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Abstract
The Gross-Pitaevskii Equation (GPE), which belongs to the class of nonlinear Schrödinger
equations is recognized for its applications in diverse fields such as Bose-Einstein Con-
densates and optical fiber. In this study, the dynamic behaviors of various wave solutions
to the M-fractional nonlinear Gross-Pitaevskii equation are examined. Intriguing insights
into the mechanisms regulating the intricate wave patterns of the model are offered through
this investigation. To secure the solutions, including complex, bright, dark, combined, and
singular soliton solutions, the Kumar-Malik method, the modified generalized exponential
rational function method, and the generalized multivariate exponential rational integral func-
tion method are substantially applied. The fractional parametric effects on solitary waves
are observed graphically. Moreover, the Galilean transformation is adopted, and bifurcation,
sensitivity, chaotic behavior, 2D and 3D phase portraits, Poincaré maps, time series analysis,
and sensitivity to multistability under different conditions are explored.

Keywords M-fractional derivatives · Solitons · Nonlinear Gross-Pitaevskii equation ·
Mathematical methods · Qualitative analysis · Multistability

1 Introduction

In today’s scientific and technological era, the study of nonlinear wave phenomena is gaining
increasing interest among scientists and engineers. Nonlinear partial differential equations
(NLPDEs) effectively characterize a diverse array of fields in engineering and research,
including plasma physics, optical fiber technology, acoustics, finance, turbulence, mechani-
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cal engineering, control theory, and nonlinear biological systems [1, 2]. The investigation of
exact solutions to nonlinear equations is a critical component of the investigation of nonlinear
physical processes. NLPDEs are frequently used to model nonlinear physical phenomena. In
comparison, researchers encounter an enormous challenge when confronted with nonlinear-
ity. Numerous authors from various disciplines have addressed this challenge by developing a
variety of numerical and analytical methods to identify potential solutions to nonlinear equa-
tions. These high-order classes of NLPDEs prevent the standardization of NLPDE solutions.
Therefore, there are specific methodologies that can solve complex PDEs within specific
constraints. PDEs that illustrate the dynamics of a system’s evolution over time are known as
evolution PDEs. The process by which a system transforms or evolves is represented by evo-
lutionary PDEs, which incorporate time as a factor. Dynamic process modeling is frequently
employed to implement evolution PDEs in a variety of disciplines, such as engineering,
biology, economics, and physics. An understanding of these equations is necessary to com-
prehend the behavior of physical systems, as they demonstrate the progression of variables
such as temperature, displacement, or wave function over time and space. The advancement
of straightforward analytical solutions to the complex relationship that exists between the rate
of change of a variable in these nonlinear equations is frequently influenced by complexity.
In contrast to their linear counterparts, these equations provide a more accurate representa-
tion of the underlying dynamics by illustrating the complex interactions between a variety
of variables. Fractional differential equations are encountered in a variety of fields, such as
engineering, social sciences, and fundamental sciences [3]. Their substantial contributions to
a variety of disciplines that necessitate complex physical processes, such as control theory,
electrical circuits, and wave propagation, have recently garnered an increasing amount of
attention [4]. A wide range of technical challenges are modeled and designed using these
equations [5]. The solutions to these equations have been advantageous in that they offer a
comprehensive understanding of nonlinear physical properties and suggest a new direction
for future research.

More importantly, solitons are regarded as one of the most intriguing research areas and
have an extensive variety of applications in nonlinear sciences. As a consequence of its
relevance to contemporary research in telecommunications engineering and mathematical
physics, the scientific community has nurtured an interest in the theory of optical solitons.
Soliton waves are capable of traveling vast distances without losing their shape as a result
of dispersion. Thus, they are indispensable in the subject of nonlinear technology. Research
is performed to further investigate the development and testing of solitons. Construction of
soliton solutions is the sole approach to investigating these equations, as they exhibit unique
behaviors. A rapidly evolving subfield within the field of telecommunications is the theory of
solitons. A wide range of electronic manufacturing applications, including magneto-optics,
birefringent fibers, metamaterials, and others, have the potential to use soliton technology.
Photopolymers, bulkmaterials, optical waveguides, and photonic crystal fibers are among the
systems in which solitons may be present [6]. There are numerous studies that have demon-
strated the wide variety of attributes of soliton solutions and their practical applications in
scientific and technological fields [7]. Soliton solutions are implemented in a variety of fields,
including nonlinear optics, coastal engineering, plasma physics, communication engineer-
ing, and fluid dynamics [8]. An extensive variety of numerical and analytical algorithms have
been devised by mathematicians to identify soliton solutions for the NLPDEs. In order to
investigate novel applications and advance these disciplines, researchers may develop a more
comprehensive understanding of solitons.

In a multiplicity of physical systems, exact solutions are regarded as of paramount impor-
tance, as they enable the analysis of physical behaviors and establish a foundation for
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subsequent research and investigation. A common way of obtaining an exact solution is
to characterize the behaviors of a physical system as an ODE or PDE. NLPDEs or FNLPDEs
can be employed to simulate a variety of intricate natural or industrial phenomena. Many
researchers have devised numerous methodologies and strategies to resolve these issues with
precision. The following strategies are among the most frequently employed and widely rec-
ognized that have been recently developed: Hirota bilinear method [9], multiple exp-function
approach [10], Lie classical approach [11], truncated Painlevé approach [12], Riccati equa-
tion mapping method [13], Adomian decomposition technique [14], Lie symmetry technique
[15], Darboux transformation [16], Bernoulli G ′

G -expansion method [17], bifurcation analy-

sis [18, 19], G ′
G -expansion method [20], modified Sardar subequation method [21], modified

simple equation technique [22], iterative transform method [23], tan(
φ
2 ) technique [24],

simplest equation technique [25] etc.
Furthermore, a dynamical system is an equation that depicts the evolution of a system

through time. This system’s constituent differential equations describe the time-dependent
behavior of the system. Many fields use dynamic systems to study the behavior of complex
systems. These fields include engineering, biology, economics, ecology, physics, and engi-
neering. Basic dynamical systems include the stock market, the planets in a solar system,
the motion of a pendulum, and the dynamics of a species’ population. The dynamical sys-
tem relies on the idea of bifurcation analysis theory. Dynamical systems exhibit qualitative
modifications in the behavior of distributed systems as a result of modifications to system
parameters.When a system’s behavior undergoes a sudden change, a bifurcation may happen
[26]. When two unstable equilibrium points collide with one stable equilibrium point, it is
possible for the stability of the equilibrium points to switch places. Two stable equilibrium
points break apart and one unstable equilibrium point is created in the case of this colli-
sion. In many fields, including engineering, biology, economics, and physics, bifurcation
theory is used to understand the behavior of nonlinear dynamical systems. In addition, the
chaos theory delves into the study of deterministic systems that, although being controlled
b basic mathematical equations, display intricate and surprising behavior [27]. Even small
changes to the starting conditions can have a big impact on the final outcome. The phase
space of the system is finally defined by the path taken by neighboring points. An infinite
number of periodic orbits are densely packed into the system’s phase space. Some well-
known examples of chaotic systems include the fluid movement, the logistic map, weather,
and double pendulum. Numerous disciplines have made use of chaos theory, including the
social sciences, economics, engineering, biology, and physics. It has changed the way we
think about deterministic systems and howwe perceive natural randomness and predictability
[28]. Instead of illustrating the entire trajectory, the Poincaré maps, also known as Poincaré
sections emphasize the points at which the trajectory intersects the plane, thereby offering a
more comprehensive understanding of potential bifurcations, stability features, and periodic
orbits. This methodology provides a comprehensive visualization of the system’s dynamics,
enabling the identification of stability characteristics, periodicity, and transitions to more
intricate behaviors.

This work mainly aims to investigate the complex dynamics behaviors inherent in
the fractional nonlinear Gross-Pitaevskii equation applying the analytical approaches like
Kumar-Malik method [29], the modified generalized exponential rational function method
(mGERFM) [30], and the multivariate generalized exponential rational integral function
method (MGERIFM) [31] and analyzing its nonlinear dynamical behavior in the forms of
bifurcation analysis, chaotic behavior, Poincaré maps, time series analysis, and sensitivity to
multistability. The purpose of these objectives is to enhance our understanding of the behavior
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of the proposed model and to address the challenges posed by highly complex mathematical
models. The applied approaches are highly effective due to the structured framework that is
provided for the system of nonlinear complex models, as well as its simplicity, and capacity
to produce a diverse array of novel results.

The remaining article is organized as follows: In Section 2, a variety of themost significant
properties and fundamental concepts that are associated with fractional derivatives are dis-
cussed. The governing model is introduced in Section 3, and soliton solutions are computed
in Section 4 using integration approaches such as the Kumar-Malik method, the mGERFM,
and theMGERIFM. The solutions are visually represented in Section 5, while the concluding
remarks are the main focus of Section 6.

2 Fractional Order Derivatives

Fractional calculus (FC) is generally considered to be a field in which the integral and deriva-
tive of fractional order are prevalent topics due to their numerous potential applications in
various fields of science. This subject has attracted substantial interest from researchers due
to its prevalence and importance in the modeling of a diverse array of natural processes. FC
and its applications in a variety of disciplines have been the subject of extensive research
by scholars. Fractional differential equations are a practical and efficient approach to the
description of natural phenomena. It captivates both pure and applied mathematicians. Math-
ematicianswho specialize in puremathematics are investigating the existence and uniqueness
of solutions to fractional differential equations. Applied mathematics research on fractional
partial differential equations (FPDEs) contain numerical solutions and propagating waves,
are essential for understanding many natural nonlinear physical processes and are important
in the nonlinear sciences. Data processing, viscoelasticity, electrode electrolyte polarization,
electromagnetic waves, glass fiber, plasma physics, biogenetics, solid physics, circuits, and
control theory are among the numerous applications of FPDEs. The examination of traveling
wave solutions significantly enhances our comprehension of the behaviors of a wide range
of nonlinear problems in physical science. A diverse array of methodologies that are both
effective and robust have been proposed in the literature to evaluate the soliton and soli-
tary wave solutions of FPDEs. Recent fractional calculus research has shown that fractional
models often better capture physical events than integer models.The M-truncated fractional
derivative represents a modified form of the fractional derivative that introduces a truncation
parameter, offering a practical approach to handle the non-locality of traditional fractional
derivatives. Physically, it accounts for the influence of fractional-order dynamics within a
finite range, which is particularly useful in modeling systems where long-range interactions
are limited or where localized behavior is of interest. This study employs the proposed model
as an illustration to assess the efficacy of fractional derivatives as a tool for investigating and
understanding specific physical phenomena.
The truncated M-fractional derivative

Definition 2.1 For f : [0,∞) → R, the truncated M-fractional derivative [32] is described
by:

D
ω, μ
M {( f )(t)} = lim

ε→0

f (tEμ(εt1−ω)) − f (t)

ε
, μ > 0, ω ∈ (0, 1), ∀t > 0, (1)

where Eμ(.) is the parameter of truncated Mittag-Leffler function [32].
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Theorem 2.1 If μ > 0, 0 < ω < 1, p, s ∈ R, and f , ρ are differentiable at the given point
t > 0. Then:

1. D
ω, μ
M {(pρ + s f )(t)} = pDω, μ

M {ρ(t)} + sDω, μ
M { f (t)}.

2. D
ω, μ
M {(ρ . f )(t)} = ρ(t)Dω, μ

M { f (t)} + f (t)Dω, μ
M {ρ(t)}.

3. D
ω, μ
M { ρ

f (t)} = f (t)D ω, μ
M {ρ(t)}−ρ(t)D ω, μ

M { f (t)}
[ f (t)]2 .

4. D
ω, μ
M {c} = 0, with ρ(t) = c being the constant.

5. If ρ is differentiable, then D
ω, μ
M {ρ(t)} = t1−ω

�(μ+1)
dρ(t)
dt .

3 The Governing Equation

The rapid theoretical and experimental advancements in ultracold physics have garnered
significant attention in the past two decades, particularly in the study of quantum liquids,
including Bose-Einstein condensates (BEC), helium, and ultracold Fermi gases [33]. The
nonlinearity that comes from particle interactions is one of the most interesting things about
BEC that has sparked a lot of interest in both theoretical research and experimental testing.
The confinement potentials, which are typically harmonic, significantly influence this non-
linearity. The magnetically controlled Feshbach resonance approach has made it possible to
continuously adjust the sign and intensity of inter-particle interactions, which can range from
positive to negative infinity. The capability of degenerate Fermi gases at ultracold temper-
atures has made the long-awaited Bardeen-Cooper-Schrieffer-BEC crossover possible. As
a result, BEC has developed into a versatile platform for investigating nearly any aspect of
modern physics, including condensed matter physics and astrophysics. The GPE, which is an
important part of mean field theories, has shown a remarkable level of accuracy in describing
how BEC moves. Extensive studies from both mathematical and physical perspectives have
yielded significant insights, and numerous researchers have identified exact solutions that
exhibit various forms of solitons. The recent increase in interest in cold atomic Fermi gases
has coincided with the introduction of the generalized GPE to derive analytical solutions for
dynamic behaviors. The important model, namely GGPE, is described by [34]

i
∂

∂t
ϕ(x, t) = − ∂2

∂x2
ϕ(x, t) − 1

2
ε2x2ϕ(x, t) + 2M

ps
L⊥

|ϕ(x, t)|2ϕ(x, t), (2)

where ε << 1, M is a real constant and ps is used to denote the frequency of the harmonic
oscillator. The wave function of BEC is denoted by U (x, t)

ϕ(x, t) = U (x, t)e
iεt
2 − εx2

4 , (3)

where t = 2
´ t
0 e

2ετdτ and x = xeεt . The M-fractional form of nonlinear GPE read as

iDω, μ
M,t U + 1

2
D

2ω, μ
M,x U − d|U 2|U = 0, (4)

where d = M p0
L⊥ and U = U (x, t). Equation 4 is derived from the magnetic field theory,

which is observed by magnetically modulating the inter-atomic interaction. Moreover, the
literature examines this model from different perspectives, such as in [34] the exact solutions
are studied applying the rational sine-Gordon expansion method where in [35] the Hirota
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bilinear approach is applied to extract various soliton solutions. While in [36] the proposed
model was studied with conformable derivatives of beta type applying sub-equation method.

4 Extraction of Solutions

Solution of (4) may be obtained using the transformation defined by:

U = �(ξ)e
i�(β+1)(cxω−btω)

ω ; (5)

ξ = �(β + 1) (axω − κtω)

ω
, (6)

where the parameters a, b, c, κ are real constants. By integrating the predefined transfor-
mations in (4), we have

Real Part: a2�
′′
(ξ) + (

2b − c2
)
�(ξ) − 2d�3(ξ) = 0, (7)

Imaginary Part: κ�
′
(ξ) − ac�

′
(ξ) = 0. (8)

We get κ = ac from the (8).
Homogeneous Balance principle:
The homogeneous balance principle states that the comparison between the highest order

of linear derivative term and the highest degree of nonlinear term as follows:

d p�

dξ p
= n + p (9)

�p
(
dq�

dξq

)s

= np + s(n + q) (10)

Following that, the homogeneous balancing principle between the terms �3 and �′′ in (7)
results as follows:

�′′ = n + 2 (11)

�3 = 3n (12)

By comparing the (11) and (12), �⇒ n + 2 = 3n, �⇒ n = 1 we obtain the value of
n = 1, which is positive integer.

4.1 Kumar-Malik Method

For n = 1 the general solution of Kumar-Malik method [29] can be described as

�(ξ) = α0 + α1�(ξ), (13)

with
�

′
(ξ) =

√
λ1�(ε)4 + λ2�(ε)3 + λ3�(ε)2 + λ4�(ε) + λ5. (14)
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The following solutions are obtained by employing (13) along with (14) in (7):

• Case-1 For λ5 →
(
4λ1λ3−λ22

)
2

64λ31
, λ4 → λ2

(
4λ1λ3−λ22

)

8λ21
offers α1 = 4α0λ1

λ2
, b =

3a2λ22−8a2λ1λ3+8c2λ1
16λ1

, d = a2λ22
16α2

0λ1
. As a result we have the following solutions:

When λ1 > 0 and 8λ1λ3 − 3λ22 < 0, we get: The dark soliton solution as follows:

U1(x, t) = e

⎛

⎜⎜
⎝

i�(β+1)

(

cxω− tω(3a2λ22−8a2λ1λ3+8c2λ1)
16λ1

)

ω

⎞

⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

−
α0

√
3λ22 − 8λ1λ3 tanh

(√
λ1

(
3λ22−8λ1λ3

)
ξ

4λ1

)

λ2

⎞

⎟⎟⎟⎟
⎠

,

(15)

The singular soliton solution

U2(x, t) = e

⎛

⎜⎜
⎝

i�(β+1)

(

cxω− tω(3a2λ22−8a2λ1λ3+8c2λ1)
16λ1

)

ω

⎞

⎟⎟
⎠

⎛

⎜
⎜⎜⎜
⎝

α0

√
3λ22 − 8λ1λ3 coth

(√
λ1

(
3λ22−8λ1λ3

)
ξ

4λ1

)

λ2

⎞

⎟
⎟⎟⎟
⎠

.

(16)

When λ1 > 0 and 8λ1λ3 −3λ22 > 0, we get the explicit silitary periodic solutions as follows:

U3(x, t) = e

⎛

⎜⎜
⎝

i�(β+1)

(

cxω− tω(8λ1(c2−a2λ3)+3a2λ22)
16λ1

)

ω

⎞

⎟⎟
⎠

⎛

⎜
⎜⎜⎜
⎝

α0

√
8λ1λ3 − 3λ22 tan

(√
λ1

(
8λ1λ3−3λ22

)
ξ

4λ1

)

λ2

⎞

⎟
⎟⎟⎟
⎠

,

(17)

U4(x, t) = e

⎛

⎜⎜
⎝

i�(β+1)

(

cxω− tω(8λ1(c2−a2λ3)+3a2λ22)
16λ1

)

ω

⎞

⎟⎟
⎠

⎛

⎜
⎜⎜⎜
⎝

α0

√
8λ1λ3 − 3λ22 cot

(√
λ1

(
8λ1λ3−3λ22

)
ξ

4λ1

)

λ2

⎞

⎟
⎟⎟⎟
⎠

.

(18)

• Case-2 For λ5 → λ22

(
16λ1λ3−5λ22

)

256λ31
, λ4 → λ2

(
4λ1λ3−λ22

)

8λ21
offers α1 = 4α0λ1

λ2
, b =

3a2λ22−8a2λ1λ3+8c2λ1
16λ1

, d = a2λ22
16α2

0λ1
. As a result we have the following solutions:

When λ1 < 0 and 8λ1λ3 − 3λ22 < 0, we get the bright soliton solution as follows:

U5(x, t) = e

⎛

⎜⎜
⎝

i�(β+1)

(

cxω− tω(8λ1(c2−a2λ3)+3a2λ22)
16λ1

)

ω

⎞

⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎝

α0

√
6λ22 − 16λ1λ3sech

(√
λ1

(
8λ1λ3−3λ22

)
ξ

2
√
2λ1

)

λ2

⎞

⎟⎟
⎟⎟
⎠

.

(19)
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When λ1 > 0 and 8λ1λ3 − 3λ22 > 0, we get the singular soliton solution as:

U6(x, t) = e

⎛

⎜
⎜
⎝

i�(β+1)

(

cxω− tω(8λ1(c2−a2λ3)+3a2λ22)
16λ1

)

ω

⎞

⎟
⎟
⎠

⎛

⎜⎜⎜
⎜
⎝

α0

√
16λ1λ3 − 6λ22csch

(√
λ1

(
8λ1λ3−3λ22

)
ξ

2
√
2λ1

)

λ2

⎞

⎟⎟⎟
⎟
⎠

.

(20)

When λ1 > 0 and 8λ1λ3 − 3λ22 < 0, we get the periodic solutions as:

U7(x, t) = e

⎛

⎜⎜
⎝

i�(β+1)

(

cxω− tω(8λ1(c2−a2λ3)+3a2λ22)
16λ1

)

ω

⎞

⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎝

α0

√
6λ22 − 16λ1λ3 sec

(√
λ1

(
3λ22−8λ1λ3

)
ξ

2
√
2λ1

)

λ2

⎞

⎟⎟
⎟⎟
⎠

,

(21)

U8(x, t) = e

⎛

⎜⎜
⎝

i�(β+1)

(

cxω− tω(8λ1(c2−a2λ3)+3a2λ22)
16λ1

)

ω

⎞

⎟⎟
⎠

⎛

⎜⎜⎜
⎜
⎝

α0

√
6λ22 − 16λ1λ3 csc

(√
λ1

(
3λ22−8λ1λ3

)
ξ

2
√
2λ1

)

λ2

⎞

⎟⎟⎟
⎟
⎠

.

(22)

• Case-3 For λ2 = 0, λ4 = 0, λ5 = 0 and λ3 > 0, offers α0 = 0, α1 = a
√

λ1√
d

, b =
1
2

(
c2 − a2λ3

)
. we get the exponential function solution:

U9(x, t) = e

(
i�(β+1)

(
cxω− 1

2 t
ω(c2−a2λ3)

)

ω

) ⎛

⎝ 4a
√

λ1λ3ρ√
d

(
4ρ2e

√
λ3ξ − λ1λ3e

√
λ3(−ξ)

)

⎞

⎠ . (23)

By taking λ1 = − 4ρ2

λ3
in (23), we have the bright-type soliton solution

U10(x, t) = e
i�(β+1)(cxω−btω)

ω

⎛

⎝
aλ3

√
− ρ2

λ3
sech

(√
λ3ξ

)

√
dρ

⎞

⎠ . (24)

Similarly, by taking λ1 = 4ρ2

λ3
in (23), we have

U11(x, t) = e
i�(β+1)(cxω−btω)

ω

⎛

⎝
aλ3

√
ρ2

λ3
csch

(√
λ3ξ

)

√
dρ

⎞

⎠ , (25)

where ξ is defined in (6).
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4.2 Modified Generalized Exponential Rational FunctionMethod

The solution for mGERFM [30] is stated as:

�(ξ) =
n∑

j=1

a j

(
�′(ξ)

�(ξ)

) j

+
n∑

j=1

h j

(
�′(ξ)

�(ξ)

)− j

+ a0, (26)

where

�(ξ) = m1eℵ1ξ + m2eℵ2ξ

m3eℵ3ξ + m4eℵ4ξ
. (27)

For n = 1, (26) is written as:

�(ξ) = a1

(
�′(ξ)

�(ξ)

)
+ h1

(
�′(ξ)

�(ξ)

)−1

+ a0. (28)

• By putting m = [1, 1, 1, 0] and ℵ = [0,−1, 0, 0], in (27), gives �(ζ) = 1 + e−ζ , and

inserting (28) in (7) offers a1 = 2a0, h1 = 0, b = 1
4

(
a2 + 2c2

)
, d = a2

4a20
, then we get:

Soliton solution of exponential form

U1(x, t) = e

(
i�(β+1)

(
cxω− 1

4 (a
2+2c2)tω

)

ω

) ⎛

⎜⎜
⎝

a0

(
e
a�(β+1)(xω−ctω)

ω − 1

)

e
a�(β+1)(xω−ctω)

ω + 1

⎞

⎟⎟
⎠ . (29)

The explicit hyperbolic solution

U2(x, t) = e

(
i�(β+1)

(
cxω− 1

4 (a
2+2c2)tω

)

ω

)
(
a0 tanh

(
a�(β + 1) (xω − ctω)

2ω

))
. (30)

• Next, letting m = [2, 0, 1, 1] and ℵ = [−2, 0, 1,−1], in (27), offers �(ξ) = e−2ξ sech(ξ)

while solving (28) and a1 = 0, a0 = 2h1
3 , b = a2 + c2

2 , d = 9a2

h21
, the following solutions

are written as:
The dark soliton solution

U3(x, t) =
h1 exp

(
i�(β+1)

(
cxω− 1

2

(
2a2+c2

)
tω

)

ω

) (
2 tanh

(
a�(β+1)(xω−ctω)

ω

)
+ 1

)

3
(
tanh

(
a�(β+1)(xω−ctω)

ω

)
+ 2

) . (31)

• Taking m = [−i,−i,−i,−i] and ℵ = [1,−1, 0, 0], (27), offers �(ξ) = cosh(ξ), (28)
and (7) provide a1 = a√

d
, a0 = 0, h1 = a√

d
, b = 1

2

(
8a2 + c2

)
, and a1 = 0, a0 =

0, h1 = a√
d
, b = a2 + c2

2 , implies the following solutions:

U4(x, t) = e

(
i�(β+1)

(
cxω− 1

2 (8a
2+c2)tω

)

ω

) ⎛

⎝
a

(
coth2

(
a�(β+1)(xω−ctω)

ω

)
+ 1

)
tanh

(
a�(β+1)(xω−ctω)

ω

)

√
d

⎞

⎠ ,

(32)
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U5(x, t) = e

(
i�(β+1)

(
cxω− 1

2 (8a
2+c2)tω

)

ω

) ⎛

⎝
a coth

(
a�(β+1)(xω−ctω)

ω

)

√
d

⎞

⎠ . (33)

• By taking m = [1, 1, 1, 0] and ℵ = [3, 2, 0, 0], (27), offers �(ζ) = e2ζ + e3ζ , while (28)

and (7) gives a1 = 0, a0 = − 1
12 (5h1) , b = 1

4

(
a2 + 2c2

)
, d = 36a2

h21
, and a1 = 0, a0 =

− 1
12 (5h1) , b = 1

4

(
a2 + 2c2

)
, d = 36a2

h21
, then we get:

U6(x, t) = −e

(
i�(β+1)

(
cxω− 1

4 (a
2+2c2)tω

)

ω

) ⎛

⎜
⎜
⎝

h1

(
3e

a�(β+1)(xω−ctω)
ω − 2

)

36e
a�(β+1)(xω−ctω)

ω + 24

⎞

⎟
⎟
⎠ . (34)

Next, the hyperbolic solution

U7(x, t) = −e

(
i�(β+1)

(
cxω− 1

4 (a
2+2c2)tω

)

ω

) ⎛

⎝
h1

(
cosh

(
�(β+1)(axω−actω)

2ω

)
+ 5 sinh

(
�(β+1)(axω−actω)

2ω

))

12
(
5 cosh

(
�(β+1)(axω−actω)

2ω

)
+ sinh

(
�(β+1)(axω−actω)

2ω

))

⎞

⎠ . (35)

• Choosing m = [1, 1, 2, 0] and ℵ = [i,−i, 0, 0], then (27), gives �(ζ) = cos ζ , (28) and
(7) provide a1 = a√

d
, a0 = 0, h1 = − a√

d
, b = 1

2

(
c2 − 8a2

)
, a1 = a√

d
, a0 = 0, h1 =

0, b = 1
2

(
c2 − 2a2

)
, and a1 = 0, a0 = 0, h1 = − a√

d
, b = 1

2

(
c2 − 2a2

)
, we get:

U8(x, t) = e

(
i�(β+1)

(
cxω− 1

2 (c
2−8a2)tω

)

ω

) ⎛

⎝
a

(
cot2

(
a�(β+1)(xω−ctω)

ω

)
− 1

)
tan

(
a�(β+1)(xω−ctω)

ω

)

√
d

⎞

⎠ , (36)

U9(x, t) = −e

(
i�(β+1)

(
cxω− 1

2 (c
2−8a2)tω

)

ω

) ⎛

⎝−
a tan

(
a�(β+1)(xω−ctω)

ω

)

√
d

⎞

⎠ , (37)

U10(x, t) = e

(
i�(β+1)

(
cxω− 1

2 (c
2−8a2)tω

)

ω

) ⎛

⎝
a cot

(
a�(β+1)(xω−ctω)

ω

)

√
d

⎞

⎠ . (38)

4.3 Multivariate Generalized Exponential Rational Integral Function Approach

The general solution to MGERIFM [31] is described as:

�(ξ) = c0 +
n∑

r=1

gi

⎛

⎜⎜⎜
⎝

¨
· · ·

ˆ

︸ ︷︷ ︸
r

v(ξ)dξdξ · · · dξ

⎞

⎟⎟⎟
⎠

r

+
n∑

r=1

hr

⎛

⎜⎜⎜
⎝

¨
· · ·

ˆ

︸ ︷︷ ︸
r

v(ξ)dξdξ · · · dξ

⎞

⎟⎟⎟
⎠

−r

. (39)
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The solution to equation (39) for n = 1 is as follows:

�(ξ) = c0 + g1

ˆ
v(ξ)dξ + h1

(ˆ
v(ξ)dξ

)−1

, (40)

where v(ξ) is defined by

v(ξ) = τ1eξs1 + τ2eξs2

τ3eξs3 + τ4eξs4
. (41)

Moreover, the general solutions can be expressed as:
Case-1: Choosing [τ1, τ2, τ3, τ4] = [−i,−i,−i,−i] and [s1, s2, s3, s4] = [1,−1, 0, 0] ,

(41) takes the following form

v(ξ) = cosh(ξ). (42)

Inserting (42) into (40), implies that

�(ξ) = c0 + g1 sinh(ξ) + h1sinh
−1(ξ). (43)

The solutions are as follows when (43) is inserted into (7):
For c0 = 0, g1 = 0, a = √

dh1, b = 1
2

(
c2 − dh21

)
, we have:

U1(x, t) = e

(
i�(β+1)

(
cxω− 1

2 t
ω(c2−dh21)

)

ω

)
(

h1csch

(√
dh1�(β + 1) (xω − ctω)

ω

))

. (44)

Case-2: Let [τ1, τ2, τ3, τ4] = [2i,−2i, 4i, 4i] and [s1, s2, s3, s4] = [ 1
2 ,− 1

2 , 0, 0
]
, (41)

transforms to sine hyperbolic function

v(ξ) = 1

2
sinh

(
ξ

2

)
. (45)

Plugging (45) into (40), offers

�(ξ) = c0 + g1 cosh

(
ξ

2

)
+ h1cosh

−1
(

ξ

2

)
. (46)

Applying (46) to (7), we get:

For c0 = 0, g1 = 0, d = − a2

4h21
, b = 1

8

(
4c2 − a2

)
, we get the solution as follows:

U2(x, t) = e

(
i�(β+1)(a2 tω−4c2 tω+8cxω)

8ω

) (
h1sech

(
a�(β + 1) (xω − ctω)

2ω

))
. (47)

Case-3: Taking [τ1, τ2, τ3, τ4] = [1,−1, i, i] and [s1, s2, s3, s4] = [i,−i, 0, 0] , (41)
converts to the periodic function

v(ξ) = sin(ξ). (48)

Putting (48) into (40), gives

�(ξ) = c0 − g1 cos(ξ) − h1cos
−1(ξ). (49)

Incorporating (49) in (7), we have:
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For c0 = 0, g1 = 0, d = a2

h21
, b = 1

2

(
a2 + c2

)
, we obtain:

U3(x, t) = −e

(
i�(β+1)

(
cxω− 1

2 (a
2+c2)tω

)

ω

)
(
h1 sec

(
�(β + 1) (axω − actω)

ω

))
. (50)

Case-4: Choosing the parameters [τ1, τ2, τ3, τ4] = [1, 1, 1, 1] and [s1, s2, s3, s4] =
[i,−i, 0, 0] , (41) offers

v(ξ) = cos(ξ). (51)

Manipulating (51) and (40), we have

�(ξ) = c0 + g1 sin(ξ) + h1sin
−1(ξ). (52)

Plugging (52) into (7), give the following solutions:

When c0 = 0, g1 = 0, b = 1
2

(
a2 + c2

)
, d = a2

h21
, we get:

U4(x, t) = e

(
i�(β+1)

(
cxω− 1

2 (a
2+c2)tω

)

ω

)
(
h1 csc

(
�(β + 1) (axω − actω)

ω

))
. (53)

Case-5: Taking the parameters [τ1, τ2, τ3, τ4] = [2, 2, 2, 2] and [s1, s2, s3, s4] =[ 2
5 ,

2
5 , 0, 0

]
, (41) gives

v(ξ) = e
2ξ
5 . (54)

Manipulating (54) and (40), we have

�(ξ) = c0 + 1

2
g1

(
5e

2ξ
5

)
+ h1

(
5

2
e
2ξ
5

)−1

. (55)

Inserting (55) into (7), give the following solution:

When c0 = 0, d = 0, b = c2
2 − 2a2

25 , we get:

U5(x, t) = e

⎛

⎜
⎝

i�(β+1)

(
cxω−

(
c2
2 − 2a2

25

)
tω

)

ω

⎞

⎟
⎠ (

5

2
g1e

2�(β+1)(axω−actω)
5ω + 2

5
h1e

− 2�(β+1)(axω−actω)
5ω

)

.

(56)

Next, the hyperbolic solution is written as

U6(x, t) = e

⎛

⎜
⎝

i�(β+1)

(
cxω−

(
c2
2 − 2a2

25

)
tω

)

ω

⎞

⎟
⎠(

25g1

(

cosh

(
2a�(β + 1)

(
xω − ctω

)

5ω

)

+ sinh

(
2a�(β + 1)

(
xω − ctω

)

5ω

))

+4h1

(

cosh

(
2a�(β + 1)

(
xω − ctω

)

5ω

)

− sinh

(
2a�(β + 1)

(
xω − ctω

)

5ω

)) )
. (57)
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• Graphical representation
Characteristics and behaviors of the waves can be observed by representing the solutions in
various graph formats. Surface plots can depict the spatial distribution and evolution of the
waves, while contour plots can highlight areas with specific wave amplitudes or intensities.
Three dimensional plots with color coding can effectively illustrate the interaction between
spatial and temporal dimensions, providing a comprehensive depiction of wave dynamics. To
show how the new extracted soliton solutions relate to the existing governing equation, we
have chosen particular values for the physical parameters in this section. Three-dimensional,
graphs two-dimensional and contour plots are used to illustrate how parametersω and t affect
the soliton solutions that are currently in operation. Figures 1, 2, 3, 4 and 5 display 2D, 3D,
and contour graphs that illustrate the behavior of the current solutions. Figure 1 represents
the behavior of the dark soliton solution for the parameters β = 0.95.c = 1.07, λ1 =
0.9, a = 1.5, α0 = 2.1, λ2 = 1.9, λ3 = 0.1. Analyzing and comprehending the dark optical
solution is crucial for applications in nonlinear optics, optical communications, and other

Fig. 1 Plots for the (15) with different parametric values and effect of fractional parameter and time to the
dynamics of waves
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fields requiring exact control andmanipulation of light intensity. Figure 2 illustrate the explicit
periodic solitary wave for the parameters β = 0.999, c = 2.07, λ1 = 1.9, a = 0.5, α0 =
0.1, λ2 = 0.9, λ3 = 3.1. An explicit periodic solitary wave solution can represent a solitary
wave that is tuned to periodically recur over an extensive area while maintaining specific
properties of a solitary wave, such as a localized concentration of energy. Periodic solitons,
also known as cnoidal waves, are solutions that show a periodic confguration in space or
time and they grow indefnitely but keep a periodic pattern. Figure 3 shows the bright soliton
solution with the assistance of the suitable parameters a = 1.92, β = 0.99, b = 1.2, c =
0.09, d = 0.998, λ3 = 0.02, ρ = 0.2. Localized waves with a peak that propagate in a
nonlinear medium are called bright solitons. They are shown by a localized rise in the field
variable, which is the atomic displacement. They merge in environments characterized by
focal nonlinearity or dynamic interatomic interactions. In themodel under consideration, they
are equivalent to localized vibrational modes with an amplitude maximum and subsequent
decline from a single location. Moreover, Fig. 4 with the values a = 1.992, a0 = 0.098, β =
1.09, c = 0.09 depicts the combined dark bright soltion behavior. Dark solitons, which are
localized waves with lower intensity, and bright solitons, which are localized waves with
higher intensity, coexist within a single wave function in mixed dark-bright soliton solutions.
There are areas in the wave with lower and higher amplitudes or intensities, thus the dark
and brilliant parts interact in complicated ways. Figure 5 explains the dynamics of solitary
wave for the variables a = 1, β = 0.41, c = 0.69, h1 = 4.02. So, soliton behavior can be
better understood, analyzed, and optimized with the help of visual representations. It allows
for the simplification of difficult ideas, the detection of possible issues (such dispersion or
interference), and the creation of efficient and reliable optical communication systems.

5 Qualitative Analysis

In this section, we will discuss the qualitative analysis of the Gross-Pitaevskii equation that
includes different tools such as bifurcation, chaotic, sensitivity analysis, using the 2D phase
portraits, and time series analysis.

Fig. 2 Plots for the (18) with different parametric values and effect of fractional parameters and time to the
dynamics of waves
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Fig. 3 Plots for the (24) with different parametric values and effect of fractional parameters and time to the
dynamics of waves

5.1 Bifurcation Analysis

Bifurcation analysis is a mathematical technique used to study changes in a system’s qual-
itative or topological structure as a parameter within the system is varied. It is commonly
applied to nonlinear dynamical systems to understand how their behavior changes as key
parameters cross critical thresholds. We discuss the bifurcation analysis of the model using
the Galilean transformation on (7), leading to the unperturbed traveling wave system [37, 38,
44–47].

⎧
⎪⎪⎨

⎪⎪⎩

d�

dξ
= M,

dM
dξ

= Q1�(ξ) − Q2�(ξ)3·
(58)

where Q1 = 2b−c2

a2
, Q2 = 2d

a2
. The Hamiltonian function of the associated system (58),

can be written as:

H �(�,M) = M2

2
− Q1

�2(ξ)

2
+ Q2

�4(ξ)

4
· (59)

Where Q1, Q2 are the parameters of he dynamical system is described by (58). By solving
the system (58) and obtain the following three equilibrium points for system (58) are as
follows:
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Fig. 4 Plots for the (29) with different parametric values and effect of fractional parameters and time to the
dynamics of waves

A = (0, 0), B =
(
0,

√
Q1

Q2

)
,C =

(
0,−

√
Q1

Q2

)
. (60)

Jacobian matrix of (59) is given by:

J �(�,M) =
∣∣∣∣

0 1
Q1 − 3Q2�

2(ξ) 0

∣∣∣∣

J �(�,M) = −Q1 + 3Q2�
2(ξ). (61)

Remark:
As we know that.

• If J (�,M) < 0, then (�,M) is a saddle point.
• If J (�,M) > 0, then (�,M) is a centre.
• If J (�,M) = 0, then (�,M) is a cuspidal point.

Family : 1
When Q1 > 0 and Q2 > 0 then there are three equilibrium points, A = (0, 0), B =

(0,
√

Q1
Q2

), and C = (0,−
√

Q1
Q2

). For A when J (A) = −Q1 < 0 therefore A is a saddle

point. Similiary, for B when J (B) = 2Q1 > 0 therefore B is a centre point and for C when
J (C) = 2Q1 > 0 so C is a centre point.
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Fig. 5 Plots for the (34) with different parametric values and effect of fractional parameters and time to the
dynamics of waves

Family : 2
When Q1 > 0 and Q2 < 0 then there are three equilibrium points, A = (0, 0), B =

(0,
√

Q1
Q2

), and C = (0,−
√

Q1
Q2

). For A when J (A) = −Q1 < 0 therefore A is a saddle

Fig. 6 Diagrams of the bifurcation analysis of the system (58)
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Fig. 7 The chaotic behaviors of (62), when N (ξ) = � cos(βξ) by using the suitable parametric values
Q1 = 4, Q2 = 1,� = 0.6 and β = 0.3, with initial condition (1.9, 0.01)

point. Similiary, for B when J (B) = 2Q1 > 0 therefore B is a centre point and for C when
J (C) = 2Q1 > 0 so C is a centre point.

Family : 3
When Q1 < 0 and Q2 > 0 then there are three equilibrium points, A = (0, 0), B =

(0,
√

Q1
Q2

), and C = (0,−
√

Q1
Q2

). For A when J (A) = Q1 > 0 therefore A is a centre point.

Similiary, for B when J (B) = −2Q1 < 0 therefore B is a saddle point and for C when
J (C) = −2Q1 < 0 so C is a saddle point.

Family : 4
When Q1 < 0 and Q2 < 0 then there are three equilibrium points, A = (0, 0), B =

(0,
√

Q1
Q2

), and C = (0,−
√

Q1
Q2

). For A when J (A) = Q1 > 0 therefore A is a centre point.

Similiary, For B when J (B) = −2Q1 < 0 therefore B is a saddle point and for C when
J (C) = −2Q1 < 0 so C is a saddle point (Fig. 6).

5.2 Qualitative Analysis with Perturbation Term

Chaotic behavior in a dynamical system refers to a type of behavior that appears random and
unpredictable, despite being governed by deterministic rules (i.e., no randomness is involved
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Fig. 8 The chaotic behaviors of (62), when N (ξ) = � cos(βξ) by using the suitable parametric values
Q1 = 4, Q2 = 1,� = 0.6 and β = 0.9 with same initial condition (1.9, 0.01)

in the system’s equations). This phenomenon arises in nonlinear systems and is characterized
by sensitivity to initial conditions, meaning that even a tiny change in the starting point can
lead to drastically different outcomes over time.In this analysis, the dynamical system (58) is
influenced by an external force, leading to the modified system (58). Assume that � cos(βξ)

is a perturbation term, and by using the Galilean transformation on (7), then (7) can be
converted as follows [39, 40]:

⎧
⎪⎪⎨

⎪⎪⎩

d�

dξ
= M,

dM
dξ

= Q1�(ξ) − Q2�(ξ)3 + N (ξ)·
(62)

where Q1 = 2b−c2

a2
, Q2 = 2d

a2
. Here, the expressionN (ξ) = � cos(βξ) is referred to as the

perturbation where� is a amplitude and β is frequency of the system (62) . The investigation
keeps all other physical parameters of the system in (62) constant.
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Fig. 9 The chaotic behaviors of (62), when N (ξ) = � cos(βξ) by using the suitable parametric values
Q1 = −3, Q2 = 0.4,� = 0.5 and β = 1 with initial condition (1.7, 0.1)

In our research, we observed chaotic behavior in the system (62), characterized by unpre-
dictable, time-dependent trajectories diverging from regular patterns. We employed a 2D
phase portrait, and Poincare mapp time series analysis to detect chaos. We examined the time
evolution of these exponents to understand the perturbed dynamical system. By giving the
values of the suitable parameters, 2-dimensional, Poincare map and time series analysis of
the dynamical system (62) are shown in Figs. 7, 8 and 9.

6 Multi-stability Analysis of the GPModel

The multistability of a system with a perturbed term like (62) will be explored further in
this paper. According to [41], multistability refers to multiple solutions for different physical
variables and initial conditions in a dynamical system. In Fig. 10, phase portraits (red and
green) are plotted for � = 1.5 and β = 4.5, with initial conditions (φ, M) = (0.99, 0.01)
and (φ, M) = (0.05, 0.01). The system shows quasi-periodic behavior. We also analyze
multistability under the same parameters but with different initial conditions, (φ, M) =
(0.9, 0.01) and (φ, M) = (0.5, 0.01).
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Fig. 10 Diagrams of the multistability analysis of the system (62)

7 Sensitivity Visualization of ProposedModel

The sensitivity analysis is under consideration on letting �′ = M by usage of Galilean
transformation, so (7) becomes [42, 43]:

⎧
⎪⎪⎨

⎪⎪⎩

d�

dξ
= M,

dM
dξ

= Q1�(ξ) − Q2�(ξ)3·
(63)

Fig. 11 Plots of system (63) with red and magenta with initial condition (�,M) = (3.1, 0.3) and (�,M) =
(3.7, 0.5) respectively
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Fig. 12 Plots of system (63) with (�,M) = (3.9, 0.9) in green and (�,M) = (3.1, 0.3) red (solid) line

where Q1 = 2b−c2

a2
, Q2 = 2d

a2
.

Different initial conditions are taken to evaluate system’s sensitivity, as depicted in Figs.
11, 12, 13 and 14 while selecting appropriate parameter values Q1 = 0.5 and Q2 = 0.3. In
Fig. 11 red andmagenta with initial condition (�,M) = (3.1, 0.3) and (�,M) = (3.7, 0.5)
depicts two different solutions. In Fig. 12 (�,M) = (3.9, 0.9) in green and (�,M) =
(3.1, 0.3) red (solid) line. In Fig. 13, initial condition (�,M) = (3.9, 0.9) in green and
(�,M) = (3.7, 0.5) in magenta shows the behavior of two different solutions. Finally, we

Fig. 13 Plots of system (63) with (�,M) = (3.9, 0.9) in green and (�,M) = (3.7, 0.5) in magenta show
the behavior of two different solutions
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Fig. 14 Plots of system (63) with (�,M) = (3.9, 0.9) in green, (�,M) = (3.9, 0.9) in magenta and
(�,M) = (3.1, 0.3) red (solid)

check the combination of all the solutions in one Fig. 11 by using the initial conditions
(�,M) = (3.9, 0.9) in green, (�,M) = (3.9, 0.9) in magenta and (�,M) = (3.1, 0.3)
red (solid).

It has been shown that the solution is not much changed by little variations to the starting
values. Consequently, the model under discussion is not very sensitive.

8 Conclusions

Fractional NLPDEs are more broad and flexible than integer-order differential equations.
They grow more like classical models as the fractional order approaches unity. In this study,
we investigated the nonlinear GPE employing advanced analytical techniques known as
Kumar-Malikmethod,mGERFMandMGERIFM.TheGPE is an importantmodel in physics;
consequently, its exact soliton solutions are of even greater importance. The results of this
paper have theoretically predicted numerous novel nonlinear phenomena in BEC, which
are beneficial for our comprehension of certain physical phenomena and experiments in
BEC or related disciplines based on the significant nonlinear model in BEC. A variety of
solitary wave solutions were extracted and physically depicted in various graphs Figs. 1-5.
The fractional and temporal parameter impact have been examined in on optical solutions,
providing valuable insights into the importance of the truncated fractional GPEmodel. High-
lighting the role of the M-fractional order parameter represents a significant advancement
from previous research, revealing the importance of fractional calculus on the dynamics of
solitons. Moreover, in this study, the qualitative analysis together with Galilean transfor-
mation was discussed. A variety of aspects like bifurcation analysis, sensitivity analysis,
chaotic behavior, 2D, and 3D phase portraits, Poincaré maps, time series analysis, and sensi-
tivity to multistability under the different conditions have been investigated and shown in the
Figs. 6-14. Bifurcation analysis is an essential instrument in the examination of dynamical
systems and nonlinear events. Understanding stability and key transitions is crucial for antic-
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ipating complex system behavior, establishing thresholds and control factors, and gaining
insight into nonlinear processes. Poincaré maps serve as an effective instrument in the exam-
ination of dynamical systems, especially in the investigation of periodic or quasi-periodic
behavior inside continuous-time systems. They offer a method to diminish the dimensional
complexity of a system and illustrate its long-term behavior by concentrating on the inter-
sections of trajectories with a lower-dimensional space. Poincaré maps have applications
in diverse domains, including physics, engineering, biology, and mathematics. The results
are employed to simulate or comprehend certain nonlinear phenomena that manifest dur-
ing atomic condensation in BEC. This research facilitates the exploration and prediction of
potential characteristics and behaviors of relevant models that illustrate physical phenomena,
thereby promoting innovation and change in ideas.
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