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Abstract
Alzheimer’s disease (AD) is a progressive and incurable neurologi-cal disorder with a rising mortality rate, worsened by 
error-prone, time-intensive, and expensive clinical diagnosis methods. Automatic AD detection methods using hand-crafted 
Electroencephalogram (EEG) signal features lack accuracy and reliability. A lightweight convolution neural network for AD 
detection (LCADNet) is investigated to extract disease-specific features while reducing the detection time. The LCADNet 
uses two convolutional layers for extracting complex EEG features, two fully connected layers for selecting disease-specific 
features, and a softmax layer for predicting AD detection probability. A max-pooling layer interlaced between convolutional 
layers decreases the time-domain redundancy in the EEG signal. The efficiency of the LCADNet and four pre-trained mod-
els using transfer learning is compared using a publicly available AD detection dataset. The LCADNet shows the lowest 
computation complexity in terms of both the number of floating point operations and inference time and the highest clas-
sification performance across six measures. The generalization of the LCADNet is assessed by cross-testing it with two 
other publicly available AD detection datasets. It outperforms existing EEG-based AD detection methods with an accuracy 
of 98.50%. The LCADNet may be a valuable aid for neurologists and its Python implemen- tation can be found at github.
com/SandeepSangle12/LCADNet.git.
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Introduction

Alzheimer’s disease (AD) is the most common type of 
dementia in the elderly and is anticipated to affect more 
than 130 million people by 2050 [1]. AD can be charac-
terized by cognitive dysfunctions, aphasia, poor judgment, 

memory loss, and several difficulties in daily activities [2]. 
Mild cognitive impairment (MCI), an initial AD stage, 
occurs in 5 − 20% of elderly (> 60 years) with symptoms 
that are overlapping symptoms with typical aging signs [3, 
4]. Although AD is incurable to date, medications can delay 
the severe stage of AD [5]. Proper pre- cautions can aid AD 
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patients to maintain independence for a longer duration and 
delay depression and social costs [6].

Clinically, AD is diagnosed by various blood, neuro-
logical, and psychologi- cal tests, which are subjective 
and demand the expert neurologist [7]. Various neuroim-
aging methods, such as single-photon emission computed 
tomogra- phy, magnetic resonance imaging (MRI), and 
positron emission tomography, used to detect AD are time-
consuming, expensive, and radiogenic [8]. A safer approach 
investigates Electroencephalogram (EEG) for detecting brain 
abnor- malities observed in AD patients. EEG-based auto-
matic AD detection systems have a high temporal resolution, 
low cost, and non-invasive implementation [9]. AD patients 
show more slowing, decreased synchrony, and reduced com-
plexity of EEG signals than normal controlled (NC) subjects 
[10].

Literature reports several models for two-way (AD vs. 
NC, AD vs. MCI, and NC vs. MCI) or three-way (AD vs. 
MCI vs. NC) classification by extracting EEG-based dis-
criminating features [11]. In [12] the coherence and spectral 
power as distinct feature sets with support vector machine 
(SVM) resulted in 91.4% AD detection accuracy. In [13], 
biomarkers based on approximate entropy (ApEn), fuzzy 
entropy (fuEn) [14], Kolmogorov complexity [15], and auto 
mutual information (AMI) reported AD detection accuracy 
of 91.9%. In [16], an SVM classifier is trained using a com-
bination of sample entropy (SampEn) [17], AMI, and spec-
tral entropy (SpEn) [17] with median frequency and band 
power. However, these reported results are not consistent. In 
[18], multiscale entropy (MSEn) [19] and canonical correla-
tion analysis reported an accuracy of 79.49% using logistic 

regression (LR). However, two-way AD versus NC classi-
fication performance was variable. In [20], a combination 
of SpEn, power spectral density (PSD), Higuchi’s fractal 
dimension, spectral crest fac- tor, kurtosis, and skewness 
achieved an accuracy of 89%. Most of these features are 
affected by the signal length and different input parameters.

In [21], time–frequency and spectral domain biomark-
ers for AD from NC subjects are classified using k-nearest 
neighbour (KNN) to obtain 97% accuracy. They reported 
higher perturbation in EEG synchrony of AD patients com-
pared to NC subjects [21]. Farina et al. [22]. combined MRI 
and EEG to calculate functional connectivity and band 
power features along with the mini- mental state examina-
tion score (MMSE) to detect AD subjects. Oltu et al. [23]. 
trained an efficient SVM classifier using DWT-based PSD 
and coherence features to detect AD from MCI and NC with 
the accuracy of 97%. Pirrone et al. [24]. calculated the power 
difference of subbands, obtained by finite impulse response 
filtering with cut-off frequencies 7 and 16 Hz. A three-
way classification using these features and an SVM model 
reported 86% accuracy. Swarnalatha [25] detected AD 
stages (severe, moderate, and mild) using a deep learning 
(DL) model based on a hybrid greedy sandpiper approach. 
Although the model obtained the best accuracy of 99.8%, it 
does not apply to other open-source datasets [25].

Most of the reported studies in the literature used the 
Empirical mode decomposition (EMD), fast fourier trans-
form (FFT), wavelet decomposition, and nonlinear algo-
rithms to detect AD, which depends on the order of filters, 
window selection, and wavelets. The selection of decom-
position parameters for EMD, variational mode, discrete 

Table 1   The state-of-the-art EEG-based AD detection methods using CNN models

ERSP event-related spectral perturbation, PCA principle component analysis, RUS random undersampling

Reference Year Features Channels Subjects Classifier ACC (%) SEN (%) SPE (%)

Nour et al. [26] 2024 Ensemble DL 
model

19 24 AD, 24 NC CNN 97.90 98.23 98.68

Siuly et al. [27] 2024 PSD based bio-
markers

20 51 AD1, 35 NC LSTM 97.00 97.48 96.48

Miltiadous et al. 
[29]

2023 Band power, Spec-
tral coherence 
connectivity

19 36 AD, 29 NC Dual input CNN 83.28 78.81 87.94

Calub et al. [29] 2023 Linear & non-lin-
ear Uni-variate 
features + PCA

21 31 AD, 20 MCI, 
35 NC

KNN 97.64 95.40 98.81

Fouad et al. [30] 2023 Constrast, homo-
geneity, & wave-
let statistics

19 59 AD, 7 MCI, 
102 NC

ResNet 97.82 97.83 98.26

Ho et al. [31] 2022 ERSP features 19 23 NC, 40 AD CNN-LSTM 75.95 77.23 69.40
Alvi et al. [32] 2022 EEG spectrogram 19 11 NC, 16 AD LSTM 96.91 97.95 96.16
Toural et al. [33] 2020 Wavelet entropy & 

band power
19 17 NC, 9 MCI, 

15 AD
SVM AD vs. NC: 93.33, 

MCI vs. NC: 
88.88

96.15, 100 95.12, 97.56
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(DWT) and tunable-Q wavelet decom- position is tedious 
due to non-stationary EEG signals. Nonlinear techniques, 
like entropy-based, are parameter-dependent. Therefore, 
selecting the salient parameters is challenging. Moreover, 
traditional signal processing techniques are time-consuming 
and demand substantial quantitative and qualitative para-
metric analysis that directly controls the system’s accuracy.

Various DL models reported to detect AD are presented 
in Table 1. Nour et al. [26]. investigated the ensemble 
deep model with convolution neural network (CNN). In 
[27], PSD-based biomarkers and long-short-term mem-
ory (LSTM) with adaptive parameters for classification. 
Miltiadous et al. [28]. investigated band power and spec-
tral coherence connectivity for AD detection. Although 
the success of UNet architecture in computer vision moti-
vates its use for AD detection, larger CNNs like UNet 
and several others reported in the literature increase com-
putational complexity and memory requirements during 
training and test phases. Also, the inference time required 
is much higher due to the number of floating-point calcula-
tions involved in such models. Hence, there is a need for a 
lightweight model with a shorter inference time and higher 
or comparative detection performance than earlier reported 
models in the literature.

An EEG-based automatic AD detection system using 
CNN is proposed for reducing the computation complexity 
while achieving high detection accuracy. The computa-
tion complexity is proportional to the number of train-
able param- eters in the CNN model. An automatic AD 
detection system using a CNN with the least number of 
weighted layers and a spatio-temporal representation of 
the EEG signal is presented. The contributions of the pre-
sented work are:

•	 The LCADNet, a low computation complexity CNN 
model, is presented for improving the EEG-based auto-
matic AD detection system using a publicly available 
dataset.

•	 The LCADNet uses convolutional layers to extract com-
plex features, a max- pooling layer to reduce redundancy, 
fully connected layers to select salient features, and a 
softmax layer to generate AD detection probability.

•	 Classification performance and computation complexity 
of the LCADNet is compared with pre-trained models 
and existing AD detection methods.

•	 The LCADNet layers are visualized for discriminating 
AD and NC EEG signals and generalization is supported 
by cross-testing with other datasets.

The organization of the paper is as follows. The pro-
posed methodology is described in “Methodology” section. 
Experimental results are discussed in “Results” section. A 
proposed model and comparison with the state-of-the-art 
methods is discussed in “Discussion” section. The conclu-
sion is given in “Conclusion” section.

Methodology

The application of the CNN model allows for intricate pat-
tern recognition in EEG signals, enhancing the precision 
and reliability of AD detection. A schematic of EEG-based 
the automatic AD detection system is presented in Fig. 1. 
The dataset, preprocessing, the lightweight CNN architec-
ture, and evaluation measures are explained in the following 
sections.

EEG dataset and preprocessing

The dataset comprises EEG signals from 12 AD patients 
(7 female and 5 male) and 11 NC subjects (7 female and 
4 male). All AD patients belonged to the Association of 
Alzheimer’s Patients Relatives (AFAVA), Valladolid, Spain. 
Subjects were checked before recruitment for the presence of 
undesired neu- rological disorders like epilepsy, Parkinson’s 
disease, etc. AD patients had an average MMSE score of 
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Fig. 1   Schematic flow of proposed work
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13.1 and standard deviation of 5.9 and NC subjects scores 
were greater than 30. The signals were recorded for five sec-
onds using Oxford Instruments’ 2.3.411 EEG profile study 
room system using Interna-tional 10–20 electrode placement 
system with electrodes Cz, C3, C4, F3, F4, F7, F8, Fz, Fp1, 

Fp2, O1, O2, Pz, T3, T4, T5, T6, and earlobes reference 
points.

The EEG recordings were digitized using a 12-bit analog-
to-digital con- verter at 256 Hz sampling frequency. The 
EEG signal was filtered using the 40th order Chebyshev 
bandpass (0.5–100 Hz) filter to reduce the noise and notch 
filter with 60 Hz cut-off frequency to eliminate powerline 
supply frequency. An example AD and NC EEG signals 
for Cz electrode is shown in Fig. 2. In the experimental 
setup, each EEG signal was preprocessed indi- vidually to 
remove artifacts, resulting in 9849 recordings for analysis, 
5648 from the AD class and 4201 from the NC class [34]. 
The dataset of the processed signals is made publicly avail-
able by the University of Edinburgh (datashare.is.ed.ac.uk/
handle/10283/2783) [35]. A summary of AD and NC EEG 
signal characteristics is presented in Table 2.

Fig. 2   An example of preproc-
essed EEG signal for a AD and 
b NC sub- jects
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Table 2   A summary of AD and NC EEG signal characteristics

Parameters AD NC

No. of subjects 12 11
Age 72.8 ± 8 years 72.5 ± 6.1 years
Avg. trials per subject 34 24
No. of EEG recordings 400 263
Sampling Frequency 256 Hz 256 Hz
Length of each recording 5 s (1280 samples) 5 s (1280 samples)
No. of channels 16 16

Fig. 3   Proposed LCADNet 
model for Alzheimer’s disease 
detection
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Low‑complexity CNN

The study aims to design a CNN for AD detection with faster 
prediction, low memory usage, and low training time. These 
requirements can be achieved by minimizing the number of 
trainable parameters in the CNN. This section describes the 
LCADNet, a low-complexity CNN for automatic AD detec-
tion. Figure 3 shows architectural details of the proposed 
LCADNet for binary-class AD detection. The architecture 
can be grouped into two parts [36]: (i) feature extractor 
(input to flatten layers) and (ii) classifier (flatten to output 
layers). The feature extraction part of the LCADNet gener-
ates a high-dimension feature representation of AD and NC 
EEG signals. It uses spatio-temporal EEG data as input and 
four layers. The input EEG data has 16 electrodes and a 
sequence of 1280 voltage values, as described earlier in the 
“EEG dataset and preprocessing” section. Hence, the shape 
of LCADNet input data is (16, 1280). The feature extrac- 
tion part has two convolutional (Conv2D) layers, a max-
pooling (MaxPool2D) layer, and a flatten layer. The Conv2D 
layers learn kernel weights suitable to generate complex dis-
ease-specific features [36]. The first Conv2D layer has 3 × 3 
kernels to generate coarse features by combining the input 
spatio-temporal EEG signal. The low-frequency components 
in the EEG signals are most informative, leading to intrinsic 
redundancy within the temporal sequence. The max- pooling 
is strategically used to capture relatively higher temporal 
redundancy in the EEG signal. It selects the most excited 
patterns in the EEG signal and increases the span of con-
volution calculation [36]. For the output of previous layer 
F (.), the MaxPool2D layer output gmax(.) is calculated as

where h = a + s and v = b + s. Here, a, b are horizontal and 
vertical indices and s is stride. The MaxPool2D layer has 
2 × 21 kernels to extract max values from the output feature 
map of the previous convolutional layer. The asymmetric 
kernel size captures higher temporal redundancy and reduces 
the temporal dimension by a large factor for extracting the 
most important features. It is followed by another Conv2D 
layer to generate more complex spatio-temporal features. 
Finally, a flatten layer transforms a multi-dimension spatio-
temporal feature map of the EEG data into a feature vec-
tor. The dimension of the feature vector is a product of the 
dimensions of the output feature map of the last convolu-
tional layer. The classifier part of the LCADNet further pro-
cesses the output of the feature extractor.

The classifier part of the LCADNet comprises two fully-
connected (FC) layers to select the most important features 
while achieving nonlinear trans- formation of feature vec-
tor and a softmax layer to generate AD detection probabil-
ity. The bottleneck architecture with two consecutive FC 

(1)
gmax(a, b) = max[F(h, v),F(h + 1, v),F(h, v + 1),F(h + 1, v + 1)]

layers each having 50 and 80 neurons reduces the computa-
tional complexity exponentially due to decreased trainable 
parameters of these layers [36]. The softmax layer generates 
probabilistic scores for output binary classes. The softmax 
layer transforms the output of the fully connected layer into a 
probability distribution, assigning a likelihood to each poten-
tial class. It enables AD detection and a nuanced understand-
ing of the model’s confidence in its predictions, contributing 
to interpretability and reliability of the AD detection system.

The details of the output shape, kernel size, and the num-
ber of trainable parameters of the proposed LCADNet are 
provided in Table 3. In terms of number of trainable param-
eters, pooling and flatten layers do not contribute anything. 
The compression achieved by the asymmetric kernel size in 
the pool- ing reduced the feature map input to the follow-
ing convolutional layer and hence, it aided in reducing the 
overall trainable parameters of the model. The FC layers has 
the highest number of trainable parameters, approximately 
98.56% of the total trainable parameters. The two convolu-
tional layers con- tribute fewer trainable parameters. The 
number of trainable parameters of the softmax layer depend 
on the number of output classes.

An adaptive moment estimation (Adam) optimizer is used 
to update the network weights iteratively. It simplified each 
weight’s learning rate in the net- work by combining the root 
mean square propagation and stochastic gradient descent. 
For a given mth training sample, yp(m, k) is the kth predicted 
prob-ability value >:

k yp(m, k) = 1, ∀m. The cross-entropy 
loss (L) is used to train the model and it can be expressed 
as [36]:

where Nt is the number of training samples and and Nc is 
number of classes.

(2)L = −
NtNc

m − 1k − 1
y(m, k) × log yp(m, k)

Table 3   An architectural summary of the LCADNet model

Layer Output shape Kernal shape Parameters

Input 16, 1280, 1 – –
Conv2D 14, 1278, 20 3 × 3 200
MaxPool2D 7, 60, 20 2 × 21 0
Conv2D 5, 58, 10 3 × 3 1810
Flatten 2900 – 0
FC 50 – 145,050
FC 80 – 4080
Softmax 2 – 162
Trainable parameters 1,51,302
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Evaluation metrics

The AD detection ability of different DL models is evalu-
ated using accuracy (ACCU), sensitivity (SENS), specificity 
(SPEC), precision (PREC), F1-score (F1), and Matthew’s 
correlation coefficient (MACC). These parameters are cal-
culated as [37, 38]:

Here, Sij is the subject actually from ith class and 
predicted as jth class, where i, j ∈ {p, n} indicating AD and 
NC subjects, respectively.

(3)ACCU =
Spp + Snn

Spp + Spn + Spn + Snn
× 100

(4)SENS =
Spp

Spp + Spn
× 100

(5)SPEC =
Snn

Snn + Snp
× 100

(6)PREC =
Spp

Spp + Snp
× 100

(7)F1 =
2 × PREC × SENS

PREC + SENS
× 100

(8)

MACC =
Spp × Snn − Spn × Snp

[(

Spp + Snp
)(

Spp + Snp
)(

Snn + Spn
)(

Snn + Spn
)]0.5

× 100

Results

The experiments are conducted on a computer with a 
1.32 GHz processor, a Nvidia P100 GPU, 16 GB of RAM, 
and a Linux Operating system. The LCADNet is imple-
mented in Python using TensorFlow and Keras libraries. For 
comparison, the transfer learning approach is used to adjust 
the classifier part of the pre-trained CNN models comprising 
VGG16, VGG19, ResNet50, and EfficientNetB4. The classi-
fier part of the pre-trained models and the LCADNet are kept 
the same to compare their feature extraction capabilities.

Hyper‑parameter tunning

All models used the Adam optimizer with an initial learning 
rate of 0.0001. A systematic grid search tunes the batch size 
and epoch of the LCADNet and the pre-trained CNNs. The 
batch size is searched linearly from 50 to 200 in steps of 5 
and the number of epochs is searched linearly from 50 to 300 
in steps of 10. The LCADNet, EfficientNetB4, and RestNet 
performed best for a batch of 80 examples. The VGG 16 and 
VGG19 showed the best performance for batch sizes 120 and 
110, respectively. The maximum number of epochs is set at 
100 for all models. Despite a slight inconsistency in epoch 
values, they are retained as these yielded optimal AD detec-
tion performance, ensuring fair competition of all models.

Comparision with pre‑trained CNNs

ALL EEG recordings are randomly grouped into three mutu-
ally exhaustive and exclusive subsets for training, valida-
tion, and testing as 60%, 20%, and 20%, respectively. Four 
pre-trained CNN models and the LCADNet performances 

Table 4   Performance evaluation 
using different models and 
LCADNet

Model Dataset ACCU (%) SENS (%) SPEC (%) PREC (%) F1 (%) MACC (%)

VGG16 Training 94.55 94.59 94.56 94.56 94.58 89.12
Validation 92.45 92.52 92.45 92.45 92.48 84.91
Testing 96.24 95.00 98.11 98.70 96.82 92.33

VGG19 Training 94.97 95.34 95.28 95.28 95.31 96.23
Validation 98.11 98.19 98.11 98.11 98.15 96.23
Testing 96.99 97.48 96.43 97.42 97.45 93.83

ResNet50 Training 99.24 98.97 98.97 98.97 98.97 97.95
Validation 96.23 96.35 96.23 96.45 96.40 92.45
Testing 96.99 98.67 94.83 96.10 98.02 93.91

EfficiantNetB4 Training 82.18 82.19 82.19 82.19 82.19 64.37
Validation 84.91 84.95 84.92 84.91 84.93 69.81
Testing 88.72 90.80 93.48 96.34 93.49 82.45

LCADNet Training 100 100 99.84 99.79 99.89 100
Validation 99.06 99.26 99.15 99.40 99.33 98.11
Testing 98.50 100 97.55 97.40 98.68 96.98
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are compared using the metrics described in “Evaluation 
metrics” section and are presented in Table 4. The LCAD-
Net demonstrates remarkable performance across all dataset 
groups and evaluation metrics for AD detection. It consist-
ently outperforms competing models, including VGG16, 
VGG19, ResNet50, and EfficiantNetB4, achieving high 
accuracy, sensitivity, specificity, and precision. LCADNet 
achieves perfect accuracy during training and maintains 
superior performance in the validation and testing phases. 

The MACC surpasses the F1 score and accuracy in provid-
ing valuable insights when assessing binary classification 
problems, as it factors in the distribution balance among the 
four categories in the confusion matrix. As shown in Table 4, 
the LCADNet outperforms other pre-trained models.

The convergence of all models is analyzed to learn the 
stability of models over different number of epochs. Fig-
ures 4 and 7 depict all the model’s accuracy and loss plots 
over the number of epochs. These accuracy and loss curves 

Fig. 4   Accuracy and loss curve 
of training and validation data 
using VGG16
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Fig. 5   Accuracy and loss curve 
of training and validation data 
using VGG19
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Fig. 6   Accuracy and loss curve 
of training and validation data 
using ResNet50
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Fig. 7   Accuracy and loss curve 
of training and validation data 
using EfficientNetB4
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show the convergence over time as the model learns from the 
data. This convergence indicates that the model is improving 
and approaching an optimal solution. The accuracy and loss 
curve of VGG-16 and ResNet50, In Figs. 4 and 6 indicate 
the dissimilarities between all epochs of training and vali-
dation curve compared to other model’s accuracy and loss 
curves. Similarly, for the VGG-19 and the LCADNet, Figs. 5 
and 8 shows the difference between 0 to 25 epochs and 5 to 
15 epochs, respectively. The accuracy and loss curve of the 
EfficientNetB4 is continuous in fluctuations. This fluctuation 
can occur due to the stochastic nature of specific algorithms 
(Figs. 6, 7, 8).

Computation complexity

A complex model is necessary to capture patterns in the 
EEG signal, too much complexity may lead to overfitting. 
The total number of parameters in each model is directly 
related to the computation complexity of the model.

VGG19 has more parameters than VGG16 and Efficient-
NetB4. The ResNet50 has the highest number of trainable 
parameters among the five CNN models and LCADNet 
has the lowest number of trainable parameters. Giga float-
ing point operations per second (GFLOPs) [39], the total 
number of floating point multiplications and additions per 
second, and inference time, the time the model takes to 
generate a prediction for new input data, are the two most 
commonly known quantitative measures for computation 
complexity. As reported in Table 5, LCADNet is the most 
efficient model with the smallest GFLOPS of 0.009 and the 

shortest inference time of 0.064 s. Based on computational 
efficiency during inference, emphasizing its suitability for 
real-time applications.

Layer visualization

The flattened layer data distribution plots of VGG16, 
VGG19, ResNet50, Effi- cientNetB4, and LCADNet are 
depicted in Fig. 9. The flattened layer is used to transform 
multi-dimensional data into a one-dimensional array. This 
operation is typically applied before feeding the data into 
a fully connected layer, which requires one-dimensional 
input. So, the flattened layer plays a vital role in the model 
to observe the model’s behaviour and complexity. Flatten 
layer data is distributed using the t-distributed stochastic 
neighbour embedding (t-SNE) for visualizing data. This data 
distribution shows both class samples with different colors. 
The complexity of the model can be observed through that 
distribution plot. Except for the EfficientNetB4, all the mod-
els of the distribution plots can be separated easily.

Figure 10 shows a feature map of the LCADNet convo-
lutional layer for AD and NC class samples. Visualizing 
convolution feature maps in EEG signals provides valuable 
insights into the learned representations within CNN. The 
feature maps revealed altered patterns in the AD samples 
compared to the NC sample. These indicate potential bio-
markers and neuro-physiological changes specific to AD. 
The figure’s number of rows and columns indicates the con-
volutional layer and class, respectively. In Fig. 10, the val-
ues on the x and y-axis indicate the EEG channel and EEG 
time samples, respectively. The value of the EEG channel 
and EEG time samples are the same as the output shape of 
LCADNet, as shown in Table 3.

In the feature map of the first convolutional layer, high 
activation values for AD samples are observed at the zero 
position of the EEG channel. In contrast, NC samples appear 
in the fifth position. The activations are contributed by the 
filter of the first layer, which detects relevant features in both 
the AD and NC samples. Lower values suggest that the ker-
nels did not respond strongly to the remaining regions of 
the input. In the second CNN layer, for AD samples, the 
higher value band is observed at the 1st of the EEG channel, 

Fig. 8   Accuracy and loss curve 
of training and validation data 
using proposed LCADNet
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Table 5   Comparison of computation complexity of different models

Model Parameters GFLOPS Inference 
time (ms)

VGG16 1,47,44,580 12.535 0.466
VGG19 2,00,54,276 15.933 0.304
ResNet50 2,36,94,404 3.164 0.226
EfficiantNetB4 1,77,67,715 1.257 0.395
LCADNet 1,51,302 0.009 0.064
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while the lower value band is at the 5th EEG channel. The 
higher value band is seen at the 3rd EEG channel for NC 
samples. In this layer, the higher value band becomes wider 
than the first. The lower value bands in the third CNN layer 
are precisely opposite each other with respective classes. 
The higher values are continuously observed at the 2nd EEG 
channel for AD samples, but they are mixed with lower val-
ues for NC samples. Through the visualization of feature 
maps, it is possible to observe distinctive patterns that can 
aid in distinguishing between the AD and NC classes. The 
feature maps highlight the regions of the input data that are 
important for classification and become more abstract and 
informative as the network processes for deeper layers.

Model generalization

For analyzing the generalization of the LCADNet model, 
cross-testing is done using two additional datasets. Details of 
dataset A are given in “EEG dataset and preprocessing” sec-
tion. The publicly available dataset B [40] comprises three 
classes (AD/MCI/NC) and is recorded from 213 subjects 
(59 AD, 70 MCI, and 102 NC) in a similar age group as 
dataset A. Each class has approximately equal proportions 
of male and female subjects. Each EEG signal is 7.8 s and 
recorded at 256 Hz. Another dataset C [41] is an open-access 
three-class (FTD/AD/NC) dataset from OpenNeuro recorded 
from 85 subjects (33 MCI, 23 AD, and 29 NC). Each sig-
nal was downsampled to 256 Hz and lasted approximately 
13.5 min for AD, 12 min for FTD, and 13.8 min for NC. 
The EEG signals corresponding to AD and NC from both 
datasets are segmented into 5 s signals and 16 EEG channels 

Fig. 9   A t-SNE visualiza-
tion of feature extractor part 
of a VGG16, b VGG19, c 
ResNet-50, d EfficientNetB4, 
and e LCADNet

Fig. 10   Visualization of LCAD-
Net layers feature maps for a 
AD and b NC samples. Each 
row represents an LCADNet 
layer, and each column repre-
sents a class (AD or NC)
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as described in “EEG dataset and preprocessing” section are 
selected out of 19 available channels.

The LCADNet is trained using each dataset separately 
and evaluated using all three datasets.Table 6 shows the auto 
and cross-testing performance of the LCADNet model using 
all three datasets. This table provides insights into how the 
performance of the LCADNet model varies when trained 
and tested on different datasets, highlighting the importance 
of dataset selection and gen- eralization of the model. The 
results show that the LCADNet demonstrates strong perfor-
mance across all datasets in terms of ACCU and F-score. 
For Dataset A, the model achieves consistently high accu-
racy and F1 scores across different tests, indicating robust 
performance and good generalizability. For Dataset B, the 
model maintains high accuracy and F1 scores during both 
train- ing and testing, suggesting its ability to generalize well 
to unseen data. For Dataset C, although the accuracy and F1 
scores are slightly lower compared to the other datasets, the 
model still performs reasonably well, indicating the gener-
alizability to this dataset.

Discussion

This study proposes the LCADNet model and compares per-
formance with pre-trained transfer learning models. Transfer 
learning is defined as training a neural network on a new 
task using the weights of another task; the new model doesnt 
need to be prepared from scratch. The Proposed LCADNet 
model used much less parameters and low complexity to 

outperform the huge pre-trained model. The first reason is 
that the input layer of the LCADNet model is trained on one 
channel, while the pre-trained model is pre-trained on the 
3-channel ImageNeT dataset. The second reason is that sev-
eral layers are used in the pre-trained and LCADNet models, 
which affect the complexity of the model. In this study, pre-
trained models are used in the ImageNet dataset and tested 
on EEG signals. Generated weights of pre-trained models 
do not out-perform LCADNet in distinguishing between 
AD and NC EEG signals. While the LCADNet model is 
trained and tested on the same dataset, it makes a task-spe-
cific model for AD and NC classification and outperforms 
other models.

Overall, these results highlight the potential of the LCAD-
Net model and spatio-temporal features in distinguishing 
EEG signals between AD and NC subjects. The visualiza-
tions contribute to developing objective and quanti- tative 
methods for AD diagnosis and monitoring. In this study, 
the CNN architecture used a binary classification setup with 
two neurons at the last layer utilizing the softmax activa-
tion function. Importantly, our design allows straightforward 
adaptation to multi-class classification with N classes; the 
number of neurons in the last layer should be adjusted to N, 
providing a flexible and scalable solution.

Comparison with existing models

The comparative analysis of the proposed LCADNet and 
state-of-the-art tech- niques using the AFAVA dataset is 
presented in Table 7. Several EEG-based automatic AD 

Table 6   Performance of 
LCADNet model using Dataset 
A and B

Test A B C

Train ACCU​ F1 ACCU​ F1 ACCU​ F1

A 98.50 98.68 94.39 96.43 92.12 93.65
B 96.24 96.64 99.49 99.70 92.62 92.56
C 91.64 92.79 92.56 93.65 93.14 95.76

Table 7   Performance 
comparison of present work 
with previously existing 
techniques that have used same 
AD-EEG dataset (AFAVA 
dataset)

Reference Year Method ACCU (%) SENS (%) SPEC (%)

Escudero et al. [42] 2006 MSEn features 90.91 90.91 90.91
Abasolo et al. [17] 2006 SpEn and SampEn features 77.27 90.91 63.64
Abasolo et al. [49] 2008 ApEn and AMI 90.91 100 81.82
Abasolo et al. [43] 2008 DFA–LDA 95.45 90.91 100
Abasolo et al. [50] 2009 DMA 81.82 90.91 72.73
Simons et al. [44] 2015 Q-SpEn 77.27 79.19 77.97
Azami et al. [19] 2017 GMSEn Mann–Whitney test 72.73 75.86 80.68
Simons et al. [34] 2017 Lempel Ziv complexity 77.27 72.73 81.82
Simons et al. [14] 2018 FuzzyEn with Lillifors test 86.36 81.82 90.91
Puri et al. [51] 2022 EMD with Hjorth parameters 92.90 94.32 94.34
Present work 2024 LCADNet model 98.50 100 97.55
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detection models are reviewed earlier in “Introduction” 
section. Abasolo et al. [17] reported 77.27% classification 
accuracy using SpEn and SampEn features. Similarly, the 
multiscale entropy features with student’s t-test have been 
presented by Escudero in [42]. The classification accuracy 
has been enhanced to 95.45% using ApEn, AMI, detrended 
moving average, and detrended fluctuation analysis (DFA) 
[43]. However, the models reported by Abasolo et al. [17] 
and Escudero in [42] are limited by the parametric and time-
varying entropy based methods. Simon et al. [44] investi-
gated the quadratic SpEn, generalized MSE, distance-based 
LZC [34], and fuEn [14] for detecting AD with Mann- Whit-
ney U-test and Lillifors test with the AD detection accuracy 
of 86.36%. Most methods reported in Table 7 have utilized 
time-dependent features. Hence, there is a missing frequency 
domain information. The wavelet-based methods require a 
proper selection of mother wavelets and several decomposi-
tion levels. The issues mentioned earlier will be overcome. 
By keeping aim to improve the classification accuracy, sen-
sitivity, and specificity, a CNN-based model is proposed to 
achieve the highest ACCU, SENS, SPEC, and MACC values 
using testing data. In addition, the F1-score is also improved 
compared to state-of-the-art techniques that have utilized 
the AFAVA EEG dataset. Moreover, the comparison of the 
proposed method with the earlier existing methods using dif-
ferent EEG datasets is presented in Table 8. Alvi et al. [32] 
used spec- tral features from EEG signals and achieved clas-
sification accuracy of 96.91%. However, the hyperparam-
eters of machine learning models were not optimized. The 
methods reported in [45–48] investigated the spectral and 
complexity fea- tures from the EEG signals and managed 
to obtain the 93.46 % accuracy. The proposed LCADNet 

model of AD detection improved the performance by 2% 
than existing methods.

Limitations and future directions

The proposed LCADNet outperformed the existing CNN 
models, but it still has some limitations. The proposed 
method has been employed on one publicly available AD 
EEG dataset. The population size of the datasets is rela-
tively restricted. The LCADNet performance may further 
be improved by training with other AD EEG datasets. Sev-
eral factors can affect a model’s performance, such as age, 
gender, and use of medications. The EEG signals of AD 
patients with lower age may perform well using the pro-
posed model. However, medication and lower age group 
Alzheimer’s disease patients can reduce the effect of Alz-
heimer’s disease due to overlapping age-related issues in the 
EEG signals. The current study uses EEG recordings from 
both genders. No significant gender-specific performance 
variation was observed. In the future, the remaining con-
cerns can be addressed per the availability of data. A CNN 
model is sensitive to variations in input data. While CNNs 
are highly effective in learning complex patterns from data, 
interpreting their internal representations and understand-
ing the decision-making process is challenging. Hence, the 
adoption of CNN models is formidable, where transparency 
and interpretability are crucial. Building on the foundations 
laid by this research, several directions for future work are:

•	 Expanding the dataset to include different demographics, 
ethnicities, and disease stages may enhance the generaliz-
ability of the proposed CNN model.

Table 8   Comparative analysis with earlier methods which have used different datasets

Ch number of EEG channels, LSTM long short-term memory networks, GRU​ gated recurrent unit (GRU) is a type of RNN

Reference Method Ch Subjects Classifier ACC​ (%) SENS (%) SPEC (%)

Geng et al. [46] Spectral, complexity features 16 20 NC, 20 AD GRU​ 93.46 93.33 93.60
Ding et al. [45] Spectral complexity, connectivity 

features
5 113 NC, 116 MCI, 72 AD RUS boosting 72.43 65.28 76.99

Alvi et al. [32] Spectrogram of EEG signals 19 11 NC, 16 AD LSTM 96.91 97.95 96.16
Miltiadous et al. [29] Band power spectral coherence 

connectivity
19 36 AD, 29 NC Data input CNN 83.28 78.81 87.94

Nour et al. [26] Ensemble deep Learning model 19 24 AD, 24 NC CNN 97.90 98.23 98.68
Siuly et al. [27] PSD based biomarkers 20 31 AD1, 20 AD2, 35 NC LSTM 97.00 97.48 96.48
This work LCADNet model 16 11 NC, 12 AD – 98.50 100 97.55
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•	 Investigating the interpretation and visualization of 
CNN’s decision-making process may make it more 
appealing for clinical adoption.

•	 A real-time implementation may enable continuous 
monitoring of disease and timely intervention, improv-
ing healthcare.

•	 Integrating EEG data with other medical data, such as 
neuroimaging or genetics, may enhance a comprehensive 
understanding of the disease.

Finally, extensive clinical validations need to assess the 
model’s performance on a broader scale and ensure its prac-
ticality and safety for adoption in healthcare.

Conclusion

AD detection is a primary concern nowadays. To detect AD 
in its early stage is very urgent. Hence, this study proposed 
a novel and efficient AD detection model using a four-layer 
convolution network (LCADNet). LCADNet achieves the 
highest accuracy using two convolutional layers and two 
fully connected layers. LCADNet neural network is also 
compared to state-of-the-art DNN. The LCADNet outper-
forms the remaining respiratory sound type; it achieves 
98.50% accuracy and 99.68% F1-score. The ability of the 
model can be generalized to effectively detect other neuro-
logical degenerative conditions. In conclusion, this research 
has made significant strides in the early detection of Alz-
heimer’s Disease (AD) using EEG signals and CNNs. The 
study has highlighted the limitations of current clinical 
tests and hand-crafted feature-based methods for AD detec-
tion, emphasizing the need for more robust and objective 
approaches. The proposed configurable CNN architecture 
has demonstrated exceptional promise, achieving a maxi-
mum classification accuracy of 98.60%. Compared to other 
pre-trained models, its lower complexity makes it a strong 
candidate for practical applications in real-world healthcare 
settings. This work underscores the potential of machine 
learning and DL techniques to revolutionize the field of 
neurological disorder diagnosis, with implications extending 
beyond AD to conditions like epilepsy and sleep disorders.

In summary, this research paves the way for more accu-
rate and objective methods for AD detection, with the 
potential to revolutionize the diagnosis and management 
of not only Alzheimer’s Disease but also various other 
neurologi- cal conditions. Future work in this area holds 
promise for improving healthcare outcomes and advancing 
our understanding of neurological disorders.
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