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Abstract: This paper introduces a novel fractional Susceptible-Infected-Recovered (SIR)
model that incorporates a power Caputo fractional derivative (PCFD) and a density-
dependent recovery rate. This enhances the model’s ability to capture memory effects and
represent realistic healthcare system dynamics in epidemic modeling. The model’s utility
and flexibility are demonstrated through an application using parameters representative of
the COVID-19 pandemic. Unlike existing fractional SIR models often limited in represent-
ing diverse memory effects adequately, the proposed PCFD framework encompasses and
extends well-known cases, such as those using Caputo–Fabrizio and Atangana–Baleanu
derivatives. We prove that our model yields bounded and positive solutions, ensuring
biological plausibility. A rigorous analysis is conducted to determine the model’s local
stability, including the derivation of the basic reproduction number (R0) and sensitivity
analysis quantifying the impact of parameters on R0. The uniqueness and existence of
solutions are guaranteed via a recursive sequence approach and the Banach fixed-point
theorem. Numerical simulations, facilitated by a novel numerical scheme and applied to
the COVID-19 parameter set, demonstrate that varying the fractional order significantly
alters predicted epidemic peak timing and severity. Comparisons across different fractional
approaches highlight the crucial role of memory effects and healthcare capacity in shaping
epidemic trajectories. These findings underscore the potential of the generalized PCFD ap-
proach to provide more nuanced and potentially accurate predictions for disease outbreaks
like COVID-19, thereby informing more effective public health interventions.

Keywords: SIR model; generalized power fractional derivative; stability; simulations;
numerical analysis

1. Introduction
The study of infectious diseases is a critical area in epidemiology, where mathematical

models serve as essential tools for understanding disease spread dynamics, predicting
outbreaks, and evaluating the effectiveness of interventions. The Susceptible-Infected-
Recovered (SIR) model, a cornerstone of epidemiological modeling, classifies populations
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into susceptible (S), infected (I), and recovered (R) compartments. Its simplicity and
versatility have allowed for extensive adaptations to incorporate real-world factors. For
example, Marinov [1] employed an adaptive SIRV model with time-dependent rates to
analyze the dynamics of COVID-19, integrating data from various national contexts to cap-
ture transmission variations and to evaluate vaccination strategies. Similarly, Balderrama
et al. [2] explored optimal control strategies for a SIR epidemic model under quarantine
limitations, highlighting the trade-offs between quarantine stringency and economic or
social disruption. Further illustrating the adaptability of the SIR model, El Khalifi [3]
investigated an extended SIR model with gradually waning immunity, acknowledging
individual heterogeneity in immune system responses and demonstrating the impact of
duration of immunity on long-term disease prevalence. These studies highlight the ability
of the SIR model to address real-world complexities, while also suggesting limitations in
capturing the influence of past events on current disease dynamics.

However, traditional SIR models often simplify disease dynamics by assuming in-
stantaneous interactions and neglecting historical factors, such as the influence of past
infection rates on current immunity levels. To address these limitations, fractional-order
derivatives, which extend the concept of differentiation to non-integer orders [4–7], have
emerged as a powerful tool. In contrast to integer-order derivatives, fractional deriva-
tives inherently incorporate memory effects and long-range interactions, leading to more
accurate representations of biological processes like disease transmission and recovery.
This characteristic has led to several applications in the context of SIR models, which
offer potentially more accurate predictions of epidemic spread. For example, Alqahtani [8]
analyzed a fractional-order SIR model that incorporates the capacity of the healthcare
system, showing an improved fit of the model to the observed infection data compared
to its integer-order counterpart. Kim [9] introduced a normalized time-fractional SIR
model using a novel fractional derivative designed to improve understanding of the in-
fluence of fractional-order on epidemiological dynamics and disease prediction accuracy,
specifically demonstrating a reduction in prediction error when forecasting peak infection
rates. Riabi et al. [10] investigated a fractional SIR epidemic model with the Atangana–
Baleanu–Caputo operator, utilizing the homotopy perturbation method to obtain a series
solution and demonstrating an increased number of immunized individuals compared
to other methods. Alazman et al. [11] introduced a diffusion component into a fractional
SIR model and analyzed its impact using a general fractional derivative, illustrating the
effects of diffusion on the model’s dynamics, revealing how diffusion can alter the spatial
distribution of the infected population, a feature absent in traditional models. Beyond
epidemiology, fractional calculus shows promise in areas like modeling drug delivery
in pharmacokinetics, where non-local tissue interactions affect drug distribution, and in
neuroscience for capturing memory effects in neuronal signaling. However, challenges
remain in the widespread adoption of fractional-order models, including the computational
cost of solving fractional differential equations and the difficulty in directly interpreting
fractional-order parameters in terms of underlying biological mechanisms. Nevertheless,
the ability of fractional calculus to capture memory and non-local effects makes it a valuable
tool for enhancing the realism and predictive power of models in diverse biological systems
exhibiting delayed responses or cumulative effects.

The utility of fractional calculus extends far beyond epidemiological modeling, with
applications across various scientific fields. These applications leverage fractional calcu-
lus’s ability to capture complex dynamics and memory effects often observed in real-world
phenomena. Examples include physics and polymer technology, where fractional calculus
aids in modeling complex material behaviors [12], and electrical circuits, enabling the
incorporation of fractional-order elements for enhanced circuit representation [13]. In
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bioengineering, fractional calculus is utilized to model biological processes [14], while
in robotics, it facilitates the design of fractional-order controllers for improved perfor-
mance [15]. Its utility extends to fluid mechanics, where it helps model non-Newtonian
fluid behavior [16], and electrodynamics of complex media, aiding in describing materials
with memory effects [17]. Control theory benefits from fractional-order controllers, offering
advantages over traditional methods [18], and, as discussed previously, disease model-
ing leverages fractional calculus to capture memory effects and non-local interactions in
epidemiological models [19]. This widespread applicability underscores the power of frac-
tional calculus in capturing complex behaviors not adequately represented by traditional
integer-order calculus.

Within epidemiological modeling, the application of fractional calculus to the SIR
framework has been explored using various fractional derivatives, including Caputo,
Caputo–Fabrizio, and Atangana–Baleanu. These derivatives incorporate memory effects
and non-local interactions, leading to more realistic representations of the spread of infec-
tious diseases [20–22]. The Caputo fractional derivative is well suited for systems with
well-defined initial conditions, while the Caputo–Fabrizio derivative is useful for systems
with less-defined initial states. The Atangana–Baleanu derivative, with its non-singular
kernel, provides advantages in modeling complex dynamics with crossovers. However,
many studies focus on specific fractional derivatives, potentially limiting the exploration of
generalized operators that can encompass a wider range of behaviors and simulate diseases
with diverse memory characteristics. The selection of an appropriate fractional derivative
is a crucial consideration, as it can significantly influence the model’s properties, such as
stability and the existence of solutions. While fractional SIR models have been applied to
various diseases, a more thorough investigation of their qualitative and quantitative prop-
erties is still needed. Many previous studies have concentrated on numerical simulations,
often lacking in-depth exploration of the theoretical foundations, such as the boundedness,
positivity, and stability of solutions. Furthermore, rigorous comparisons between different
fractional derivatives are often absent.

To address these gaps, we extend the classical SIR framework [23] by considering
the incidence rate as 2βSI

N , which suggests a closed population with density-dependent
interactions influenced by the total population size N (N = S+ I+R). Furthermore, we
incorporate a δR term, representing the rate at which recovered individuals lose immu-
nity and return to the susceptible compartment. Crucially, we employ a Power Caputo
fractional derivative (PCFD) [24], which generalizes well-known fractional derivatives
like Caputo–Fabrizio [25], Atangana–Baleanu [26], weighted Atangana–Baleanu [27], and
weighted Hattaf fractional derivatives [28]. The PCFD provides a flexible and adaptable
modeling framework capable of capturing diverse memory and non-local effects within
disease dynamics. This work primarily focuses on the theoretical development, math-
ematical analysis, and numerical simulation of the PCFD SIR model to demonstrate its
properties and potential. We use parameters representative of the COVID-19 pandemic to
demonstrate the behavior of our novel PCFD SIR model. The construction of this paper is
as follows: In Section 2, we present the construction of the proposed fractional SIR model.
In Section 3, we recall the necessary mathematical foundations, detailing the power Caputo
fractional derivative. Section 4 presents a rigorous qualitative analysis that demonstrates
the boundedness and positivity of the solutions, which is critical to ensuring biological
feasibility and applicability in the real world. In this section, we also investigate the sta-
bility of the disease-free equilibrium (DFE), deriving the basic reproduction number R0, a
key epidemiological parameter for assessing the potential for disease spread. In addition,
sensitivity analysis identifies influential parameters, revealing factors affecting disease
transmission and recovery. In Section 5, we introduce a two-step Lagrange interpolation
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polynomial-based numerical method for approximating solutions to the fractional SIR
model. Then, in Section 4.2, we explore symmetric model cases, including Caputo–Fabrizio,
Atangana–Baleanu, and weighted Hattaf. Finally, Section 7 provides the biological interpre-
tation of our results and conclusions.

2. Mathematical SIR Model
In this section, we extend the classical SIR model [23], given by

d
dzS(z) = Λ − βSI

S+I − µS,
d
dz I(z) =

βSI
S+I −

[
α0 + (α1 − α0)

b
b+I

]
I− γI− µI,

d
dzR(z) =

[
α0 + (α1 − α0)

b
b+I

]
I− µR,

by considering the incidence rate 2βSI
N . This suggests a closed population where interactions

are density-dependent and influenced by the total population size N (N = S+ I+R). We
assume that the total population size N is constant throughout the duration of the epidemic,
which is justified by the relatively short timescale of the epidemic compared to demographic
processes such as birth and death. Also, we add δR term, which represents the rate at
which recovered individuals lose immunity and return to the susceptible compartment. We
incorporate a power Caputo fractional-order dynamics and various important parameters
related to disease transmission, recovery, and mortality. The fractional derivatives introduce
memory effects and non-local interactions into the dynamics. The following model strength
lies in its adaptability according to power parameters p in PC

a Dζ,ψ,p
z,w , allowing for the

exploration of diverse scenarios related to intervention and disease:
PC
a Dζ,ψ,p

z,w S(z) = Λ − 2βSI
N − µS+ δR,

PC
a Dζ,ψ,p

z,w I(z) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I,

PC
a Dζ,ψ,p

z,w R(z) =
[
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R,

(1)

with initial conditions S(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0. The definitions of parameters are
presented in Table 1. The SIR model (1) contains three equations as follows:

Table 1. Description of Model Parameters.

Parameter Description Units

Λ Recruitment rate Individual/Time
β Transmission rate (Individual · Time)−1

µ Natural death rate Time−1

δ Rate of loss of immunity Time−1

α0
Baseline recovery rate attributable to
healthcare intervention Time−1

α1
Maximum recovery rate when healthcare
resources are sufficient Time−1

b Density dependence influence parameter Individual
γ Infection-induced death rate Time−1

N Total population size Individual

Susceptible Population Dynamics (S)

PC
a Dζ,ψ,p

z,w S(z) = Λ − 2βSI
N

− µS+ δR,
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where Λ represents the birth rate or influx of new susceptible individuals into the popula-
tion. The term 2βSI

N represents the rate at which susceptible individuals become infected,
β is the transmission rate, S is the number of susceptible individuals, I is the number of
infected individuals, N is the total population size (N = S+ I+R), assumed constant (as
shown in Figure 1).

Figure 1. Schematic diagram of the modified SIR model.

This form modifies the incidence rate βSI
N to account for saturation effects, emphasizing

that the infection rate depends on the number of individuals in S and I without relying on
the recovered population R. The factor of ‘2’ accounts for the increased contact rates within
households of two individuals, where the probability of transmission is higher [29]. The
term µS represents the number of susceptible individuals dying per unit time, where µ is
the natural death rate. The term δR represents the rate at which recovered individuals lose
immunity and return to the susceptible compartment.

Infected Population Dynamics (I)

PC
a Dζ,ψ,p

z,w I(z) = 2βSI
N

−
[

α0 + (α1 − α0)
b

b + I

]
I− (γ + µ)I,

The term 2βSI
N represents the same infection process as in the susceptible equation.

The term
[
α0 + (α1 − α0)

b
b+I

]
I represents the rate at which infected individuals recover

through healthcare intervention and leave the infected compartment. Here, α0 is the
baseline recovery rate attributable to healthcare intervention, α1 is the maximum recovery
rate when healthcare resources are sufficient, b is a constant modulating the recovery rate
based on the infected population [30]. The fraction b

b+I models the effect of healthcare
resource constraints: When I is small, the recovery rate approaches α1, when I is large,
the recovery rate asymptotically approaches α0. This reflects the real-world scenario in
which a surge in infections can overwhelm healthcare systems, reducing the quality and
availability of care for each infected individual. The term γI represents the rate at which
infected individuals die from infection. The term µI represents the number of infected
individuals who die per unit time from natural causes.

Recovered Population Dynamics (R)

PC
a Dζ,ψ,p

z,w R(z) =
[

α0 + (α1 − α0)
b

b + I

]
I− (µ + δ)R.

The term
[
α0 + (α1 − α0)

b
b+I

]
I represents the rate at which infected individuals re-

cover through healthcare intervention and enter the recovered compartment, as described
in the infected population equation. The term (µ + δ)R accounts for the removal of recov-
ered individuals due to: Natural death (µ), loss of immunity (δ), causing individuals to
re-enter the susceptible compartment.
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3. Basic Concepts
Definition 1 ([24]). For ζ ∈ [0, 1), with ψ, p > 0, and X ∈ H1(a, b), where H1(a, b) is Sobolev
space. The PCFD of order ζ, of a function X w.r.t the weight function w, 0 < w ∈ C1([a, b]), is
defined by

PC
a Dζ,ψ,p

z,w X(z) = PC(ζ)
1 − ζ

1
w(z)

∫ z

a

pEψ,1

(
− ζ

1 − ζ
(z − s)ψ

)
(wX)′(s)ds, (2)

where pEψ,1 is the Power Mittag-Leffler function given by

pEψ,1(s) =
+∞

∑
n=0

(s ln p)n

Γ(kn + l)
, s ∈ C, and k, l, p > 0,

and PC(ζ) is the normalization positive function satisfying PC(0) = PC(1) = 1.

Definition 2 ([24]). The Power fractional integral with order ζ, of a function X, w.r.t the non-
decreasing weight function w,0 < w ∈ C1([a, b]), is defined by

PC
a Iζ,ψ,p

z,w X(z) = 1 − ζ

PC(ζ)X(z) + ln p
ζ

PC(ζ)

RL
Iψ

a,wX(z),

where RLIψ
a,wX(z) is the standard weighted R–L fractional integral of order ψ given by

RLIψ
a,wX(z) =

1
Γ(ψ)

1
w(z)

∫ z

a
(z − s)ψ−1(wX)(s)ds.

Remark 1. The power Caputo fractional derivative, as given by Definition 1, generalizes some
fractional derivatives as follows:

(1) If p = e, w(z) = 1 and ζ = ψ. Then, the Definition 1 reduced to the following definition
of ABC fractional derivative [26]

PC
a Dζ,e

z,1X(z) =
PC(ζ)
1 − ζ

∫ z

a

eEζ,1

(
− ζ

1 − ζ
(z − s)ζ

)
(X)′(s)ds.

(2) If p = e, w(z) = 1 and ψ = 1. Then, the Definition 1 reduced to the following definition
of CF fractional derivative [25]

PC
a Dζ,1,e

z,1 X(z) = PC(ζ)
1 − ζ

∫ z

a

eE1,1

(
− ζ

1 − ζ
(z − s)

)
(X)′(s)ds.

(3) If p = e and ζ = ψ. Then, the Definition 1 reduced to the following definition of weighted
ABC fractional derivative [27]

PC
a Dζ,e

z,wX(z) =
PC(ζ)
1 − ζ

1
w(z)

∫ z

a

pEζ,1

(
− ζ

1 − ζ
(z − s)ζ

)
(wX)′(s)ds.

(4) If p = e. Then, the Definition 1 reduced to the following definition of weighted generalized
Hattaf fractional derivative [28]

PC
a Dζ,ψ,e

z,w X(z) = PC(ζ)
1 − ζ

1
w(z)

∫ z

a

pEψ,1

(
− ζ

1 − ζ
(z − s)ψ

)
(wX)′(s)ds.
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4. Behavioral Characteristics of the SIR Model (1)
This section undertakes a rigorous analysis of the SIR model defined in model (1),

focusing on its fundamental properties. We will establish the boundedness and positivity
of the model solutions, determine the stability of the DFE, derive the basic reproduction
number R0, and quantify the sensitivity of R0 to variations in model parameters, thereby
revealing the key drivers of disease transmission.

4.1. Analysis of Solution Boundedness

Theorem 1. The SIR PCFD Model (1) yields solutions (S, I,R) that are guaranteed to be physically
and mathematically feasible, lying within the region Ω, where

Ω =

{
(S, I,R);S+ I+R ≤ Λ

µ

}
.

Proof. The critical condition for the model to be biologically and mathematically feasible
is that the total population size must be bounded. Thus, we have

PC
a Dζ,ψ,p

z,w N(z = PC
a Dζ,ψ,p

z,w S(z) +PC
a Dζ,ψ,p

z,w I(z) +PC
a Dζ,ψ,p

z,w R(z)
= Λ − 2βSI

N − µS+ δR+ 2βSI
N

−
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I

+
[
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R

= Λ − µN(z)− γI,

where
N(z) = S(z) + I(z) +R(z).

Clearly
Λ − µN(z)− γI ≤ Λ − µN(z).

This implies that
PC
a Dζ,ψ,p

z,w N(z) ≤ Λ − µN(z). (3)

Applying the Laplace transform of PCFD [24] on both sides of (3), we obtain

L
(

w(z)PCa Dζ,ψ,p
z,w N(z)

)
≤ L[w(z)(Λ − µN(z))].

This implies that,

N(z) ≤ Λ
µ + PC(ζ)w(a)

[PC(ζ)−(1−ζ)µ]w(z)

(
N(0)− Λ

µ

)
pEψ,1

(
ζµ

[PC(ζ)−(1−ζ)µ]
zζ
)

− PC(ζ)µ
[PC(ζ)−(1−ζ)µ]w(z)

pEψ,1

(
ζµ

[PC(ζ)−(1−ζ)µ]
zζ
)
∗ w′(z).

Consequently, N(z) bounded by Λ
µ . According to the fact N(z) = S(z) + I(z) +R(z),

we deduce that (S, I,R) are bounded in Ω. This means ensuring the biological feasibility of
the model. This boundedness result ensures that the model predicts realistic population
sizes and prevents unbounded growth. □

4.2. Nonnegativity of Solutions

Theorem 2. The SIR PCFD Model (1), with initial conditions (S(0) > 0, I(0) > 0, and
R(0) > 0), guarantees non-negative solutions for all time.

Proof. To biological relevance of our model, all state variables must remain non-negative.
We will mathematically justify this by showing that each state variable is strictly positive
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for all z ∈ [a, T]. This justification will be based on the analysis of the third equation in
model (1), presented below:

PC
a Dζ,ψ,p

z,w R(z) =
[

α0 + (α1 − α0)
b

b + I

]
I− (µ + δ)R.

Then, we have
PC
a Dζ,ψ,p

z,w R(z) ≥ −(µ + δ)R. (4)

Applying Laplace transform of PCFD [24] on both sides of (4), we have

L
[
w(z)PCa Dζ,ψ,p

z,w R(z)
]
≥ −(µ + δ)L[w(z)R(z)](s).

Thus, we obtain

R(z) ≥ PC(ζ)w(a)R(0)
[PC(ζ)− (1 − ζ)(µ + δ)]w(z)

pEψ,1

(
ζ(µ + δ)

[PC(ζ)− (1 − ζ)(µ + δ)]
zζ

)
.

Since R(0) > 0 and 0 ≤p Eψ,1 ≤ 1, we determine that R(z) is positive for all z ∈ [a, T].
Using an analogous argument, we can show that S and I are also positive, thereby estab-
lishing the model’s biological feasibility. Consequently, the population compartments (S, I,
R) are guaranteed to remain non-negative, reflecting the biological reality that populations
cannot have negative sizes. □

4.3. Disease-Free Equilibrium Point (DFE)

In the context of a SIR model, an equilibrium point is a state where the system is not
changing. Mathematically, this means that the time derivatives of all the state variables are
equal to zero. In this case, we are looking for values of S, I, and R where:

• PC
a Dζ,ψ,p

z,w S(z) = 0 (The rate of change of susceptible individuals is zero).

• PC
a Dζ,ψ,p

z,w I(z) = 0 (The rate of change of infected individuals is zero).

• PC
a Dζ,ψ,p

z,w R(z) = 0 (The rate of change of recovered individuals is zero).

Thus, we obtain
Λ − 2βSI

N − µS+ δR = 0,
2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I = 0,[

α0 + (α1 − α0)
b

b+I

]
I− (µ + δ)R = 0.

By solving the above equilibrium equations, one can easily obtain the DFE point, ℓ0,
for model (1) as follows:

ℓ0 = (S(0), I(0),R(0)) =
(

Λ
µ

, 0, 0
)

.

4.4. Basic Reproduction Number

To derive the basic reproduction number, R0, we first consider the equations governing
the dynamics of the susceptible (S) and infected (I) compartments, which are given by:

PC
a Dζ,ψ,p

z,w S(z) = Λ − 2βSI
N − µS+ δR,

PC
a Dζ,ψ,p

z,w I(z) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I.
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The Disease-Free Equilibrium (DFE) is ℓ0 = (S = Λ/µ, I = 0,R = 0). We assume a
constant population size, N = S+ I+R, and that at equilibrium, the birth rate balances the
death rate, i.e., Λ ≈ µN. This system of equations can be expressed in a compact form as:

PC
a Dζ,ψ,p

z,w

[
S(z)
I(z)

]
= F(z)− V(z),

where F(z) represents the rate of new infections and V(z) represents the rate of transfer
out of the infected population. These are defined as:

F(z) =

[
− 2βSI

N
2βSI

N

]
,

and

V(z) =

[
µS− Λ + δR[

α0 + (α1 − α0)
b

b+I

]
I+ (γ + µ)I

]
,

The Jacobian matrices of F(z) and V(z), evaluated at the DFE (ℓ0= (S = Λ/µ , I = 0,
R = 0)), denoted by F and V , respectively, are:

F =

[
0 − 2βΛ

Nµ

0 2βΛ
Nµ

]
,V =

[
µ 0
0 α1 + γ + µ

]
.

Using the fact that R0 is the spectral radius of the next generation matrix FV−1, and
substituting Λ = µN, the basic reproduction number R0 for model (1) is given by

R0 =
2β

α1 + γ + µ
.

4.5. Stability Analysis

The stability of the Disease-Free Equilibrium (DFE) is critical in epidemiology. A locally
stable DFE prevents sustained epidemics, as pathogens diminish due to low reproductive
capacity. An unstable DFE risks outbreaks, even with minimal pathogen introduction.
Understanding DFE stability guides public health interventions, enabling targeted control
strategies to prevent disease spread.

Theorem 3. The DFE of the SIR model (1) exhibits local asymptotic stability for R0 < 1, whereas
values of R0 > 1 leads to instability in this equilibrium.

Proof. The model (1) is linearized at the no-disease equilibrium to examine its local stability.
This procedure leads to the Jacobian matrix, J(ℓ0), which governs the dynamics of the
linearized model.

J[0] =

−µ −2β 0
0 2β − (α1 + γ + µ) 0
0 α1 −µ

.

The eigenvalues of the above matrix are λ1 = −µ (this eigenvalue has multiplicity 2)
and λ2 = 2β− (α1 + γ + µ). For the DFE to be locally asymptotically stable, all eigenvalues
of the Jacobian matrix evaluated at the equilibrium must have strictly negative real parts.
Since λ1 = −µ, where µ is a positive parameter (death rate), it is always negative. Therefore,
the stability is determined by the sign of λ2. The DFE is stable if λ2 < 0, that is: 2β −
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(α1 + γ + µ) < 0. This can be rearranged as 2β < (α1 + γ + µ). Dividing both sides by
(α1 + γ + µ), we obtain

2β

α1 + γ + µ
< 1.

This means that the DFE of the model (1) exhibits local asymptotic stability for R0 < 1.
If λ2 > 0, then the DFE is unstable. This corresponds to 2β − (α1 + γ + µ) > 0.

Which, following the same steps as above leads to 2β
α1+γ+µ > 1. Thus, the DFE is locally

asymptotically stable when R0 < 1, and unstable when R0 > 1. □

4.6. Sensitivity Analysis

This section is devoted to the application of sensitivity analysis of the basic reproduc-
tion number, R0 with the model parameters. The derived indices elucidate the significance
of individual parameters in the context of disease emergence and transmission processes.
Furthermore, this sensitivity analysis serves to gauge the model’s resilience to alterations
in parameter values. The following formula is used to ascertain the sensitivity indices:

SENR0
ℓ =

ℓ

R0

[
∂R0

∂ℓ

]
.

Applying the above formula, we obtain the sensitivity indices of the parameters as
follows:

• SENR0
β = 1,

• SENR0
α1 = −0.3556,

• SENR0
γ = −0.1531,

• SENR0
µ = −0.6436.

The sensitivity analysis indicates that controlling the transmission rate β is essential
to mitigate disease spread, as the basic reproduction number (R0) exhibits the highest
sensitivity to this parameter. While increasing the infected rate (γ, α0, α1, α2) also helps
lower R0 by increasing the recovery rate, its impact is comparatively less pronounced. The
natural death rate (µ) also influence R0, though indirectly. Consequently, interventions that
directly target transmission remain the most effective for controlling the disease within the
model’s framework, followed by strategies that enhance recovery. Figure 2 presented the
sensitivity of R0 to each parameter in the model.

4.7. Scenario Analysis

Beyond the isolated impact of individual parameters on R0, investigating the interplay
between parameter pairs unlocks a more nuanced comprehension of the model’s com-
plex dynamics. This pairwise analysis reveals how synergistic effects and countervailing
influences between parameters jointly shape disease transmission, a phenomenon often
obscured when considering single-parameter variations alone. The 3D contour plots shown
in Figure 3 effectively visualize the responses of R0 across these multifaceted parameter
landscapes, thus illuminating the sensitivity of the basic reproduction number to changes
in joint parameters. In addition, Figure 4 shows the contour plots of R0 as combinations of
pairs of two parameters, illustrating the basic reproduction number.
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Figure 2. Sensitivity indices of SIR model parameters.
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Figure 3. Contour 3D plots for illuminating the basic reproduction number R0 sensitivity to joint
parameter changes.
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Figure 4. Contour 2D plots for illuminating the basic reproduction number R0 sensitivity to joint
parameter changes.

4.8. Lipschitz Property

By Lemma 4 in [31], we can convert the PCFD model (1) as the following equivalent
integral equations: S(z)I(z)

R(z)

 =
w(0)
w(z)

S0

I0

R0

+PC
0 Iζ,ψ,p

z,w

K1(z,S)
K2(z, I)
K3(z,R)

, (5)

where
K1(z,S) = Λ − 2βSI

N − µS+ δR,

K2(z, I) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I,

K3(z,R) =
[
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R.

Theorem 4. Let S, I,R, Ŝ, Î, R̂ be continuous functions in L1[0, 1]. Define positive constants x1, x2

and x3 such that

∥ S ∥ = max
ı∈J

|S(ı)| < x1, ∥ I ∥ = max
ı∈J

|I(ı)| < x2, ∥ R ∥ = max
ı∈J

|R(ı)| < x3.

Then, the following kernels

K1(z,S) = Λ − 2βSI
N − µS+ δR,

K2(z, I) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I,

K3(z,R) =
[
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R,
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satisfy Lipschitz conditions with Lipschitz constant k = max3
i=1

{
LKi

}
> 0, such that

LK1 =
(

2βx2
N + µ

)
,

LK2 =
(

2βx1
N +

[
α0 + (α1 − α0)

b
b+I

]
+ (γ + µ)

)
,

LK3 = (µ + δ).

Proof. For K1(z,S) = Λ − 2βSI
N − µS+ δR, let S, Ŝ ∈ L1[0, 1]. Thus,

∥ K1(z,S)−K1

(
z, Ŝ

)
∥ = ∥

(
Λ − 2βSI

N − µS+ δR
)
−

(
Λ − 2βŜI

N − µŜ+ δR
)
∥

≤ 2β∥I∥
N ∥

(
S− Ŝ

)
∥+ µ∥

(
S− Ŝ

)
∥

≤
(

2βx2
N + µ

)
∥ S1 − Ŝ1 ∥.

Put LK1 =
(

2βx2
N + µ

)
> 0. Thus, we get

∥ K1(z,S1)−K1

(
z, Ŝ1

)
∥ ≤ LK1∥ S1 − Ŝ1 ∥.

To further demonstrate the concept, we can obtain the following:

∥ K2(z,S2)−K2

(
z, Ŝ2

)
∥ ≤ LK2∥ S2 − Ŝ2 ∥,

and
∥ K3(z,R)−K3

(
z, R̂

)
∥ ≤ LK5∥ R− R̂ ∥.

Let
k =

3
max
i=1

{
LKi

}
> 0.

Thus, the kernels Ki, i = 1, 2, 3 are Lipschitz continuous with a Lipschitz constant
k > 0. □

4.9. Existence of Solution via Recursive Sequences

In this section, we aim to prove the existence of a solution to the following model
using a recursive sequence approach. We will use the contraction mapping theorem to
show that the sequence converges to a unique solution. By (5) the solution of the model (1)
is given byS(z)I(z)

R(z)

 =
w(0)
w(z)

S0

I0

R0

+
1 − ζ

PC(ζ)

K1(z,S)
K2(z, I)
K3(z,R)

+ ln p
ζ

PC(ζ)

RL
Iψ

a,w

K1(z,S)
K2(z, I)
K3(z,R)

.

Let’s represent the given system in a compact operator form. Define:

X(z) =

S(z)I(z)
R(z)

, X0 =

S0

I0

R0

,

and

F(z, X(z)) =

K1(z,S)
K2(z, I)
K3(z,R)

.
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Thus, the original system can be written as:

X(z) =
w(0)
w(z)

X0 +
1 − ζ

PC(ζ)F(z, X(z)) + ln p
ζ

PC(ζ)

RL
Iψ

a,wF(z, X(z)).

Define the operator

H(X(z)) =
w(0)
w(z)

X0 +
1 − ζ

PC(ζ)F(z, X(z)) + ln p
ζ

PC(ζ)

RL
Iψ

a,wF(z, X(z)).

We define a recursive sequence of vector functions {Xn(z)}, n = 0, 1, 2, · · · as follows:

Xn+1(z) =
w(0)
w(z)

X0 +
w(0)
w(z)

X0 +
1 − ζ

PC(ζ)F(z, Xn(z)) + ln p
ζ

PC(ζ)

RL
Iψ

a,wF(z, Xn(z)).

Theorem 5. Assume that w(z) ̸= 0 for all z in the considered interval [0, T] and the components of
F(z, X(z)) are continuous and bounded for all X and z in the interval [0, T]. Then, the model (1)
possesses a solution provided that:

k
[

1 − ζ

|PC(ζ)| +
|ln(p)|ζ
|PC(ζ)|

Tψ

Γ(ψ + 1)

]
< 1,

where k is the Lipschitz constant defined in Theorem 4.

Proof. Let us define the operator H : C([0, T]) → C([0, T]) as follows

H(X(z)) =
w(0)
w(z)

X0 +
1 − ζ

PC(ζ)F(z, X(z)) + ln p
ζ

PC(ζ)

RL
Iψ

a,wF(z, X(z)).

For all X, Y ∈ C([0, T]) and z ∈ [0, T], we have

∥ H(X)− H(Y) ∥≤ 1 − ζ

PC(ζ)∥ F(z, X(z))− F(z, Y(z)) ∥

+ ln p
ζ

PC(ζ)

RL
Iψ

a,w∥ F(z, X(z))− F(z, Y(z)) ∥,

By Theorem 4, F(z, X(z)) satisfies the Lipschitz condition k = max3
i=1

{
LKi

}
> 0. Thus,

we obtain that

∥ H(X)− H(Y) ∥≤ 1 − ζ

PC(ζ) k∥ X − Y ∥

+ ln p
ζ

PC(ζ) k∥ X − Y ∥RLIψ
0,w(1)z

≤ k
[

1 − ζ

|PC(ζ)| +
|ln(p)|ζ
|PC(ζ)|

Tψ

Γ(ψ + 1)

]
∥ X − Y ∥.

Thus, by the Banach fixed point theorem, we have that H is a contraction operator.
Since H is a contraction mapping, the sequence {Xn(z)} converges to a limit, which we
denote by X(z). This means that:

lim
n→∞

Xn(z) = X(z).
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And since Xn+1(z) = H(Xn(z)), taking limits as n → ∞ , and since H is a continuous
operator. We have that:

lim
n→∞

Xn+1(z) = lim
n→∞

H(Xn(z)) = H
(

lim
n→∞

Xn(z)
)

.

and
X(z) = H(X(z)).

That means the limit X(z) is a fixed point of the operator H. Therefore, X(z) satisfies:

X(z) =
w(0)
w(z)

X0 +
1 − ζ

PC(ζ)F(z, X(z)) + ln p
ζ

PC(ζ)

RL
Iψ

a,wF(z, X(z)).

Thus, a recursive sequence of functions Xn(z) approaches the solution. This sequence
converges to a unique function X(z), which represents the solution to the given system,
according to the contraction mapping theorem. Therefore, a solution exists for the given
system. □

5. Numerical Scheme with Power Caputo Fractional Derivative
We will now introduce a numerical method, based on the two-step Lagrange interpola-

tion polynomial [32], to approximate the solution of model (1). This approach is chosen for
its ability to achieve a balance between computational efficiency and accuracy in approxi-
mating solutions to systems of ordinary differential equations. The two-step nature of the
method allows for the inclusion of previous solution values, improving the approximation
in each iteration, while the use of a Lagrange interpolation polynomial ensures that the
approximation fits the known solution points well. From (5), the solution of (1) is given by

S(z) =


w(a)
w(z)S0 +

1−ζ
|PC(ζ)|

(
Λ − 2βSI

N − µS+ δR
)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w(z)

∫ z
a (z − s)ψ−1w(s)

(
Λ − 2βSI

N − µS+ δR
)

ds,

I(z) =


w(a)
w(z) I0 +

1−ζ
|PC(ζ)|

(
2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I

)
+ |ln(p)|ζ

|PC(ζ)|Γ(ψ)w(z)

∫ z
a (z − s)ψ−1w(s)×(

2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I

)
ds,

R(z) =


w(0)
w(z) I0 +

1−ζ
|PC(ζ)|

([
α0 + (α1 − α0)

b
b+I

]
I+ γI− (µ + δ)R

)
+ |ln(p)|ζ

|PC(ζ)|Γ(ψ)w(z)

∫ z
a (z − s)ψ−1w(s)

([
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R

)
.

Let zm = a + mh with m ∈ N and h are the discretization step. One has

S(zm+1) =


w(a)

w(zm)
S0 +

1−ζ
|PC(ζ)|

(
Λ − 2βSI

N − µS+ δR
)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm)

∫ zm+1
a (zm+1 − s)ψ−1w(s)

(
Λ − 2βSI

N − µS+ δR
)

ds,

I(zm+1) =


w(a)

w(zm)
I0 +

1−ζ
|PC(ζ)|

(
2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm)

∫ zm+1
a (zm+1 − s)ψ−1w(s)×(

2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I

)
ds,

R(zm+1) =


w(0)

w(zm)
I0 +

1−ζ
|PC(ζ)|

([
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm)

∫ zm+1
a (zm+1 − s)ψ−1w(s)

([
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R

)
ds,
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which yields

S(zm+1) =


w(a)

w(zm)
S0 +

1−ζ
|PC(ζ)|

(
Λ − 2βSI

N − µS+ δR
)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=0
∫ zl+1

zl
(zl+1 − s)ψ−1w(s)×(

Λ − 2βSI
N − µS+ δR

)
ds,

I(zm+1) =


w(a)

w(zm)
I0 +

1−ζ
|PC(ζ)|

(
2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=0
∫ zl+1

zl
(zl+1 − s)ψ−1w(s)×(

2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I

)
ds,

R(zm+1) =


w(0)

w(zm)
I0 +

1−ζ
|PC(ζ)|

([
α0 + (α1 − α0)

b
b+I

]
I+ γI− (µ + δ)R

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=0
∫ zl+1

zl
(zl+1 − s)ψ−1w(s)×([

α0 + (α1 − α0)
b

b+I

]
I+ γI− (µ + δ)R

)
ds.

By Lagrange interpolation polynomial through the points (zl−1,S(zl−1), I(zl−1),
R(zl−1)) and (zl ,S(zl), I(zl),R(zl)), l = 1, 2, 3, · · · , m and h = zl−1 − zl , we obtain

S(zm+1) =



w(a)
w(zm)

S0 +
1−ζ

|PC(ζ)|

(
Λ − 2βSI

N − µS+ δR
)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=1

[
w(l−1)

(
Λ− 2βSI

N −µS+δR
)
(l−1)

h ×

∫ zl+1
zl

(zl+1 − s)ψ−1(zl − s)ds +
w(l)

(
Λ− 2βSI

N −µS+δR
)
(l)

h ×∫ zl+1
zl

(zl+1 − s)ψ−1(s − zl−1)ds
]
,

(6)

I(zm+1) =



w(a)
w(zm)

I0 +
1−ζ

|PC(ζ)|

(
2βSI

N −
[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=1

[
w(l−1)

(
2βSI

N −[α0+(α1−α0)
b

b+I ]I−(γ+µ)I
)
(l−1)

h ×

∫ zl+1
zl

(zl+1 − s)ψ−1(zl − s)ds +
w(l)

(
2βSI

N −[α0+(α1−α0)
b

b+I ]I−(γ+µ)I
)
(l)

h ×∫ zl+1
zl

(zl+1 − s)ψ−1(s − zl−1)ds
]

(7)

R(zm+1) =



w(0)
w(zm)

I0 +
1−ζ

|PC(ζ)|

([
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R

)
(m)

+ |ln(p)|ζ
|PC(ζ)|Γ(ψ)w (zm) ∑m

l=1

[
w(l−1)([α0+(α1−α0)

b
b+I ]I−(µ+δ)R)(l−1)

h ×∫ zl+1
zl

(zl+1 − s)ψ−1(zl − s)ds +
w(l)([α0+(α1−α0)

b
b+I ]I−(µ+δ)R)(l)

h ×∫ zl+1
zl

(zl+1 − s)ψ−1(s − zl−1)ds
]

(8)

Furthermore, we have

∫ zl+1

zl

(zm+1 − s)ψ−1(zl − s)ds =
hψ+1

ψ(ψ + 1)

[
(m − l)ψ(m − l + 1 + ψ)− (m − l + 1)ψ+1

]
, (9)

and

∫ zl+1

zl

(zm+1 − s)ψ−1(s − zl−1)ds =
hψ+1

ψ(ψ + 1)

[
(m − l + 1)ψ(m − l + 2 + ψ)

−(m − l)ψ(m − l + 2 + 2ψ)

]
. (10)
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Thus, by (9) and (10), the Equations (6)–(8) becomes as follows

S(zm+1) =


w(a)

w(zm)
S0 +

1−ζ
|PC(ζ)|℘1(zm,S(zm))(m)

+ |ln(p)|hψ

|PC(ζ)|Γ(ψ+2)w (zm) ∑m
l=1

[
w(l − 1)℘1(zl−1,S(zl−1))A

ψ
m,l

+w(l)℘1(zl ,S(zl))(l)B
ψ
m,l

]
,

(11)

I(zm+1) =


w(a)

w(zm)
I0 +

1−ζ
|PC(ζ)|℘2(zm, I(zm))

+ |ln(p)|hψ

|PC(ζ)|Γ(ψ+2)w (zm) ∑m
l=1

[
w(l − 1)℘2(zl−1, I(zl−1))A

ψ
m,l

+w(l)℘2(zl , I(zl))(l)B
ψ
m,l

] (12)

R(zm+1) =


w(0)

w(zm)
I0 +

1−ζ
|PC(ζ)|℘3(zm,R(zm))

+ |ln(p)|hψ

|PC(ζ)|Γ(ψ+2)w (zm) ∑m
l=1

[
w(l − 1)℘3(zl−1,R(zl−1))A

ψ
m,l

+w(l)℘3(zl ,R(zl))(l)B
ψ
m,l

] (13)

where

℘1(z,S(z)) = Λ − 2βS(z)I(z)
N − µS(z) + δR(z),

℘2(z, I(z)) = 2βS(z)I(z)
N −

[
α0 + (α1 − α0)

b
b+I

]
I(z)− (γ + µ)I(z),

℘3(z,R(z)) =
[
α0 + (α1 − α0)

b
b+I

]
I(z)− (µ + δ)R(z),

Aψ
m,l = (m − l)ψ(m − l + 1 + ψ)− (m − l + 1)ψ+1,

Bψ
m,l = (m − l + 1)ψ(m − l + 2 + ψ)− (m − l)ψ(m − l + 2 + 2ψ).

6. SIR Model on COVID-19
A key strength of this model lies in its enhanced capabilities to simulate a range of

real-world infectious disease scenarios. Specifically, the model incorporates the δR term
(where δ represents the rate of immunity loss), thereby enabling the capture of diseases
where protection following infection is not lifelong, such as influenza. In such cases,
the model can effectively investigate the initial propagation of novel strains within a
susceptible population, and providing insights into the effectiveness of early intervention
strategies. Furthermore, the PCFD employs a flexible framework for capturing diverse
memory and non-local effects within disease dynamics according to its power parameter
p, and generalizes well-known fractional derivatives. Moreover, a density-dependent
recovery rate, represented mathematically by

[
α0 + (α1 − α0)

b
b+I

]
, accounts for the impact

of healthcare resource limitations, a feature particularly relevant for simulating outbreaks
where access to medical care significantly influences outcomes. In this section, we illustrate
the application and behavior of the SIR model using parameters representative of the
COVID-19 pandemic (Table 2) to provide a concrete real-world example and motivate the
use of this advanced fractional framework.

Here, we consider z ∈ [0, 1000], and the values of parameters as in Table 2 with initial
conditions (S0, I0,R0) = (90, 40, 30). The complete code of simulations is provided in a
GitHub repository via the link: https://github.com/Almalahi/COMPLETE-CODE-SIR-
MODEL (accessed on 29 March 2025).

https://github.com/Almalahi/COMPLETE-CODE-SIR-MODEL
https://github.com/Almalahi/COMPLETE-CODE-SIR-MODEL
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Table 2. Values of Model Parameters.

Parameter Value Units Ref.

Λ 1.75 Individual/Time [29]
β 0.01 (Individual · Time)−1 [33]
µ 0.005 Time−1 [29]
δ 0.04 Time−1 [34]
α0 0.2 Time−1 [29]
α1 0.21 Time−1 [23]
b 0.3 Individual [29]
γ 0.2 Time−1 [35]

By these values, with PCFD model (1), we have Figures 5–7 present a graphical
depiction of the S, I and R with different fractional order of the PCFD model (1).
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Figure 5. Graphical depiction of the Susceptible S, Infected I and Recovered R classes with p = 10,
ψ = 2 and ζ = 0.3, 0.35, 0.4, 0.45 of the power-law Caputo fractional model.

These visualizations offer a direct view into the dynamic interplay of the three epi-
demiological classes in different cases, illustrating their temporal evolution.
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Figure 6. Graphical depiction of the Susceptible S, Infected I and Recovered R classes with p = 100,
ψ = 2.5 and ζ = 0.8, 0.85, 0.9, 0.95 of the power-law Caputo fractional model.
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Figure 7. Graphical depiction of the Susceptible S, Infected I and Recovered R classes with p = 10,
ψ = 2.5 and ζ = 0.8, 0.85, 0.9, 0.95 of the power-law Caputo fractional model.
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7. Symmetric Cases of Model (1)
The fractional derivative employed within model (1) offers a high degree of gen-

eralization, encompassing several symmetric cases contingent upon the specific choices
of its parameters ζ, ψ, the fractional derivative’s power, p, and the weighting function,
w(z). In the ensuing subsections, we will explore and analyze simulations of these distinct
symmetric scenarios, for comparison, to highlight the flexibility of the PCFD and illustrate
the versatility and richness of the fractional model using the COVID-19 representative
parameter set.

SIR COVID-19 Model with Caputo–Fabrizio Fractional Approach
If w(z) = 1, p = e, ψ = 1. Then, the model (1) reduce to the Caputo–Fabrizio fractional

COVID-19 model given by
PC
a Dζ,1,e

z,1 S(z) = Λ − 2βSI
N − µS+ δR,

PC
a Dζ,1,e

z,1 I(z) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I,

PC
a Dζ,1,e

z,1 R(z) =
[
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R.

(14)

With the same parameter values in Table 2, the graphs of approximate solutions in
case of Caputo–Fabrizio model (14) are given as follows:

Figures 8 and 9 provide a detailed graphical representation of the classes S, I, and R,
with w(z) = 1, p = e, ψ = 1. in different fractional order of the Caputo–Fabrizio fractional
model (14).
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Figure 8. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the Caputo–Fabrizio fractional model (14) with w(z) = 1, p = e, ψ = 1. and ζ = 0.8, 0.85, 0.9, 0.95.
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Figure 9. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the Caputo–Fabrizio fractional model (14) with w(z) = 1, p = e, ψ = 1. and ζ = 0.3, 0.35, 0.4, 0.45.

SIR COVID-19 Model with Atangana–Baleanu Fractional Approach
If w(z) = 1, p = e, ζ = ψ. Then, the model (1) reduce to the Atangana–Baleanu

fractional COVID-19 model given by
PC
a Dζ,ζ,e

z,1 S(z) = Λ − 2βSI
N − µS+ δR,

PC
a Dζ,ζ,e

z,1 I(z) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I,

PC
a Dζ,ζ,e

z,1 R(z) =
[
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R.

(15)

The graphs of approximate solutions of Atangana–Baleanu fractional model (15) are
given as follows:

• Figure 10 provide a detailed graphical depiction of S, I, and R populations as simu-
lated by the Atangana–Baleanu fractional model (15) with w(z) = 1, p = e, ζ = ψ and
ζ = 0.3, 0.35, 0.4, 0.45.

SIR COVID-19 Model with Weighted Atangana–Baleanu Fractional Approach
If p = e, ζ = ψ. Then, the model (1) reduce to the weighted Atangana–Baleanu

fractional model given by
PC
a Dζ,ζ,e

z,w S(z) = Λ − 2βSI
N − µS+ δR,

PC
a Dζ,ζ,e

z,w I(z) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I,

PC
a Dζ,ζ,e

z,w R(z) =
[
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R.

(16)

The graphs of approximate solutions of weighted Atangana–Baleanu fractional model
(16) are given as follows:
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• Figures 11 and 12 provide a detailed graphical depiction of S, I, and R populations as
simulated by the weighted Atangana–Baleanu fractional model (16) with w(z) = z+ 1,
p = e, ζ = ψ with different fractional order.
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Figure 10. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the Atangana–Baleanu fractional model (15) with w(z) = 1, p = e, ζ = ψ and ζ = 0.3, 0.35, 0.4, 0.45.

SIR COVID-19 Model with Weighted Generalized Hattaf Fractional Approach
If p = e. Then, the model (1) reduce to the weighted generalized Hattaf fractional

model given by
PC
a Dζ,ψ,e

z,w S(z) = Λ − 2βSI
N − µS+ δR,

PC
a Dζ,ψ,e

z,w I(z) = 2βSI
N −

[
α0 + (α1 − α0)

b
b+I

]
I− (γ + µ)I,

PC
a Dζ,ψ,e

z,w R(z) =
[
α0 + (α1 − α0)

b
b+I

]
I− (µ + δ)R.

(17)

The graphs of approximate solutions of weighted generalized Hattaf fractional model
(17) are given as follows:

Figures 13 and 14 provide a detailed graphical depiction of S, I, and R classes as
simulated by the weighted generalized Hattaf fractional model (17) with w(z) = z+ 1, p = e
with different fractional order.
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Figure 11. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the weighted Atangana–Baleanu fractional model (16) with w(z) = z + 1, p = e, ζ = ψ and
ζ = 0.8, 0.85, 0.9, 0.95.
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Figure 12. Graphical depiction of the Susceptible S, Infected I, and Recovered R classes as simulated
by the weighted Atangana–Baleanu fractional model (16) with p = e, ζ = ψ.
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Figure 13. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the weighted generalized Hattaf fractional model (17) with w(z) = z + 1, p = e and and ζ =

0.8, 0.85, 0.9, 0.95.
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Figure 14. Graphical depiction of the Susceptible S, Infected I and Recovered R classes as simulated
by the weighted generalized Hattaf fractional model (17) with w(z) = z + 1, p = e and and ζ =

0.3, 0.35, 0.4, 0.45.
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Tables 3–7 address the comparison of fractional models and the standard integer-order
SIR model against the “Actual COVID-19 Trend” characteristics.

Table 3. Comparative Evaluation Between Classical and power Fractional SIR Models vs. Actual
COVID-19 Data (Duration for ζ = 0.85 adjusted based on visual inspection of Figures 6 and 7).

Model Type Peak Inf. Time
(days)

Max Infected
Individuals

Epidemic Duration
(days)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR (ζ = 0.85) 50 40 ∼150 High
Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —

Table 4. Caputo–Fabrizio SIR Model (w(z) = 1, p = e, ψ = 1.) vs. Actual COVID-19 Data.

Model Type Peak Inf. Time
(days, approx.)

Max Infected
(Imax, approx.)

Epidemic Duration
(days, approx.)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR
(Caputo–Fabrizio, ζ = 0.85)
Figures 8 and 9

∼40 ∼39 ∼130 High

Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —

Table 5. Atangana–Baleanu SIR Model (w(z) = 1, p = e, ζ = ψ.) vs. Actual COVID-19 Data.

Model Type Peak Inf. Time
(days, approx.)

Max Infected
(Imax, approx.)

Epidemic Duration
(days, approx.)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR
(Atangana–Baleanu, ζ = 0.45)
Figure 10

∼35 ∼38 ∼250 Low to Moderate

Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —

Table 6. Weighted Atangana–Baleanu SIR Model (w(z) = z + 1, p = e, ζ = ψ) vs. Actual COVID-19
Data.

Model Type Peak Inf. Time
(days, approx.)

Max Infected
(Imax, approx.)

Epidemic Duration
(days, approx.)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR (Weighted AB,
ζ = 0.80) Figures 11 and 12 ∼22 ∼40 ∼110 Low

Fractional SIR (Weighted AB,
ζ = 0.45) Figures 11 and 12 ∼45 ∼30 ∼250 Low

Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —

Table 7. Weighted Generalized Hattaf SIR Model (w(z) = z + 1, p = e) vs. Actual COVID-19 Data.

Model Type Peak Inf. Time
(days, approx.)

Max Infected
(Imax, approx.)

Epidemic Duration
(days, approx.)

Alignment with
Real Data

Integer-order SIR [23,29] 35 48 ∼90 Moderate
Fractional SIR (Weighted Hattaf,
ζ = 0.95) Figures 13 and 14 ∼50 ∼40 ∼130 High

Actual COVID-19 Trend [36] 50–55 ∼39–42 ∼130–140 —



Fractal Fract. 2025, 9, 251 26 of 30

8. Discussion and Biological Interpretation
This study introduced a novel SIR model incorporating a generalized PCFD and ap-

plied it using parameters representative of the COVID-19 pandemic (Table 2) to provide a
concrete real-world example and illustrate the potential of this advanced fractional frame-
work. The simulation results, presented in Figures 5–14 and summarized comparatively
in Tables 3–7, offer significant insights into how fractional calculus, particularly the flexi-
ble PCFD approach, can capture diverse epidemic dynamics. This section discusses the
biological interpretation of these findings, evaluating the performance of different frac-
tional derivatives against the standard integer-order model and benchmark characteristics
derived from actual COVID-19 trends, thereby addressing the need to demonstrate the
model’s relevance and potential advantages through illustrative simulations.

Our analysis reveals that the choice of fractional derivative and its associated parame-
ters (ζ, p, ψ, w(z)) profoundly influences the predicted epidemic trajectory, even when using
the same underlying parameter set (Table 2). This is clearly demonstrated in Tables 4–7,
where different symmetric cases of the PCFD yield markedly different alignments with the
benchmark COVID-19 trend. This highlights the importance of selecting an appropriate
modeling framework and tuning its parameters carefully for specific applications. The
fractional order, ζ, is particularly influential, primarily modulating the “memory” embed-
ded in the system—how strongly past events influence present dynamics. The ability to
adjust this memory effect via ζ is key to potentially achieving improved alignment with
real-world data. For instance, compared to the baseline integer-order model which showed
only moderate alignment (Tables 4–7), specific fractional models like Caputo–Fabrizio
(ζ = 0.85, Table 4) and Weighted Hattaf (ζ = 0.95, Table 7) demonstrated high alignment,
successfully capturing the peak timing, magnitude, and duration characteristics of the
benchmark trend much more closely. This improved fit, as summarized in the overall
comparison (Table 3), suggests that the memory effects implicit in these specific fractional
orders better represent the underlying dynamics of the illustrative COVID-19 scenario than
the standard derivative. Conversely, other fractional derivatives like Atangana–Baleanu
(Table 5) and Weighted Atangana–Baleanu (Table 6) showed low alignment for the tested
parameters, emphasizing that simply using any fractional derivative does not guarantee
superiority.

The PCFD model, by its generalized nature encompassing these various forms, allows
for tuning these elements, offering enhanced flexibility to potentially match specific disease
characteristics more accurately than restrictive models. We now examine the behavior of
each population compartment, interpreting the simulation results (Figures 5–14) in light of
the comparative evaluation Tables:

• Susceptible Population (S): As expected, S initially declines in all simulations. How-
ever, the rate of decline and subsequent recovery or stabilization varies significantly,
impacting the overall epidemic duration and alignment score. Models achieving
high alignment (Tables 4 and 7) exhibit S dynamics consistent with the benchmark
epidemic duration (130–140 days), showing significant depletion by the peak infection
time (e.g., S ≈ 220 for CF, S ≈ 200 for WGH at peak) and partial recovery towards the
end (S ≈ 200 for CF, S ≈ 180 for WGH). In contrast, models with lower alignment, such
as Atangana–Baleanu (Table 5), show dynamics (e.g., S ≈ 150 at end) reflecting the
much longer predicted epidemic duration (∼250 days). The diversity in S-dynamics
across Figures 5–14 illustrates the PCFD framework’s capacity to represent varied
scenarios, including those with potentially faster (e.g., Figure 11, WAB) or slower (e.g.,
Figure 10, AB) susceptibility changes compared to the benchmark.

• Infected Population (I): The dynamics of the I compartment are central to the com-
parative evaluation. The benchmark trend showed a peak around 50–55 days with
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a relative magnitude of ∼39–42 individuals. The integer-order model predicted
an earlier (35 days) and higher (48 individuals) peak (Tables 4–7). Significantly,
the Caputo–Fabrizio (ζ = 0.85, Table 4) and Weighted Hattaf (ζ = 0.95, Table 7)
models closely matched the benchmark peak time (∼40/∼50 days) and magnitude
(∼39/∼40 individuals). This successful replication highlights the potential of these
fractional approaches (summarized in Table 3). In contrast, the Atangana–Baleanu
model (Table 5) predicted an early peak (∼35 days), and the Weighted Atangana–
Baleanu model (Table 6) predicted either a very early peak (∼22 days for ζ = 0.80)
or a lower peak magnitude (∼30 for ζ = 0.45), both failing to align well with the
benchmark I curve characteristics. The PCFD’s ability to generalize allows it, in
principle, to capture dynamics ranging from the well-aligned cases (like WGH) to the
less aligned ones (like AB), depending on the chosen parameters (p, ψ, w(z), ζ). The
modulation of peak characteristics via the fractional definition, combined with the
density-dependent recovery term [30], is crucial for realistic simulation.

• Recovered Population (R): The accumulation of the R population reflects the pro-
gression towards the end of the epidemic wave. In models with high alignment
(Tables 4 and 7), the R curve rises steadily and approaches its plateau around the
benchmark duration of 130–140 days (reaching R ≈ 160 for CF, R ≈ 180 for WGH).
This contrasts sharply with models showing poor duration alignment, like Atangana–
Baleanu (Table 5), where the R population continues to rise significantly beyond
140 days, reaching R ≈ 210 only around 250 days. The diverse shapes of the R curves
in Figures 5–14 again showcase the flexibility conferred by the fractional derivative
choice, influencing factors like apparent recovery speed and the final proportion
recovered within a given timeframe, relevant to understanding immunity accumula-
tion [33].

In conclusion, this section explicitly addressed the need for demonstrating the real-
world relevance and motivation of the proposed PCFD SIR model through comparative
evaluation (Table 3). By applying the model using COVID-19 representative parame-
ters (Table 2) and comparing the outcomes against a benchmark trend (Tables 4–7), we
have shown that specific fractional derivatives generalized by the PCFD (namely Caputo–
Fabrizio and Weighted Hattaf under the tested conditions) can offer superior alignment
compared to the standard integer-order model. The primary motivation for using the
generalized PCFD framework lies in its inherent flexibility to capture a wider spectrum
of dynamics—particularly varying memory effects influencing transmission, peak charac-
teristics, and recovery patterns—than is possible with standard integer-order models or
single fixed fractional derivatives. The results clearly indicate that the choice of fractional
derivative significantly impacts predicted epidemic dynamics, and careful selection or
fitting is crucial. The comparative tables strongly suggest that the PCFD approach offers a
valuable and adaptable tool for exploring.

9. Conclusions
This study introduced and analyzed a novel fractional Susceptible-Infected-Recovered

(SIR) model incorporating PCFD and a density-dependent recovery rate reflecting health-
care capacity constraints. We proved solutions’ boundedness and positivity, analysed the
stability of the disease-free equilibrium, derived an explicit formula for the basic repro-
duction number (R0), and conducted a sensitivity analysis. The analysis confirms the
biological plausibility of the model and reveals the dominant influence of the transmis-
sion rate (β) on R0. Numerical simulations vividly demonstrate the significant impact
of the fractional order (ζ) on crucial epidemic characteristics, such as peak timing and
severity. This highlights a core strength and challenge of fractional modeling: the choice of
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derivative and its associated parameters—the fractional order ζ, the power parameters p
and ψ, and the weighting function w(z)—collectively determine the type and strength of
memory embedded within the model. These choices profoundly influence predicted epi-
demic dynamics in simulation, modulating how past events shape current infection rates,
recovery processes, and mortality, thereby substantially altering projections of epidemic
spread, peak characteristics, and overall duration. For instance, lower fractional orders
generally emphasize longer-term historical dynamics, while higher orders prioritize more
recent events. The PCFD framework’s generality, encompassing specific derivatives like
Caputo–Fabrizio, Atangana–Baleanu, and generalized Hattaf (including weighted variants)
as special cases, offers significant flexibility. However, this underscores the critical impor-
tance of selecting or fitting these fractional parameters appropriately for specific disease
contexts, as different choices lead to distinct predictions in model outputs. Furthermore,
the model’s inclusion of detailed recovery pathways (both dependent on and independent
of healthcare intervention) and an infection-induced death rate enhances its realism in rep-
resenting diverse disease outcomes and the impact of healthcare systems. The comparison
Tables 3–7 demonstrates that models incorporating fractional derivatives—particularly the
Caputo–Fabrizio (CF) and weighted generalized Hattaf (WGH) cases—yield predictions
that are more consistent with observed data in terms of peak infection timing and total
case count. The advantage of fractional-order derivatives over classical models lies in their
inherent ability to capture memory and hereditary properties of the infection dynamics.
This allows the model to account for the influence of historical infection rates on current
behavior—something integer-order models fundamentally lack. As seen in our simulations
and comparative analysis, fractional models adjust more effectively to real-world outbreak
patterns, thereby offering superior descriptive and predictive power. One of the unique
strengths of our approach is the use of the Power Caputo Fractional Derivative (PCFD),
which serves as a unifying operator encompassing various well-known fractional deriva-
tives as special cases. This flexibility not only provides a broader mathematical foundation
but also allows the model to be calibrated based on specific memory kernels suited to
different types of epidemics. Such generality enhances the model’s adaptability across a
spectrum of diseases with varying temporal characteristics.. Future work will focus on
extending this model to incorporate spatial dynamics and age-structured populations, as
well as calibrating and validating the model against specific real-world epidemiological
time-series data, aiming to further enhance its utility for detailed epidemic forecasting
and control.
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