17
∂4Y

∂X 4 + H18
∂4Y

∂Y 4 + H19
∂4Y

∂X 2∂Y 2

=

(
∂2w0

∂X ∂Y

)2

−
∂2w0
∂X 2

∂2w0
∂Y 2 −

1
RX

∂2w0
∂Y 2 −

1
RY

∂2w0
∂X 2, (30)

where

H11 =
A11

A11A22 − A
2
12

,H12 =
A22

A11A22 − A
2
12

,H13 =
1

A66
−

2A12

A11A22 − A
2
12

,

(31a)

H14 =
A11B12 − A12B11 + A12D11 − A11D12

A11A22 − A
2
12

,H15

=
A22B12 − A12B22 + A12D22 − A22D12

A11A22 − A
2
12

, (31b)

H16 =
A22B11 − 2A12B12 + 2A12D12 − A11D22 + A11B22 − A22D11

A11A22 − A
2
12

−
2B66

A66
+
2D66

A66
,

(31c)

H17 =
A12D11 − A11D12

A11A22 − A
2
12

,H18 =
A12D22 − A22D12

A11A22 − A
2
12

, H19

=
2A12D12 − A11D22 − A22D11

A11A22 − A
2
12

+
2D66

A66
, (31d)

Substitution of Eq. (28) in Eqs. (27a), (27b) leads to:

∂2u0
∂t2 =

(L 1 − J1)
L 0

∂ẅ¨0
∂X −

J1
L 0

∂Ÿ¨

∂X , (32a)

∂2v0
∂t2 =

(L 1 − J1)
L 0

∂ẅ¨0
∂Y −

J1
L 0

∂Ÿ¨

∂Y . (32b)

Introducing the stress function in Eqs. (28), (32a), (32b) in Eqs.
(27c), (27d) gives as:

δw0 :
(

nX

RX

+
nY

RY

)

+
(
mX ,X X + mY ,Y Y + 2mX Y ,X Y

)
−
(
pX ,X X + pY ,Y Y + 2pX Y ,X Y

)
+
(
qX Z ,X + qY Z ,Y + kX Z ,X + kY Z ,Y

)

+
∂

∂X

(

nX

∂w0
∂X + nX Y

∂w0
∂Y

)

+
∂

∂Y

(

nY

∂w0
∂Y + nX Y

∂w0
∂X

)

+ q = L 0ẅ0 + L 1

(
∂ü0
∂X +

∂v̈0
∂Y

)

− L 2

⎛

⎝∂2ẅ0
∂X 2 +

∂2ẅ0
∂Y 2

⎞

⎠

− J1

(
∂ü0
∂X +

∂v̈0
∂Y

)

+ J2

⎛

⎝2
∂2ẅ0
∂X 2 + 2

∂2ẅ0
∂Y 2 +

∂2Ÿ

∂Y 2 +
∂2Ÿ

∂X 2

⎞

⎠ − J3

⎛

⎝∂2ẅ0
∂X 2 +

∂2ẅ0
∂Y 2 +

∂2Ÿ

∂X 2 +
∂2Ÿ

∂Y 2

⎞

⎠

(27c)

H17
∂4T
∂X 4 + H21

∂4T
∂Y 4 + H22

∂4T
∂X 2∂Y 2 + H23

∂4w0
∂X 4 + H24

∂4w0
∂Y 4 + H25

∂4w0
∂X 2∂Y 2 + H26

∂4Y

∂X 4 + H27
∂4Y

∂Y 4 + H28
∂4Y

∂X 2∂Y 2

+H29
∂2Y

∂X 2 + H30
∂2Y

∂Y 2 + H29
∂2w0
∂X 2 + H30

∂2w0
∂Y 2

(
∂2w0
∂Y 2 +

1
RY

)
∂2T
∂X 2 − 2

∂2T
∂X ∂Y

∂2w
∂X ∂Y +

(
∂2w0
∂X 2 +

1
RX

)
∂2T
∂Y 2 + q = L 0ẅ0

+L 1

(
∂ü0
∂X +

∂v̈0
∂Y

)

− L 2

⎛

⎝∂2ẅ0
∂X 2 +

∂2ẅ0
∂Y 2

⎞

⎠ − J1

(
∂ü0
∂X +

∂v̈0
∂Y

)

+ J2

⎛

⎝2
∂2ẅ0
∂X 2 + 2

∂2ẅ0
∂Y 2 +

∂2Ÿ

∂Y 2 +
∂2Ÿ

∂X 2

⎞

⎠

− J3

⎛

⎝∂2ẅ0
∂X 2 +

∂2ẅ0
∂Y 2 +

∂2Ÿ

∂X 2 +
∂2Ÿ

∂Y 2

⎞

⎠

(33a)
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− H17
∂4T
∂X 4 − H18

∂4T
∂Y 4 − H19

∂4T
∂X 2∂Y 2 + H31

∂4w0
∂X 4 + H32

∂4w0
∂Y 4

+ H33
∂4w0

∂X 2∂Y 2 + H34
∂4Y

∂X 4 + H35
∂4Y

∂Y 4 + H36
∂4Y

∂X 2∂Y 2 + H37
∂2w0
∂X 2

+ H38
∂2w0
∂Y 2 + H37

∂2Y

∂X 2 + H38
∂2Y

∂Y 2

= J1

(
∂v̈¨0
∂Y +

∂ü¨0
∂X

)

+ (J3 − J2)

⎛

⎝∂2ẅ¨0
∂X 2+

∂2ẅ¨0
∂Y 2

⎞

⎠+ J3

(
∂2Ÿ¨

∂X 2 +
∂2Ÿ¨

∂Y 2

)

,

(33b)

where Hij(i= 2to3, j= 0to9) are given in Eqs. (34a)-(34p).

H21 =
A22B12 − A12B22 + A12D22 − A22D12

A11A22 − A
2
12

, (34a)

H22 =
A11B22 − A11D22 − A12B12 + 2A12D12 − A22D11

A11A22 − A
2
12

−
2B66

A66

+
2D66

A66
, (34b)

H23 = E11 − G11

−

(
A11B12D12 − A11D

2
12 − A12B11D12 − A12B12D11

+2A12D11D12 + A22B11D11 − A22D
2
11

)

A11A22 − A
2
12

, (34c)

H26 =
A11D

2
12 − 2A12D11D12 + A22D

2
11

A11A22 − A
2
12

− G11, (34f)

H24 = −

⎛

⎜
⎜
⎝

A11A22C22 − 2A11A22E22 + A11A22G22 − A11B
2
22 + 2A11B22D22

− A11D222 − A
2
12C22 + 2A

2
12E22 − A

2
12G22 + 2A12B12B22 − 2A12B12D22

− 2A12B22D12 + 2A12D12D22 − A22B
2
12 + 2A22B12D12 − A22D

2
12

⎞

⎟
⎟
⎠

A11A22 − A
2
12

, (34d)

H25 =

⎛

⎜
⎜
⎜
⎜
⎝

+A11B12B22 − A11B12D22 − 2A11B22D12 + 2A11D12D22 − A12B11B22

+A12B11D22 − A12B
2
12 + 3A12B12D12 + 2A12B22D11 − 2A12D11D22

− 2A12D
2
12 + A22B11B12 − A22B11D12 − 2A22B12D11 + 2A22D11D12

⎞

⎟
⎟
⎟
⎟
⎠

A11A22 − A
2
12

+4
(B66 − D66)

2

A66
− 4C66 − 4G66 + 3E12 + 8E66 − 2G12 − C12

, (34e)

H27 =

(
A11A22E22 − A11A22G22 − A11B22D22 + A11D

2
22 − A

2
12E22 + A

2
12G22

+A12B12D22 + A12B22D12 − 2A12D12D22 − A22B12D12 + A22D
2
12

)

A11A22 − A
2
12

, (34 g)
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H28 = −

⎛

⎝
A11B22D12 − 2A11D12D22 − A12B12D12 − A12B22D11

+2A12D11D22 + 2A12D
2
12 + A22B12D11 − 2A22D11D12

⎞

⎠

A11A22 − A
2
12

− 4
D66(B66 − D66)

A66
− 4G66 − 2G12 + 4E66 + E12

,

(34h)

H29 = A44 + E44 + 2C44,H30 = E55 + C55, (34i)

H34 =
A11A22G11 − A11D

2
12 − A

2
12G11 + 2A12D11D12 − A22D

2
11

A11A22 − A
2
12

,

(34m)

H35 =
A11A22G22 − A11D

2
22 − A

2
12G22 + 2A12D11D22 − A22D

2
11

A11A22 − A
2
12

,

(34n)

H37 = − 2C44 − E44 − A44,H38 = − E55 − C55. (34p)

3.4. Solutions

The Galerkin method, a numerical technique used to discover solu-
tions for partial differential equations (the motion equations) together
with SSSS BCs, may be used to determine the approximate solution for

double-curved shallow shells. Using this method, a suitable collection of
basic functions is chosen, and coefficients are then found in order to
describe the answer as a linear combination of these basic functions. The
partial differential equation is transformed into an algebraic system of
equations as a consequence of this procedure. The boundary condition
can be shown as follows:

w0 = v0 = w ,Y = Y,Y = nX Y = 0,nX = nX 0 at X = 0, a
w0 = u0 = w ,X = Y,X = nX Y = 0,nY = nY 0 at Y = 0, b (35)

The approximate solution of the double curved shallow shells satis-
fied SSSS can be sought as:

u0(X ,Y , t) = U (t)cos(λmX )sin(δnY ), (36)

v0(X ,Y , t) = V (t)sin(λmX )cos(δnY ),

H31 = −

(
A11A22E11 − A11A22G11 − A11B12D12 + A11D

2
12 − A

2
12E11 + A

2
12G11

+A12B11D12 + A12B12D11 − 2A12D11D12 − A22B11D11 + A22D
2
11

)

A11A22 − A
2
12

, (34j)

H32 = −

(
A11A22E22 − A11A22G22 − A11B22D22 + A11D

2
22 − A

2
12E22 + A

2
12G22

+A12B12D22 + A12B22D12 − 2A12D12D22 − A22B12D12 + A22D
2
12

)

A11A22 − A
2
12

, (34k)

H33 = −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2A11A22A66E12 + 4A11A22A66E66 − 2A11A22A66G12 − 4A11A22A66G66

+4A11A22D
2
66 − 4A11A22B66D66 − A11A66B12D22 − A11A66B22D12

+2A11A66D12D22 − 2A
2
12A66E12 − 4A

2
12A66E66 + 2A

2
12A66G12 + 4A

2
12A66G66

+4A
2
12B66D66 − 4A

2
12D

2
66 + A12A66B11D22 + 2A12A66B12D12 + A12A66B22D11

− 2A12A66D11D22 − 2A12A66D
2
12 − A22A66B11D12 − A22A66B12D11 + 2A22A66D11D12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A66
(
A11A22 − A

2
12

) , (34l)

H36 =

2

(
A11A22A66G12 + 2A11A22A66G66 − 2A11A22D

2
66 − A11A66D12D22 − A

2
12A66G12

− 2A
2
12A66G66 + 2A

2
12D

2
66 + A12A66D11D22 + A12A66D

2
12 − A22A66D11D12

)

(
A11A22 − A

2
12
)
A66

, (34o)
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w(X ,Y , t) = W (t)sin(λmX )sin(δnY ),

Y(X ,Y , t) = L(t)sin(λmX )sin(δnY ),

in which λm = mπ/a, δn = nπ/b, and U (t), V (t), W (t),L(t) are time-
dependent displacement and rotation amplitudes, respectively. The
stress function T (X ,Y , t) replaces the force and moment components
in the equations of motion as a variable in the stress function technique.
Satisfying the relevant BCs is necessary to determine the solution for
T (X , Y , t). The geometrical compatibility equation in Eq. (29),
moreover, determines the coefficients Fi in Eq. (37).

T (X ,Y , t) = F1cos2λmX + F2cos2δnY + F3sinλmX sinδnY

+
1
2

nX oY
2 +

1
2

nY oX
2, (37)

in which nX o and nY o represent the axial pre-stress along the X and Y

axes, respectively.

F1 =
1
32

δ2n
λ2mH11

W (t)2, F2 =
1
32

λ2m
δ2nH12

W (t)2, F3 = F31W (t) + F32L(t),

(38a)

F31 = −

(
H14λ4m + H15δ4n + H16δ2nλ2m

)
RX RY − λ2mRX − δ2nRY

(
H11λ4m + H12δ4n + H13λ2mδ2n

)
RX RY

, (38b)

F32 = −
H17λ4m + H18δ4n + H19δ2nλ2m
H11λ4m + H12δ4n + H13λ2mδ2n

. (38c)

To get results, substitute solutions in Eqs. (36), (37) that correspond
to SSSS BCs in Eqs. (33a), and (33b). Then, use the Galerkin method:

(
G
1
1+G

11
1 nX 0 +G

12
1 nY 0

)
W (t) + G

2
1W (t)2 + G

3
1W (t)3 + G

4
1L(t)

+ G
5
1W (t)L(t) + G

6
1

(
nX 0

RX

+
nY 0

RY

+ q
)

= J11
∂2W (t)

∂t2 + J21
∂2L(t)

∂t2 ,

(39a)

G
1
2W (t) + G

2
2W (t)2 + G

3
2L(t) = J12

∂2W (t)
∂t2 + J22

∂2L(t)
∂t2 . (39b)

where G
j
i(i= 1to2, j= 1to12); Jji(i= 1to2, j= 1to2) for three cases of

SSSS BCs are given in Eqs. (40a)-(40l).

G
1
1 =

(
F31m4π4H17b4+n4π4F31H21a4+F31H22m2π4n2b2a2+π4H23m4b4
+n4π4H24a4+n2π4H25m2b2a2 − π2H29m2b4a2 − n2π2H30b2a4

)

4b3a3

−
1
4
bak1+

(
− π2a4b2n2 − π2a2b4m2

)
k2

4b3a3
−

π2F31m2b
4aRY

−
F31n2π2a
4bRX

,

(40a)

G
11
1 = −

m2π2b
4a

, G
12
1 = −

n2π2a
4b

, (40b)

G
2
1 =

1
6

{
16F31H11H12π2m2n2 − 4H11H21π2m2n2 − 4H12H17π2m2n2

baH11H12nm

+
an

bH11mRY

+
bm

aH12nRX

}

,

(40c)

Fig. 3. Comparison between the present study and Ref. [40] of the FG-GPLRC plate with q(t) = 2000sin(450t), GPL − UD,W GPL = 0.3 [wt%], a /h = 20, and b = a.
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G
3
1 = −

1
64

π4
(
H11b4m4 + H12a4n4

)

b3a3H11H12
, G

5
1 =

8
3
F32mnπ2

ab
, G

6
1 =

4ab
mnπ2,

(40d)

G
2
2 =

2
3

π2mn(H11H18 + H12H17)

abH12H11
, (40 g)

J21 = −
1
4

π2
(

L 0J2a2n2 + L 0J2b2m2 − L 0J3a2n2 − L 0J3b2m2

− L 1J1a2n2 − L 1J1b2m2 + J21a
2n2 + J21b

2m2

)

baL 0
, (40j)

J12 =
1
4

π2
(

L 0J2a2n2 + L 0J2b2m2 − L 0J3a2n2 − L 0J3b2m2

− L 1J1a2n2 − L 1J1b2m2 + J21a
2n2 + J21b

2m2

)

abL 0
, (40k)

J22 = −
1
4

π2
(
L 0J3a2n2 + L 0J3b2m2 − J21a2n2 − J21b2m2

)

abL 0
. (40l)

4. Nonlinear dynamic response analysis

The fourth-order Runge–Kutta technique may be used to solve a se-
ries of second-order nonlinear differential equations in order to deter-
mine the nonlinear dynamic response:

J11
∂2W (t)

∂t2 + J21
∂2L(t)

∂t2 =
(
G
1
1 +G

11
1 nX 0+G

11
1 nY 0

)
W (t) + G

2
1W (t)2

+ G
3
1W (t)3 + G

4
1L(t) + G

5
1W (t)L(t)

+ G
6
1

(
nX 0

RX

+
nY 0

RY

+ q(t)
)

,

(41a)

J12
∂2W (t)

∂t2 + J22
∂2L(t)

∂t2 = G
1
2W (t) + G

2
2W (t)2 + G

3
2L(t). (41b)

These equations could be solved by using the fourth – order Runge –
Kutta method with the initial conditions are chosen as W (0) = 0,
L(0) = 0 and dW

dt (0) = 0, dL
dt (0) = 0.

5. An introduction on SVM-DNN-RF algorithm to predict
nonlinear dynamic information of the composite structures using
appropriate dataset of mathematics simulation

Machine learning (ML) is a field of study in artificial intelligence
concerned with the development and study of statistical algorithms that
can learn from data and generalize to unseen data, and thus perform

G
4
1 =

π2
(
F32H17π2b4m4 + F32H21π2a4n4 + F32H22π2a2b2m2n2 + H26π2b4m4

+H27π2a4n4 + H28π2a2b2m2n2 − H29a2b4m2 − H30a4b2n2
)

4b3a3
−

π2F32m2b
4aRY

−
π2n2F32a
4bRX

, (40e)

G
1
2 = −

1
4

π2
(
F31H17π2b4m4 + F31H18π2a4n4 + F31H19π2a2b2m2n2 − H31π2b4m4

− H32π2a4n4 − H33π2a2b2m2n2 + H37m2b4a2 + n2H38b2a4
)

a3b3
, (40f)

G
3
2 = −

1
4

π2
(
F32H17π2b4m4 + F32H18π2a4n4 + F32H19π2a2b2m2n2 − H34π2b4m4

− H35π2a4n4 − H36π2a2b2m2n2 + H37a2b4m2 + H38a4b2n2
)

a3b3
, (40h)

J11 =
1
4

⎛

⎜
⎜
⎜
⎝

L 0L 2π2a2n2 + L 0L 2π2b2m2 − 2L 0J2π2a2n2 − 2L 0J2π2b2m2

+L 0J3π2a2n2 + L 0J3π2b2m2 − L
2
1π2a2n2 − L

2
1π2b2m2

+2L 1J1π2a2n2 + 2L 1J1π2b2m2 − J21π2a2n2 − J21π2b2m2 + L
2
0b

2a2

⎞

⎟
⎟
⎟
⎠

baL 0
, (40i)
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tasks without explicit instructions [38]. The SVM-DNN-RF algorithm is
an advanced hybrid machine learning approach that integrates Support
Vector Machines (SVM), Deep Neural Networks (DNN), and Random
Forest (RF) to predict the nonlinear dynamic behavior of composite
structures. Composite materials, due to their complex anisotropic and
heterogeneous nature, exhibit nonlinear dynamic responses that are
challenging to model using traditional methods. By combining these
three powerful techniques, the SVM-DNN-RF algorithm leverages the
strengths of each model to capture intricate relationships between input
features and the dynamic response of the structure, making it ideal for
predicting complex behaviors such as vibration, stress distribution, and
failure modes. SVM is effective in handling high-dimensional, non-linear
data, offering robust classification and regression capabilities. DNN, on
the other hand, excels at learning intricate patterns and dependencies
from large datasets, particularly when there is limited prior knowledge
about the structure’s behavior. Random Forest adds an ensemble

learning approach, combining multiple decision trees to improve pre-
diction accuracy and reduce overfitting, thus providing a more gener-
alized model. When applied to a dataset generated through
mathematical simulations of composite structures under dynamic
loading conditions, this hybrid model can accurately predict the
nonlinear responses of these materials under a wide range of scenarios
[39]. The appropriate dataset for this model consists of simulated data
that captures various dynamic characteristics of composite structures,
including material properties, geometric configurations, boundary
conditions, and loading types. By training the SVM-DNN-RF model on
this data, engineers can gain valuable insights into the performance and
failure mechanisms of composite materials without the need for
expensive and time-consuming physical testing. This approach provides
a powerful tool for the design and optimization of composite structures,
ensuring their reliability and efficiency in real-world applications such
as aerospace, automotive, and civil engineering.

Fig. 4. The influence of various TPMS models on the dynamic deflection of the TPMS doubly curved panel under frequency excitation at various times.
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The SVM-DNN-RF algorithm offers several key advantages over
traditional machine learning algorithms when predicting the nonlinear
dynamic behavior of composite structures:

1. Enhanced Accuracy: By combining Support Vector Machines
(SVM), Deep Neural Networks (DNN), and Random Forest (RF),
the algorithm benefits from the strengths of each individual
model, leading to more accurate predictions than using any of
these methods alone. SVM handles high-dimensional data effec-
tively, DNN captures complex non-linear patterns, and RF re-
duces overfitting and enhances generalization.

2. Better Handling of Non-Linearity: Composite structures often
exhibit highly nonlinear dynamic behavior due to their complex
material properties and geometries. The hybrid approach of SVM-

DNN-RF excels in capturing these nonlinearities, which may be
difficult for other algorithms like linear regression or basic de-
cision trees to model accurately.

3. Robustness to Overfitting: The Random Forest component
helps in reducing overfitting by averaging the results of multiple
decision trees, which is a common issue when using deep neural
networks or support vector machines independently. This feature
ensures that the model generalizes better to new, unseen data.

4. Adaptability to Complex Data: The algorithm is particularly
well-suited to work with large and complex datasets generated
from mathematical simulations, which may include various dy-
namic conditions, material properties, and structural configura-
tions. DNN excels at learning intricate patterns in these large

Fig. 5. The influence of various TPMS types on the dynamic deflection of the TPMS doubly curved panel under frequency excitation at various times.

S. Han et al. Aerospace Science and Technology 158 (2025) 109785 

13 



datasets, providing insights into dynamic behaviors that might be
overlooked by simpler algorithms.

5. Flexibility: The SVM-DNN-RF model can handle different types
of input data, including both continuous and categorical features.
This flexibility allows engineers to incorporate various parame-
ters such as material properties, loading conditions, and
geometrical configurations, ensuring comprehensive modeling of
the system.

6. Improved Efficiency: Compared to other machine learning
methods that might require extensive feature engineering or
manual intervention, the hybrid model automatically learns the
most relevant patterns from the data, reducing the need for
domain-specific knowledge and saving time in the modeling
process.

7. Scalability: The algorithm is highly scalable, meaning it can be
applied to both small and large datasets effectively. This makes it

Fig. 6. The influence of various TPMS types on the W − Time and Ẇ − W curves of the TPMS doubly curved panel under frequency excitation.

Fig. 7. The influence of various radius curvature factors on the W − Time and Ẇ − W curves of the TPMS doubly curved panel under frequency excitation.
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suitable for a wide range of engineering applications, from small-
scale simulations to large-scale systems with high-dimensional
data.

8. Multi-Model Integration: The combination of three models
(SVM, DNN, and RF) in a single framework allows for a more
comprehensive understanding of the system’s behavior, espe-
cially in cases where no single model is sufficient. This multi-

model approach ensures a balanced performance across various
types of data and prediction tasks.

9. Robust to Noisy Data: The algorithm’s ensemble nature,
particularly through the Random Forest component, helps it
perform well even when the data is noisy or contains outliers,
which is common in real-world simulations of composite
structures.

Fig. 8. The influence of various b/a ratios on the W − Time and Ẇ − W curves of the TPMS doubly curved panel considering first pattern of frequency excitations.

Fig. 9. The influence of various b/a ratios on the W − Time and Ẇ − W curves of the TPMS doubly curved panel considering second pattern of frequency
excitations.
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10. Improved Interpretability: Although deep learning models can
often be seen as "black boxes," the integration with Random
Forest allows for better interpretability of the results, helping
engineers understand the influence of different features on the
model’s predictions.

In summary, the SVM-DNN-RF algorithm offers superior prediction
accuracy, robustness, and flexibility compared to other machine
learning approaches, making it particularly effective for modeling the
complex and nonlinear dynamic behaviors of composite structures in
engineering applications.

5.1. Mathematics formulation of the mentioned algorithm

The formulation of the SVM-DNN-RF hybrid algorithm to predict the
nonlinear dynamic behavior of composite structures integrates the
principles and methodologies of Support Vector Machines (SVM), Deep
Neural Networks (DNN), and Random Forest (RF) into a cohesive model.
Each of these components contributes to the overall performance by
addressing different aspects of the prediction task, such as handling non-
linearity, feature selection, and improving generalization. Below is a
high-level outline of the algorithm formulation:

1. SVM Component:

Fig. 10. The influence of various excitation frequencies on the W − Time and Ẇ − W and Ẅ − Ẇ curves of the TPMS doubly curved panel.
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SVM is used to classify or regress the data in a high-dimensional
feature space, making it ideal for problems with complex, nonlinear
relationships. The SVM algorithm can be formulated as:

min

(
1
2
‖ w‖2 + C

∑N

i=1
ξi

)

, (42)

Subject to:

yi(w.xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1,2,…,N (43)

Where:
w: is the weight vector.
b: is the bias term.
ξi: are the slack variables that allow for some misclassification.
C: is a regularization parameter that controls the trade-off between

maximizing the margin and minimizing classification error.

xi: are the input features, and yi are the corresponding labels (target
variables). The nonlinear kernel function K(x, x́ ) is often used in practice
to map the data into a higher-dimensional space, allowing for the cap-
ture of complex relationships.

2. DNN Component:
The DNN component is designed to capture deep, nonlinear patterns

and interactions in the data. The general formulation for a feedforward
neural network with one hidden layer can be written as:

y = f(W2.g(W1.X+ b1)+ b2). (44)

Where:
X: is the input data matrix (composite structure features).
W1 andW2: are the weight matrices for the input and hidden layers,

respectively.
b1, and b2: are the bias terms.
g(.): is the activation function (such as ReLU, Sigmoid, or Tanh).

Fig. 11. Potential energy of the FG-TPMSM curved panel under excitation frequency for various b/a ratios.
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f(.): is the output activation function.
y: is the predicted output (e.g., nonlinear dynamic response).
The objective of training the DNN is to minimize the loss function

(such as Mean Squared Error for regression tasks or Cross-Entropy for
classification tasks), commonly expressed as:

L(y, ŷ) =
1
N
∑N

i=1
(ŷi − yi)2. (45)

Where ŷ are the predicted values and L is the loss function.
3. RF Component:
Random Forest is an ensemble learning method that builds multiple

decision trees to predict the target value, improving prediction accuracy
and robustness by averaging the outputs of individual trees. The RF al-
gorithm can be defined as:

ŷ =
1
T
∑T

t=1
ft(X). (46)

Where:
T: is the number of trees in the forest.
ft: is the prediction made by the t − th decision tree.
X: is the input feature vector (composite structure data).
Each decision tree is trained by randomly selecting a subset of the

features and samples from the dataset. The prediction is averaged across
all trees to reduce overfitting and variance, providing a more robust
estimate.

4. Hybrid SVM-DNN-RF Algorithm
The hybrid SVM-DNN-RF algorithm combines the strengths of each

individual model into a unified framework. The general workflow in-
volves the following steps:

1. Data Preprocessing: Collect and preprocess data from simula-
tions of composite structures, which may include dynamic responses,
material properties, and boundary conditions.

2. Training Phase:
SVM: Train the SVM component on the dataset to capture the

nonlinear boundaries in the feature space.
DNN: Train the DNN component to learn deep patterns and re-

lationships between the input features and dynamic responses.
RF: Train the Random Forest component by constructing multiple

decision trees using random subsets of features and data points.
3. Prediction Phase: For a new set of input features Xtest , the pre-

dictions from all three models are combined. The final prediction is
typically made by averaging the outputs of each model:

ŷfinal = α.ŷSVM + β.ŷDNN + γ.ŷRF. (47)

Where:
ŷSVM, ŷDNN, and ŷRF are the predictions from the SVM, DNN, and RF

models, respectively.
α, β, and γ are weights or coefficients assigned to each model, based

on their individual performance or contribution.
4.Model Evaluation: The hybrid model is evaluated using standard

metrics such as Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), or R-squared to assess its prediction accuracy.

5.2. Advantages of the hybrid formulation

Combining strengths: The combination of SVM’s ability to handle
high-dimensional non-linear data, DNN’s capacity to learn deep fea-
tures, and RF’s ensemble learning approach provides a more accurate
and robust model.

Handling complex behaviors: The algorithm effectively captures
the nonlinear dynamics of composite materials under various condi-
tions, which is difficult for simpler models to address.

Generalization: The ensemble approach helps prevent overfitting
and improves the generalization of the model, making it more reliable
for unseen data.

This hybrid formulation allows the SVM-DNN-RF algorithm to pre-
dict the nonlinear dynamic information of composite structures with
high accuracy and efficiency, even for complex and large datasets
generated from mathematical simulations.

6. Result and discussion

6.1. Validation

Fig. 3 presents a comparison of the time-history response of func-
tionally graded graphene platelets reinforced composite (FG-GPLRC)
plate subjected to a time-varying force, q(t) = 2000sin(450t). The data
from the present study, shown in a red line, is compared with reference
results from a previous study (Ref. [40]), indicated by black circular
markers. The graph illustrates oscillations in the displacement response,
measured in meters, over a time range of 0 to 0.1 s. The close alignment
of the red curve with the black markers suggests strong agreement be-
tween the current study’s results and the reference data, validating the
present model’s accuracy. The plate’s material composition includes
uniformly distributed graphene platelets (GPL-UD) with a weight per-
centage of 0.3%. Geometric parameters include an aspect ratio of a/h =

20 and plate dimensions a = b, where a and b are the plate’s length and
width, respectively. The applied force frequency of 450 rad/s induces
high-frequency vibrations, captured in the waveform, demonstrating the
model’s ability to simulate the dynamic response of FG-GPLRC struc-
tures accurately. This validation supports the applicability of the present
study’s methodology for analyzing the vibrational behavior of
FG-GPLRC plates.

6.2. Parametric result

Fig. 4 compares the dynamic deflection responses of a TPMS (triply
periodic minimal surface) doubly curved panel under frequency exci-
tation using different TPMS models. Subfigures (a), (b), and (c) display
time-history plots under varying excitation frequencies and amplitudes,
indicated as q(t) = q0 sin(Ω × t), with unique parameter values q0
and Ω for each case. Each subfigure includes curves frommultiple TPMS
models (PA1, PB1, and Gyroid types), shown in different colors. These
comparisons reveal the influence of the TPMS model on the panel’s
deflection behavior under identical loading conditions. Variations in
amplitude and phase across the models reflect differences in their
structural properties, which impact the panel’s dynamic response. In all
cases, the TPMS model selection significantly affects the frequency and
amplitude of deflection, with distinct response patterns in each sub-
figure. This analysis demonstrates the importance of TPMSmodel choice

Fig. 12. Loss factor against epoch for presented SVM-DNN-RF algorithm.
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in optimizing dynamic performance under vibrational loads for doubly
curved structures.

Fig. 5 illustrates the influence of different types of Triply Periodic
Minimal Surfaces (TPMS) on the dynamic deflection behavior of a
TPMS-based doubly curved panel under frequency excitation. The three
subfigures (a), (b), and (c) correspond to different TPMS types: (a) TPMS
of type P (Primitive), (b) TPMS of type D (Diamond), and (c) TPMS of
type G (Gyroid). Each graph shows the panel’s deflection over time
under an excitation q(t) = q0cos(Ω × t), where Ω is the excitation
frequency. The deflections, depicted by different colors for various
parameter values, illustrate how each TPMS structure responds
dynamically under identical conditions. The waveforms indicate that

Fig. 13. Scatter plots comparing measured data with estimated data for three different models or scenarios, each labeled with an R2 value.

Table 2
Comparing the dynamic deflection of the SVM-DNN-RF algorithm with the
mathematics simulation results by varying the b/a, and RX /a.

b
/a

RX /a

10 20

Mathematics SVM-DNN-RF Mathematics SVM-DNN-RF

3 0.026039 0.026027 0.02979 0.029766
10 0.045315 0.044758 0.049864 0.049598
20 0.051195 0.051207 0.055551 0.054728
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the TPMS type significantly affects the amplitude and phase of deflec-
tion, with each type displaying distinct dynamic behaviors. The Primi-
tive TPMS type (a) shows moderate deflections, the Diamond type (b)
exhibits a similar but slightly varied pattern, and the Gyroid type (c) has
the highest and most complex deflection amplitude among the three.
This variation suggests that TPMS topology can be a critical factor in
tuning the vibration characteristics of such panels, potentially informing
their design for applications requiring specific dynamic responses to
vibrational forces.

Fig. 6 demonstrates the impact of different TPMS (Triply Periodic
Minimal Surface) types on the dynamic behavior of a TPMS-based
doubly curved panel subjected to frequency excitation. The figure con-
sists of two parts: (a) a plot of deflection over time, and (b) a phase-space
plot of W versus Ẇ (the deflection and its time derivative), which il-
lustrates the system’s dynamic stability and oscillatory patterns. In (a),
the deflection varies over time for three TPMS types, represented by
different colors. Each type shows distinct oscillation amplitudes and
phases, indicating how TPMS topology influences the time-dependent
response of the panel to the external excitation force q(t) =

q0cos(Ω × t). The curves highlight the differences in amplitude and
response patterns among the TPMS types. In (b), the phase-space plot
shows closed-loop trajectories for each TPMS type, suggesting stable
oscillatory behavior. The variation in trajectory shapes reflects the
impact of TPMS structures on dynamic response characteristics. This
phase-space analysis helps reveal the influence of TPMS type on the
stability and energy dissipation properties of the doubly curved panel
under vibrational excitation, aiding in the design optimization for dy-
namic applications.

Fig. 7 explores the effect of different radius of curvature factors on
the dynamic response of a TPMS (Triply Periodic Minimal Surface)
doubly curved panel under frequency excitation. The figure includes two
plots: (a) the deflection over time, and (b) the phase-space plot of W

versus Ẇ (deflection versus its time derivative). The analysis uses a
Gyroid-type TPMS with varying radius of curvature ratios. In (a), the
time-deflection plot presents the panel’s deflection under an excitation
force q(t) = q0cos(Ω × t) with different curvature ratios. The curves in
black, red, and blue represent curvature ratios of 10, 15, and 20,
respectively, showing that an increase in curvature ratio affects both the
amplitude and frequency of oscillations. Higher curvature ratios
generally lead to increased deflection amplitude, indicating enhanced
sensitivity to the excitation force. In (b), the phase-space plot shows the
closed-loop trajectories for each curvature ratio, illustrating stable os-
cillations and dynamic behavior influenced by curvature variations. The
larger curvature ratio (in blue) results in a wider trajectory, indicating
higher energy absorption and more pronounced oscillations. This anal-
ysis reveals that adjusting the curvature ratio can effectively tailor the
dynamic response of TPMS panels, which is essential for applications
involving specific vibration and stability requirements.

Fig. 8 illustrates the impact of different b/a ratios on the dynamic
behavior of a TPMS doubly curved panel, under a specific frequency
excitation pattern. Subfigure (a) presents time-domain responses of W

(displacement in the transverse direction) versus time for three different
b/a ratios. The plot indicates varying amplitude and frequency of os-
cillations in W , suggesting that changes in the b/a ratio significantly
influence the panel’s dynamic response. The black, red, and blue curves
represent responses for distinct b/a ratios, with noticeable variations in
oscillatory behavior, implying that each ratio has a unique influence on
the panel’s stiffness and natural frequency. Subfigure (b) displays phase-
space plots showing the relationship between displacement and velocity
for the same b/a ratios. The intricate closed-loop patterns indicate
complex oscillatory behavior with nonlinear characteristics, where each
curve’s shape varies with the b/a ratio, demonstrating distinct response
behaviors under periodic excitations. The figure as a whole highlights
how tuning the b/a ratio affects the panel’s vibrational characteristics,
which could be crucial in designing TPMS structures for specific

resonance or damping applications in engineering contexts.
Fig. 9 demonstrates the effect of various b/a ratios on the dynamic

response of a TPMS doubly curved panel, specifically under a second
frequency excitation pattern. In subfigure (a), the time-domain plot il-
lustrates the transverse displacement over time for different b/a ratios.
The distinct curves (black, red, and blue) represent these ratios, showing
significant differences in oscillatory amplitudes and frequencies.
Compared to the first excitation pattern (Fig. 8), this second pattern
induces more complex, higher-frequency oscillations, indicating a shift
in response behavior likely due to the altered excitation form, q(t) =

q0cos(0.6ω × t). Subfigure (b) presents the phase-space plots of
displacement versus velocity for these ratios. The loops in the phase plot
are denser and more intricate than in Fig. 8, indicating a more chaotic or
complex response. The variation in shapes for each b/a ratio suggests
that modifying the panel’s geometric ratio significantly affects its sta-
bility and nonlinear dynamic characteristics under this second excita-
tion form. Overall, this figure emphasizes how different excitation
patterns and b/a ratios influence the panel’s vibrational dynamics,
relevant for structural control and optimization.

Fig. 10 shows the impact of varying excitation frequencies on the
dynamic responses of a TPMS doubly curved panel, specifically looking
at W (transverse displacement) versus Time (time), W versus Ẇ (ve-
locity), and Ẇ versus W responses. Subfigure (a) presents the W −

Time response, indicating how different excitation frequencies influence
the time-domain oscillations. The overlapping curves (black, red, and
blue) reflect the panel’s response under distinct frequency conditions.
Differences in amplitude and oscillatory patterns reveal the panel’s
sensitivity to frequency changes, affecting the system’s stability and
energy dissipation. Subfigures (b) and (c) illustrate phase-space plots,
specifically theW − Ẇ and Ẅ − Ẇ trajectories, respectively. In both,
the looped patterns show how the system’s dynamics change under
various excitation frequencies. These intricate trajectories indicate
nonlinear behavior, with each frequency producing unique loop struc-
tures. The denser and more complex patterns in (c) suggest a strong
dependence on excitation frequency, with higher frequencies amplifying
the complexity of response trajectories. Overall, this figure highlights
how tuning excitation frequency influences the dynamic characteristics
of the TPMS panel, which is essential for engineering applications
requiring specific resonance, stability, and damping behavior.

The Fig. 11 presents the potential energy response of a curved panel
under excitation, evaluated for different aspect ratios (b/a = 1, 1.1, 1.2,
and 1.3). Each subplot corresponds to a distinct aspect ratio, with po-
tential energy plotted on the y-axis (in joules) and time on the x-axis (in
seconds). The observed variations in potential energy for different b/a
ratios illustrate the influence of panel geometry on energy response
under dynamic excitation. As the b/a ratio increases from 1 to 1.3,
fluctuations in potential energy persist, but with varying amplitude and
frequency characteristics. These trends suggest that the structural
response of the curved panel is sensitive to changes in aspect ratio,
impacting its energy storage and dissipation under loading. Such anal-
ysis aids in understanding the dynamic behavior of these advanced
materials in engineering applications.

6.3. Results of presented SVM-DNN-RF algorithm

As mentioned before, the SVM-DNN-RF algorithm combines Support
Vector Machines, Deep Neural Networks, and Random Forests to predict
nonlinear dynamic responses in composite structures. By leveraging
simulation-based datasets, this hybrid model enhances predictive ac-
curacy, capturing complex patterns and relationships in dynamic
structural behavior, crucial for advanced engineering applications.
Fig. 12 illustrates the performance of the proposed SVM-DNN-RF algo-
rithm, where the "Loss factor" is plotted against the "Epochs" for both
training and testing datasets. The "Epoch" represents each iteration of
training, while the "Loss factor" indicates the algorithm’s error rate or
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how far the predicted values deviate from actual outcomes during each
epoch. In this graph, two sets of curves are presented: the red curve
represents the loss factor for the training data, while the blue curve
represents the loss factor for the testing data. Both curves demonstrate a
similar trend; they start with high loss factors at the beginning (close to
100 on the x-axis) and decrease rapidly as epochs progress. This
reduction in loss factor suggests that the algorithm is learning effectively
and improving its accuracy over successive epochs.

As the number of epochs increases, the loss factors for both training
and testing data converge towards zero, indicating that the model is
achieving better predictive accuracy and minimizing errors over time.
The high density of points in the early epochs reflects rapid learning, as
the model quickly reduces errors, while the gradual convergence in later
epochs indicates a more refined, stabilized learning.

The relatively close alignment between training and testing loss
factors suggests good generalization performance, meaning the algo-
rithm is not overfitting to the training data and performs consistently on
new, unseen data. This convergence demonstrates the efficacy of the
SVM-DNN-RF algorithm in achieving high predictive accuracy with
minimal error across both datasets.

Fig. 13 shows scatter plots comparing measured data with estimated
data for three different models or scenarios, each labeled with an
R2 value that represents the coefficient of determination, a metric
indicating the goodness of fit. The closer the R2 value is to 1, the more
accurately the estimated data matches the measured data, signifying a
better model performance. Fig (13.a) shows a moderate correlation
between the measured and estimated data, with some visible deviations
from the ideal 45-degree line. An R2 value of 0.75129 indicates that
approximately 75% of the variance in the measured data is explained by
the model. Although the points generally trend along the line, there is
noticeable scatter, suggesting that the model’s predictions are not
entirely accurate. In Fig (13.b), the fit between measured and estimated
data improves substantially, with an R2 value of 0.92961. The points are
much closer to the line, indicating a high level of accuracy. This suggests
that around 93% of the variability in the measured data is accounted for
by the model, indicating a strong predictive performance and a signifi-
cant improvement over the previous model. Fig (13.c) shows the highest
R2 value of 0.98251, indicating an excellent fit between the estimated
and measured data. The points are tightly clustered around the 45-de-
gree line, meaning that the model explains approximately 98% of the
variance in the measured data. This high correlation demonstrates that
this model or approach provides the most accurate predictions among
the three. Overall, these plots demonstrate progressive improvement in
the predictive accuracy of the models or algorithms, with each succes-
sive model achieving a higher R2 value and closer alignment between
measured and estimated data.

A summary of key parameters in the presented SVM-DNN-RF algo-
rithm are presented as follows to correctly simulate a similar problem to
the presented one:

• SVM: kernel=’rbf’, C = 1.0, epsilon=0.1, gamma=’scale’.
• DNN: hidden_layers= [64,32], activation=’relu’, loss=’mse’, opti-
mizer=’adam’, epochs=50, batch_size=10.

• RF: n_estimators=100, max_depth=10, min_samples_split=2, min_-
samples_leaf=1, max_features=’sqrt’.

• Model Combination: Weights like 0.3 for SVM and RF, 0.4 for DNN

Via the mentioned parameters, Table 2 compares the dynamic
deflection values predicted by the SVM-DNN-RF algorithm with those
from mathematical simulations under varying b/a and RX /a ratios.
Results show a high degree of agreement between the algorithm and
mathematical values across all configurations, demonstrating the
model’s accuracy. For instance, at b/a = 3 and RX /a = 10, deflection
values from both methods are nearly identical, indicating reliable pre-
dictive performance. Slight discrepancies appear as the ratios increase,

but overall, the SVM-DNN-RF algorithm effectively approximates theo-
retical results, supporting its robustness for dynamic deflection
predictions.

7. Conclusion

This study provided a comprehensive nonlinear dynamic analysis of
functionally-graded TPMS double-curved panels, examining the influ-
ence of structural parameters and excitation frequencies on their
vibrational behavior. Through time-domain and phase-space analysis, it
was observed that variations in the b/a ratio and excitation frequency
significantly impacted the transverse displacement and velocity re-
sponses of FG-TPMS panels. These variations led to complex oscillatory
patterns and nonlinear phase trajectories, underscoring the high sensi-
tivity of FG-TPMS structures to both design and operational parameters.
The findings offered valuable insights into the intricate dynamic re-
sponses of these advanced materials, supporting their optimization for
applications that demand high strength-to-weight ratios, resonance
control, and effective damping. In addition, the study introduced a novel
SVM-DNN-RF algorithm, integrating SVM, DNN, and RF methods to
accurately predict nonlinear dynamic behaviors. This hybrid model
leveraged the classification accuracy of SVM, the deep feature extraction
capabilities of DNN, and the robustness of RF to achieve enhanced
predictive performance, especially in capturing complex nonlinear re-
lationships within mathematically simulated datasets. Results showed
that the SVM-DNN-RF algorithm outperformed standalone models in
predicting the dynamic behaviors of FG-TPMS panels, offering a reliable
and precise tool for dynamic analysis. Together, these findings
contribute to the advancement of FG-TPMS panel design by providing a
predictive framework for dynamic responses and a deeper understand-
ing of the parameters influencing these behaviors. This work has prac-
tical implications for engineering fields requiring lightweight, durable
materials with optimized dynamic properties, including structural en-
gineering, aerospace, and complex system modeling.

This research explores the nonlinear dynamics of FG-TPMS panels,
although it is important to note that these geometries are still very
straightforward. High-complexity intelligent structures need to be
researched to guarantee that the effort is worthwhile. The linear vi-
bration study solely considers the linear strain components of the
structures. In contrast to huge amplitude, however, nonlinear vibration
provides a more complete picture of the structures’ nonlinear dynamic
behavior. Future research into the absorbed energy capacity and
nonlinear dynamics of the structure under rain or air flow pressure is,
thus, a promising area of inquiry.
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