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A B S T R A C T

This paper presents a comprehensive study on the nonlinear transient deflections of multi-layer sector plates,
with a focus on presenting an artificial intelligence algorithm for addressing nonlinear problems in structural
mechanics using the datasets of mathematical simulation. Multi-layer sector plates, commonly used in various
engineering applications, exhibit complex nonlinear behaviors under external loading, particularly when coupled
with unconventional materials such as auxetic concrete foundations. In this study, we propose the use of a
mathematical simulation to analyze the nonlinear transient deflections of multi-layer sector plates on an auxetic
concrete foundation. After that, a dataset (approximately 3750 data) is obtained and the algorithm is trained to
capture the intricate nonlinear responses of the structure under different loading conditions. By leveraging an
artificial intelligence algorithm, the algorithm can accurately predict the nonlinear behaviors of the multi-layer
sector plate system, including vibration characteristics, dynamic response, and stability analysis. Through
extensive numerical and validation studies, we demonstrate the effectiveness of the current mathematical
modeling in accurately capturing the nonlinear transient deflections of multi-layer sector plates on auxetic
concrete foundations. Furthermore, the proposed machine learning algorithm offers a promising approach for
addressing nonlinear problems in structural mechanics, providing a versatile and efficient tool for engineers to
analyze and optimize complex structural systems. By integrating machine learning techniques into structural
analysis, researchers can enhance the accuracy and efficiency of nonlinear transient deflection studies, paving
the way for advancements in structural engineering and related fields.

1. Introduction

Composite materials are of significant importance to engineers due
to their unique combination of properties, making them ideal for various
applications [1]. First, their high strength-to-weight ratio allows for
lighter yet stronger structures, crucial in aerospace, automotive, and
civil engineering [2]. Second, composites offer excellent fatigue and
corrosion resistance, leading to increased durability and reduced
maintenance costs in harsh environments [3]. Third, their ability to be
tailored for specific mechanical, thermal, and electrical properties
makes them versatile for custom applications [4]. Fourth, composite

materials enable engineers to design more efficient structures by opti-
mizing material distribution and improving load-bearing capacity [5].
Fifth, their anisotropic nature allows for directional strength and stiff-
ness, providing enhanced performance in specific loading conditions
[6]. Sixth, engineers benefit from the ability to mold composites into
complex shapes, facilitating innovative designs that would be difficult
with traditional materials [7]. Seventh, the energy absorption capabil-
ities of composites make them ideal for impact-resistant applications,
improving safety in industries like automotive and defense [8]. Eighth,
composites often have lower thermal conductivity, making them useful
in thermal insulation applications, especially in energy-efficient systems

* Corresponding author.
E-mail address: 20190230@xijing.edu.cn (P. Guo).

Contents lists available at ScienceDirect

Structures

journal homepage: www.elsevier.com/locate/structures

https://doi.org/10.1016/j.istruc.2024.107563
Received 26 June 2024; Received in revised form 7 October 2024; Accepted 13 October 2024

Structures 70 (2024) 107563 

Available online 23 October 2024 
2352-0124/© 2024 Institution of Structural Engineers. Published by Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies. 

mailto:20190230@xijing.edu.cn
www.sciencedirect.com/science/journal/23520124
https://www.elsevier.com/locate/structures
https://doi.org/10.1016/j.istruc.2024.107563
https://doi.org/10.1016/j.istruc.2024.107563
https://doi.org/10.1016/j.istruc.2024.107563


[9]. Lastly, the ease of integrating smart sensors into composite struc-
tures allows engineers to develop advanced monitoring systems,
enhancing the functionality and longevity of modern infrastructure
[10].

Stability analysis plays a crucial role in the measurement and un-
derstanding of the mechanical properties of various systems [11–14]. It
serves as a foundation for predicting the behavior of materials and
structures under different loading conditions, ensuring their reliability
and safety. By assessing stability, engineers and researchers can deter-
mine the critical loads at which a system may fail or exhibit undesirable
deformations, such as buckling or collapse [15,16]. This is particularly
important in the design and construction of buildings, bridges, and other
infrastructure, where stability analysis helps in identifying potential
weaknesses and optimizing the structural design to withstand various
forces [17]. Moreover, stability analysis provides insights into the ma-
terial’s response to dynamic loads, such as vibrations and shocks, which
are essential for applications in aerospace, automotive, and other
high-performance industries [18]. In addition to ensuring structural
integrity, stability analysis is vital for advancing material science and
engineering [19]. It enables the characterization of new materials, such
as composites and nanocomposites, by providing a deeper understand-
ing of their mechanical properties and behavior under different envi-
ronmental conditions [20]. This knowledge is essential for developing
innovative materials with enhanced performance characteristics, such
as higher strength-to-weight ratios, better durability, and improved
resistance to external factors [21,22]. Furthermore, stability analysis
contributes to the refinement of computational models and simulation
techniques, leading to more accurate predictions of material behavior
[23]. As a result, it supports the ongoing development of advanced en-
gineering solutions and contributes to the overall progress in the field of
materials science and engineering [24].

Higher-order shear deformation theories (HSDTs) are critical for
accurately estimating the displacement fields of structures, especially
those composed of composite materials [25]. Unlike classical theories,
HSDTs account for the shear deformation effects, which are significant
in thick structures where shear deformations are not negligible [26]. By
incorporating higher-order terms, these theories provide a more refined
and precise prediction of the displacement fields, crucial for engineering
applications requiring high accuracy [27]. One of the main advantages
of HSDTs is their ability to capture the variation of transverse shear
strains across the thickness of the structure [28]. This is particularly
important for composite materials and multi-layer structures, which
often exhibit complex shear behavior [29]. Traditional theories, such as
the classical theory (CT) or first-order shear deformation theory (FSDT),
can lead to inaccuracies in such cases as they oversimplify the shear
deformation distribution [30]. HSDTs enhance the understanding of the
structural behavior under various loading conditions, including static,
dynamic, and thermal loads [31]. They provide a comprehensive
framework for analyzing the response of structures to these loads,
ensuring that the predictions are reliable and robust [32]. This is espe-
cially important for the design and analysis of critical components in
aerospace, automotive, and civil engineering, where structural failure
can have catastrophic consequences [33,34]. Furthermore, HSDTs
improve the prediction of stress distributions within the structure [35,
36]. Accurate stress estimation is essential for assessing the safety and
durability of the material, as it helps identify potential failure points and
regions with high-stress concentrations [37,38]. This information is
invaluable for optimizing the design to enhance the overall performance
and longevity of the structure [39,40]. The use of HSDTs also facilitates
the development of more efficient and cost-effective designs [41]. By
providing a deeper understanding of the displacement and stress fields,
engineers can make informed decisions about material selection,
thickness optimization, and reinforcement strategies [42]. This leads to
structures that are not only stronger and more resilient but also lighter
and more economical [43]. In summary, higher-order shear deformation
theories are indispensable for accurately estimating the displacement

fields of structures [44]. They offer a significant improvement over
classical theories by accounting for the complexities of shear deforma-
tion, leading to more precise predictions of structural behavior [45].
This accuracy is crucial for ensuring the safety, performance, and effi-
ciency of modern engineering structures [46]. Sectorial plates are
extensively used in various engineering structures, including funda-
mental structural parts, curving bridge decks, building floor slabs, and
steam turbine diaphragms, because of their great load-carrying capacity
and design flexibility [47]. Utilizing FSDT and single-term EKM, Fallah
et al. [48] performed bending analysis on one-layer functionally graded
annular circular sector plates with arbitrary boundary conditions that
were exposed to both uniform and non-uniform loadings. Ref. [48] and
the references therein for a summary of linear bending studies of ho-
mogeneous and one-layer FG sector plates. As far as the authors are
aware, no paper has been published on the linear bending analysis of FG
multi-layer sector plates.

An overview of works on the nonlinear behavior of multi-layer,
composite, and homogeneous sector plates is presented here. The
elastic large deflection behavior of homogeneous sector plates was
investigated by Turvey et al. [49] and Salehi et al. [50] utilizing
non-linear von Kármán assumptions and a dynamic relaxation approach
combined with a finite-difference discretization. Nath et al. [51] derived
the governing equations of equilibrium for moderately thick homoge-
neous sector plates based on the FSDT and von-Karman kind of geo-
metric non-linearity. They coupled an iterative incremental technique
based on the Newton-Raphson method for the solution with the Che-
byshev polynomials for the spatial discretization of the differential
equations. Golmakani et al. [52] investigated the nonlinear bending
behavior of solid/annular sector plates that were resting on a
two-parameter elastic foundation and had moderate thickness and
radially functionally graded. The sector plates were exposed to both
uniform and non-uniform transverse loads. They used the dynamic
relaxation approach in conjunction with the finite difference dis-
cretization methodology to solve the governing equations, which were
derived based on the FSDT and non-linear von Kármán assumptions.
Nonlinear bending analysis was carried out by Alinaghizadeh et al. [53]
on two-directional functionally graded circular/annular sector plates
with varied thicknesses that were sitting on a nonlinear elastic basis. The
equilibrium equations were solved by means of the Newton-Raphson
iterative technique and extended differential quadrature, drawing on
von Kármán’s geometric non-linearity and higher-order shear defor-
mation theory. Alinaghizadeh et al. [54] used the generalized differen-
tial quadrature method in conjunction with the Newton-Raphson
iterative scheme to investigate the nonlinear bending behavior of radi-
ally FG sector plates resting on elastic foundation. Their research was
based on the FSDT and the von Kármán type of nonlinear geometry.

Multi-layer sector plates, especially those incorporating graphene
origami-enabled auxetic metamaterial face sheets, exhibit lightweight
yet robust characteristics ideal for aerospace applications. These struc-
tures can be utilized in aircraft components, satellites, and protective
armor, where weight reduction and impact resistance are critical factors
for performance and fuel efficiency. In this work, as the first work,
nonlinear transient deflections of multi-layer sector plate on auxetic
concrete foundation via both artificial intelligence algorithm and
mathematical simulation. Understanding and predicting the nonlinear
transient deflections of multi-layer sector plates are crucial for ensuring
their stability and performance in engineering applications. This paper
presents a comprehensive approach aimed at addressing these chal-
lenges through the integration of advanced techniques. Specifically, we
introduce the concept of graphene origami-enabled auxetic meta-
material face sheets, which enhance the mechanical properties and
auxetic behavior of the structures. Moreover, we propose a hybrid deep
neural network framework that combines the power of machine learning
with mathematical datasets to accurately predict the nonlinear behavior
of these structures under varying loading conditions. Through the
integration of machine learning with traditional numerical methods, our
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approach enables efficient and accurate predictive modeling of complex
structures, providing valuable insights for the design and optimization
of auxetic concrete foundations and multi-layer sector plates in engi-
neering applications. The novelties of this work can be categorized into
4 different scopes: 1- Presenting nonlinear motion equations of the
multi-layer sector plate made of two graphene origami-enabled auxetic
metamaterial face sheets. 2- Presenting improved higher-order theory
based on a hyperbolic function for multi-layer sector plates under
external excitation. 3- Presenting auxetic concrete foundation with a
negative Poisson ratio as the external substrate of the presented sector
plate under external excitation. 4- Presenting an improved hybrid ma-
chine learning algorithm to predict the nonlinear dynamic deflection of
multi-layer sector plates. Finally, some recommendations are presented
for improving the stability and efficiency of the presented multi-layer
sector plate under external excitation.

2. Mathematical modeling

The multi-layer annular sector plate design is shown in Fig. 1, along
with the relevant measurements. It consists of a copper core and auxetic
metamaterial face sheets enabled via Graphene origami.

2.1. Graphene origami-enabled auxetic metamaterial face sheets

As can be observed in Fig. 2, the FG-GOEAM composite annular
sector plates are built with changes in GOri content and GOri folding
degree. The two patterns in Fig. 2A illustrate how the GOri content
changes layer by layer in the thickness direction. Greater GOri content is
indicated by a deeper hue, and the weight fraction (WGr) varies corre-
spondingly. An isotropic, homogeneous metamaterial annular sector

plate with evenly distributed GOri across all layers is shown by the U-
WGr pattern. The outer surface layers have a larger concentration of
GOri, as shown by the symmetric distribution of the X-WGr pattern.
Furthermore, it is assumed that the GOri folding degree, which is
determined by the H atom coverage (HGr) in the crease, would pro-
gressively vary in the thickness direction. An enhanced folding degree is
the consequence of more hydrogen atoms being chemically bound to the
creases of Gori, as shown by a higher value. As shown in Fig. 2B, this
research looks at the U-HGr and X-HGr folding degree patterns of GOri.
Whereas the X-HGr pattern depicts an FG metamaterial composite
annular sector plate with pristine graphene scattered on the surfaces and
GOri distributed in the center, the U-HGr pattern displays an isotropic
homogeneous metamaterial annular sector plate.

For the two graphene content distribution patterns, the VGr(k) as the
volume percentages of the k-th layer are determined by [55].

U − WGrj : VGrj(k) = VGrj (1)

X − WGrj : VGrj(k) = 2VGrj|2k − NL − 1|
/

NL

where k runs from 1 to NL, where NL is the total number of layers, and
where j = b and t. The weight fraction WGr may be converted to pro-
vide the volume fraction VGr.

VGrj =
ρCujWGrj

ρCujWGrj + ρGrj(1 − WGrj)
(2)

VGrj +VCuj = 1

where the volume fraction of copper is indicated by ρCu, which repre-
sents the density of pure copper, and ρGr, which represents the density of

Fig. 1. Schematic of multi-layer annular sector plate on auxetic concrete foundation.
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graphene. Both a uniform and a non-uniform distribution along the
thickness direction produce the H coverages HGr(z).

U − HGrt : HGrt(z) = HGrt, Face − sheet top (3)

U − HGrb : HGrb(z) = HGrb, Face − sheet bottom

X − HGrt : HGrt(z) = HGrtcos (
z − 0.5hc − 0.5ht

ht
π), Face − sheet top

X − HGrb : HGrb(z) = HGrbcos(
z + 0.5hc + 0.5hb

hb
π), Face − sheet bottom

The Poisson’s ratio (ϑ), Young’s modulus (E), and density (ρ) of the
material of GOEAMs are computed using the GP-assisted micro-
mechanical models:

Ej =
1+ ξjηjVGrj

1 − ηjVGrj
ECuj × fEj(HGrj,VGrj) (4)

ϑj = (ϑGrjVGrj + ϑCujVCuj) × fνj(HGrj,VGrj)

ρj = (ρGrjVGrj + ρCujVCuj) × fρj(VGrj)

The following is the stated value of the coefficient of material (η) and
size (ξ):

ηj =
(EGrj

/
ECuj) − 1

(EGrj
/

ECuj) + ξj
(5)

ξj = 2(lGrj
/

tGrj)

where the length and thickness of graphene are represented by the
variables lGr and tGr, respectively; the modification functions fE,ν,ρ(HGr,

VGr) are computed using the GP method, which is expressed as [56].

fEj(HGrj,VGrj) = 0.966 − 0.661VGrj − 5.5HGrjVGrj +38HGrjV2
Grj − 20.6H2

GrjV
2
Grj

(6)

fϑj(HGrj,VGrj) = 1.175 − 1.43VGrj − 17.9HGrjVGrj +16H2
GrjV

2
Grj

fρj(VGrj) = 0.9969 − 2.01V2
Grj

Note that T/T0 = 1 since ambient circumstances were taken into
account [56]. The following are the relevant material properties of Cu,
unless otherwise noted: At 300 K, the density (ρCu) is 8.8 g/cm3, Pois-
son’s ratio (ϑCu) is 0.387, and the Young’s modulus (ECu) is 65.79 GPa.
The material parameters of graphene are as follows: at 300 K, its density
(ρGr) is 1.8 g/cm3, its Poisson’s ratio (ϑGr) is 0.220, and its elastic
modulus (EGr) is 929.57 GPa. The geometric length of the graphene is
83.76 Å, and its thickness is 3.4 Å. Where Angstrom (Å) equal to 10− 10

m.

3. Theoretical formulations

Mechab theory, a higher-order theory based on a hyperbolic func-
tion, is used to determine the sectoral and annular laminated plate’s
displacement field. Thus, the following is the displacement function of
the laminated composite [57]:

U R (R , θ,Z ,T ) = U R 0(R , θ,T )+ f(Z )TR + g(Z )
∂U Z 0

∂R (7a)

U θ(R , θ,Z ,T ) = U θ0(R , θ,T )+ f(Z )Tθ +g(Z )
∂U Z 0

R ∂θ
(7b)

U Z (R , θ,Z ,T ) = U Z 0(R , θ,T ) (7c)

Fig. 2. Uneven sector plate and isotropic homogenous GOEAM annular sector with gradients in the degree of graphene folding and the amount of graphene (A
and B).
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The radial, circumferential, and transverse displacements along the
R , θ, and Z axes are denoted by U R , U θ, and U Z , respectively. The
terms TR and Tθ denote the rotation of the plate’s cross-section around
the θ-axis and the R -axis, respectively. The hyperbolic functions f(Z )

and g(Z ), which are used in Mechab theory [58], are represented in
Eqs. (8a) and (8b). Notably, the terms U R 0, U θ0, and U Z 0 correspond
to mid-plane displacements along the R , θ, and Z axes.

f(Z ) =
cosh(π/2)

cosh(π/2) − 1
Z −

h/π
cosh(π/2) − 1

sinh(πZ /h) (8a)

g(Z ) = f(Z ) − Z (8b)

Z is the transverse coordinate in the general cylindrical coordinate
of the composite plate in Eqs. (8a) and (8b). The plate hypothesis states
that there should be no regular out-of-plane stress. Furthermore, since it
is so little and insignificant, it is also presumed that there is no regular
out-of-plane strain. If not, there will be thickness locking. The remaining
strains with respect to the higher-order shear deformation theory and
based on the cylindrical coordinate are [59]:

E R R =
∂U R 0

∂R + f(Z )
∂TR

∂R + g(Z )
∂2U Z 0

∂R 2 +
1
2

(
∂U Z 0

∂R

)2

(9a)

E θθ =
∂U θ0

R ∂θ
+

U R 0

R
+ f(Z )

(
∂Tθ

R ∂θ
+

TR

R

)

+g(Z )

(
∂2U Z 0

R
2∂θ2

+
∂U Z 0

R ∂R

)

+
1

2R
2

(
∂U Z 0

∂θ

)2

(9b)

UR θ =
∂U R 0

R ∂θ
+

∂U θ0

∂R −
U θ0

R
+ f(Z )

(
∂TR

R ∂θ
+

∂Tθ

∂R

−
Tθ

R

)

+2g(Z )

(
∂2U Z 0

R ∂θ∂R −
∂U Z 0

R
2∂θ

)

+
1
R

∂U Z 0

∂R
∂U Z 0

∂θ
(9c)

UR Z =
∂f(Z )

∂Z

(

TR +
∂U Z 0

∂R

)

(9d)

UθZ =
∂f(Z )

∂Z

(

Tθ +
∂U Z 0

R ∂θ

)

(9e)

The transverse shear strains in Eq. (9a-e) are designated by T R Z and
T θZ , the in-plane shear strain by T R θ, and the in-plane normal strains
by E R R and E θθ. The overall relationship between stresses and strains
for composite laminated materials is expressed by Hooke’s constitutive
law, which has the following definition [60]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FR R

Fθθ
FθZ

FR Z

FR θ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎣

Y11j Y12j 0 0 0
Y12j Y22j 0 0 0
0 0 Y44j 0 0
0 0 0 Y55j 0
0 0 0 0 Y66j

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E R R

E θθ
UθZ

UR Z

UR θ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. j = b, c, andt

(10)

In this case, normal in-plane stress is denoted by FR R and Fθθ, in-
plane shear stress by FR θ, and transverse shear stress is denoted by
FθZ and FR Z . The annular plate’s kth polar orthotropic layer is denoted
by the superscript k. The arrays of the reduced stiffness matrix, denoted
as Ypq, p,q = 1 : 6, are expressed as Eqs. (11), (12).

For face-sheets have [60]:

Y11b =
Eb

1 − ϑ2
b
,Y22b = Y11b (11)

Y12b =
ϑbEb

1 − ϑ2
b
,Y21b = Y12b

Y44b =
Eb

2(1+ ϑb)
,Y66b = Y55b = Y44b

Y11t =
Et

1 − ϑ2
t
,Y22t = Y11t

Y12t =
ϑtEt

1 − ϑ2
t
,Y21t = Y12t

Y44t =
Et

2(1+ ϑt)
,Y66t = Y55t = Y44t

Also, for the copper core we have [61]:

Y11c =
ECu

1 − ϑ2
Cu
,Y22c = Y11c (12)

Y12c =
ϑCuECu

1 − ϑ2
Cu
,Y21c = Y12c

Y44c =
ECu

2(1+ ϑCu)
,Y66c = Y55c = Y44c

By integrating the stresses across the thickness of the plate, the stress
resultants will be derived [62].

4. Equations of motion

This section of the research will develop the laminated annular
plates’ dynamic equations using Hamilton’s principle. Consequently, the
following form may be used to express Hamilton’s principle in the polar

(nR R , nθθ, nR θ) =

∫ −
hc
2

−
h
2

(FR R ,Fθθ,FR θ)dZ +

∫ hc
2

−
hc
2

(FR R ,Fθθ,FR θ)dZ +

∫ h
2

hc
2

(FR R ,Fθθ,FR θ)dZ (13a)

(mR R ,mθθ,mR θ) =

∫ −
hc
2

−
h
2

f(Z )(FR R ,Fθθ,FR θ)dZ +

∫ hc
2

−
hc
2

f(Z )(FR R ,Fθθ,FR θ)dZ +

∫ h
2

hc
2

f(Z )(FR R ,Fθθ,FR θ)dZ (13b)

(p
R R

, pθθ, pR θ) =

∫ −
hc
2

−
h
2

g(Z )(FR R ,Fθθ,FR θ)dZ +

∫ hc
2

−
hc
2

g(Z )(FR R ,Fθθ,FR θ)dZ +

∫ h
2

hc
2

g(Z )(FR R ,Fθθ,FR θ)dZ (13c)
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coordinate for the structure [63].
∫ T 1

T 0

∫ θ

0

∫ Ro

Ri

×

∫ +
h
2

−
h
2

(

ρ
(
U̇ R δU̇ R +U̇ θδU̇ θ+U̇ Z δU̇ Z

)
+F(T )− WaU Z 0

− (FR R δE R R +FθθδE θθ+FR θδUR θ+FR Z δUR Z +FθZ δUθZ )

)

×R dZ dR dθdT

=0
(14)

where the opening angle, inner and outer radius, respectively, are
introduced by θ, Ri, and Ro. Additionally, the intensity load and exci-
tation frequency are shown by f0, Ω, and F(T ) = Pcos(ΩT ). Further-
more, Wa = KwU Z 0 + Df∇

4U Z 0, Kw, W 0, νf , and hf represent the
foundation plate thickness, Winkler coefficient, plate deflection, and
Poisson’s ratio of the auxetic foundation, in that order. Df is also

equivalent to Ef hf
3

12(1− ν2f )
. Using Hamilton’s principle to apply Eqs. (9a-e),

(10), and (13a-d) and the knowledge that δ(U R 0,U θ0,U Z 0,TR ,Tθ) at
T = T 0 and T 1 are zero, the dynamic equations in terms of stress
resultants will be found in the following relations:

δU R 0 :
∂nR R

∂R +
∂nR θ

R ∂θ
+

1
R

(nR R − nθθ) = i 0Ü R 0 + i 1T̈R + i 3
∂Ü Z 0

∂R
(15a)

δU θ0 :
∂nθθ

R ∂θ
+

∂nR θ

∂R +
2nR θ

R
= i 0Ü θ0 + i 1T̈θ + i 3

∂Ü Z 0

R ∂θ
(15b)

δTR :
∂mR R

∂R +
∂mR θ

R ∂θ
+

1
R

(mR R − mθθ) − q
R Z

= i 1Ü R 0 + i 2T̈R + i 4
∂Ü Z 0

∂R (15d)

δTθ :
∂mθθ

R ∂θ
+

∂mR θ

∂R +
2mR θ

R
− qθZ

= i 1Ü θ0 + i 2T̈θ + i 4
∂Ü Z 0

R ∂θ
(15e)

where,

The boundary conditions at curved edges R = R i,R o

Clamped : U R 0 = U θ0 = U Z 0 =
∂U Z 0

∂R = TR = Tθ = 0 (17)

Simply − supported : U R 0 =U θ0 = U Z 0 = p
R R

= mR R = Tθ = 0

Free : nR R = nR θ =

⎛

⎜
⎜
⎜
⎝

q
R Z

+
∂p

R θ

R ∂θ
+ nR R U Z 0,R +

nR θ

R
U Z 0,θ

+i 3Ü R 0 + i 4T̈x + i 5
∂Ü Z 0

∂R

⎞

⎟
⎟
⎟
⎠

= p
R R

= mR R = mR θ = 0

The boundary conditions at straight edges θ = 0,β

Clamped : U R 0 = U θ0 = U Z 0 =
∂U Z 0

∂θ
= TR = Tθ = 0 (18)

Simply − supported : U R 0 = U θ0 = U Z 0 = pθθ = TR = mθθ = 0

Free : nR θ = nθθ =

⎛

⎜
⎜
⎜
⎝

qθZ
+

∂p
R θ

∂R + nR θU Z 0,R +
nθθ

R
U Z 0,θ

+i 3Ü θ0 + i 4T̈θ + i 5
∂Ü Z 0

R ∂θ

⎞

⎟
⎟
⎟
⎠

= pθθ

= mR θ = mθθ = 0

5. Numerical solution

The main steps in using the differential quadrature approach to get a
numerical solution are described in this section.

5.1. Differential quadrature approach (DQA)

Using DQA, the pth derivative of F (R ) as a given one-dimensional
function would be declared as [64–66].

∂p
F (R )

∂R p =
∑nR

j=1
A

(p)
ij F

(
R j
)
fori = 1,2, ...,nR (19)

δU Z 0 :
∂q

R Z

∂R +
q

R Z

R
+

∂qθZ

R ∂θ
−

(
∂2p

R R

∂R 2 + 2
∂p

R R

R ∂R +
∂2pθθ

R
2∂θ2

−
∂pθθ

R ∂R + 2
∂2p

R θ

R ∂R ∂θ

+ 2
∂p

R θ

R
2∂θ

)

+
1
R

(rnR R U Z 0,R ),R +
1

R
2(nθθU Z 0,θ)θ +

1
R

(nR θU Z 0,θ),R +
1
R

(nR θU Z 0,R ),θ − F(T ) − KwU Z 0 +Df∇
4U Z 0

= − i 3

(
∂Ü R 0

∂R −
Ü R 0

R

)

− i 4

(
∂T̈R

∂R −
T̈R

R

)

− i 3
∂Ü θ0

R ∂θ
− i 4

∂T̈θ

R ∂θ
+ i 0Ü Z 0 − i 5

(
∂2Ü Z 0

∂R 2 +
∂Ü Z 0

R ∂R +
∂2Ü Z 0

R
2∂θ2

)

(15c)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i 0
i 1
i 2
i 3
i 4
i 5

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

∫ −
hc
2

−
h
2

ρb

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
f(Z )

f
2
(Z )

g(Z )

f(Z )g(Z )

g2(Z )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

dZ +

∫ hc
2

−
hc
2

ρCu

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
f(Z )

f
2
(Z )

g(Z )

f(Z )g(Z )

g2(Z )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

dZ +

∫ h
2

hc
2

ρt

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
f(Z )

f
2
(Z )

g(Z )

f(Z )g(Z )

g2(Z )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

dZ (16)
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here A
(p)
ij represents the weight coefficients for the ith grid point (j =

1, 2,…, nR ) and nR is the total number of grid points. According to Eq.
(20), A

(p)
ij for i ∕= j can be derived as [67]:

A
(p)
ij = p

(

A
(p− 1)
ii A

(1)
ij −

A
(p− 1)
ij

R i − R j

)

, p = 2,3, ...,nR − 1andi, j = 1, 2, ..., nR

(20)

here A(1)
ij can be acquired by subsequent equation

A
(1)
ij =

M(1)(R i)
(
R i − R j

)
M(1)(R j

), i, j = 1,2, ...,nR (21)

Next equation will be employed to determine A
(p)
ij

A
(p)
ii = −

∑nR

j=1,j∕=i
A

(p)
ij , i = 2, 3, ...,nR andp = 1, 2, ...,nR − 1 (22)

M(1) in Eq. (21) can be derived as

M(1)(R k) = −
∑nR

j=1,j∕=k

(
R k − R j

)
, fork = 1,2, 3, ..., nR (23)

5.2. Two-dimensional approximation

The DQA allows for the derivation of the first two derivatives of a
given two-dimensional function F (R , θ) [68].

∂F
∂R

⃒
⃒
⃒
⃒
R=R i ,θ=θj

=
∑nR

p=1

∑nθ

k=1
AR

ip i θ
pkF kj (24a)

∂F
∂θ

⃒
⃒
⃒
⃒
R=R i ,θ=θj

=
∑nR

p=1

∑nθ

k=1
i R

ip Aθ
pkF kj (24b)

∂
∂R

(
∂F
∂θ

⃒
⃒
⃒
⃒
R=R i ,θ=θj

)

=
∑nR

p=1

∑nθ

k=1
AR

ip Aθ
pkF kj (24c)

∂2F
∂R 2

⃒
⃒
⃒
⃒
R=R i ,θ=θj

=
∑nR

p=1

∑nθ

k=1
BR

ip i θ
pkF kj (24d)

∂2F
∂θ2

⃒
⃒
⃒
⃒
R=R i ,θ=θj

=
∑nR

p=1

∑nθ

k=1
i R

ip Bθ
pkF kj (24e)

Here Aθ
pk, AR

ip , Bθ
pk, and BR

ip are corresponding weight coefficients.
Also, nθ, and nR shows the number of grid points considered through

the θ − andR − directions. It must be mentioned that i Rip , i θ
pk, i

R
ip , and i θ

pk

represent identity tensors. By using the Chebyshev–Gauss–Lobatto
function, the polar coordination of the grid points

(
R i, θj

)
maybe ob-

tained in the following manner [69].

R i = R i +
R o − R i

2

(

1 − cos
(

(i − 1)
(nR − 1)

π
))

i = 1,2, 3, ...,nR (25a)

θj =
β
2

(

1 − cos
(

(j − 1)
(nθ − 1)

π
))

j = 1,2, 3, ...,nθ (25b)

Using Eqs. (17), (18) for different boundary conditions and Eqs.
(24a-e), and (13a-d), (16) for Eq. (15a-e), we obtain:

M d̈ + [K L +K NL(d )]d = F (26)

where the mass matrix M , the linear stiffness matrix K L, and the
nonlinear stiffness matrix K NL are, respectively. The displacement
vector d =

{
U R 0ij

T,U θ0ij
T ,U Z 0ij

T,TR ij
T
,Tθij

T}T,(i = j = 1,2, ...,nR ×

nθ) is not known, and the force vector F resulting from the dynamic
load applied is expressed as

Fig. 3. A flowchart of the presented research to measure nonlinear vibrations of the multi-layer sector plate.

F =
{
{0}T

nR ×nθ×1, {0}
T
nR ×nθ×1, {F0cos(Ωt)}T

nR ×nθ×1, {0}
T
nR ×nθ×1, {0}

T
nR ×nθ×1

}T
(27)
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To address the existing dynamic vibration issue, we have chosen to
use Newmark’s time integration technique to calculate the current
problem. The following are the steps to follow:

Algorithm. (START).

In the context of Newmark’s temporal integration method, all nu-
merical calculations use the constant average acceleration approach
with β = 0.25 and γ = 0.5. Furthermore, dimensionless quantities are
described by

U Z =
U Z

h
(28)

6. Introducing artificial intelligence algorithm for nonlinear
issues

A flowchart of the current research to estimate nonlinear vibrations
of the current problem is presented in Fig. 3.

Hybrid Evolutionary Algorithms (HEAs) that combine Genetic Pro-
gramming (GP) with neural networks are powerful tools for tackling
nonlinear problems, particularly those involving complex mathematical
datasets. This combination leverages the strengths of both GP and neural
networks: GP’s ability to evolve symbolic representations of solutions
and neural networks’ capability to model complex, high-dimensional
data.

6.1. Overview of hybrid evolutionary algorithms (HEAs)

6.1.1. Genetic programming (GP)
GP is an evolutionary algorithm-based methodology inspired by

biological evolution to find computer programs that perform a user-
defined task. It evolves a population of candidate solutions repre-

sented as tree structures, which can be mathematical expressions or
symbolic programs.

6.1.2. Neural networks (NNs)
NNs are computational models inspired by the human brain, con-

sisting of interconnected layers of nodes (neurons) that process data.
They excel at capturing intricate patterns and relationships in large
datasets through learning and generalization.

6.2. Combining GP and neural networks

Hybrid Evolutionary Algorithms (HEAs): These algorithms inte-
grate GP and NNs to capitalize on their complementary strengths. In this
hybrid approach, GP is used to evolve the structure or parameters of
neural networks, or neural networks are employed to refine and opti-
mize the solutions found by GP.

6.3. Key approaches in HEAs combining GP and NNs

1. Evolving Neural Network Architectures with GP.
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Fig. 4. Python implementation of a Hybrid Evolutionary Algorithm that combines Genetic Programming with neural networks to estimate a nonlinear problem using
a mathematical dataset.
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o GP is used to evolve the topology and hyperparameters of neural
networks, such as the number of layers, types of activation func-
tions, and connectivity patterns.

o This approach can discover novel and effective neural network
architectures tailored to specific nonlinear problems.

2. GP for Feature Extraction and Representation Learning:
o GP evolves symbolic expressions or transformations that serve as
features for neural networks.

o These evolved features can capture domain-specific knowledge and
improve the neural network’s performance on complex datasets.

3. Hybrid Models for Symbolic Regression:
o GP is employed for symbolic regression to evolve mathematical
expressions that model the underlying relationships in the data.

o Neural networks can be used to refine the coefficients of these
expressions or to model residuals, enhancing the overall accuracy.

4. Neural Networks Guided by GP:
o GP evolves initial solutions or structures, which are then fine-
tuned and optimized using neural networks.

o This approach allows the combination of GP’s exploration capa-
bilities with neural networks’ powerful learning algorithms.

6.4. Application workflow

1. Initialization:
o Generate an initial population of candidate solutions using GP.
These candidates could represent neural network architectures,
feature transformations, or mathematical expressions.

2. Evaluation:
o Evaluate each candidate solution by training the neural networks
or computing the fitness of evolved expressions on the mathe-
matical dataset.

o Fitness evaluation involves assessing how well the solution models
the nonlinear relationships in the data.

3. Selection:
o Select the best-performing candidates based on their fitness scores.
o Apply selection methods like tournament selection, roulette wheel
selection, or rank-based selection.

4. Crossover and Mutation:
o Apply genetic operators such as crossover (recombination of
parent solutions) and mutation (random alterations) to create new
offspring.

o These operations introduce diversity and explore new regions of
the solution space.

5. Iteration:
o Iterate through multiple generations, repeatedly applying evalu-
ation, selection, crossover, and mutation.

o Over successive generations, the population of solutions evolves
towards better performance.

6. Integration and Optimization:
o Integrate the evolved solutions with neural networks for further
training and optimization.

o Fine-tune the neural network parameters using gradient-based
methods or other optimization techniques.

6.5. Benefits and applications

• Robustness: The hybrid approach leverages the exploration capa-
bilities of GP and the learning power of neural networks, making it
robust for complex nonlinear problems.

• Flexibility: GP can evolve diverse solution structures, while neural
networks can fine-tune and optimize these solutions.

• Accuracy: Combining symbolic regression with neural networks
often leads to highly accurate models for mathematical datasets.

Fig. 4 shows the Python implementation of a hybrid evolutionary
algorithm that combines genetic programming (GP) with neural

networks to estimate a nonlinear problem using a mathematical dataset.
This example will use a symbolic regression approach with GP to evolve
mathematical expressions and then use a neural network to optimize the
parameters of these expressions.

6.6. Step-by-step implementation

1. Setup: Import necessary libraries and define the dataset.
2. Initialization: Generate an initial population of candidate solutions

using GP.
3. Evaluation: Evaluate each candidate by fitting it to the data and

calculating fitness.
4. Selection: Select the best-performing candidates.
5. Crossover and Mutation: Apply genetic operators to create new

offspring.
6. Neural Network Optimization: Refine the best GP-evolved solu-

tions using a neural network.
7. Iteration: Repeat the process for a fixed number of generations.
8. Results: Output the best solution.

6.7. Explanation of each step

1. Setup:
o Import necessary libraries.
o Generate a synthetic regression dataset and split it into training
and testing sets.

o Define the primitive set for GP, including arithmetic operations
and ephemeral constants.

2. Initialization:
o Create the GP individual and population using DEAP (Distributed
Evolutionary Algorithms in Python).

3. Evaluation:
o Define a fitness function (evalSymbReg) to evaluate the mean
squared error of GP-evolved expressions against the training data.

4. Selection and Crossover/Mutation:
o Use tournament selection to select the best individuals.
o Apply one-point crossover and uniform mutation to generate new
offspring.

5. Neural Network Optimization:
o Define a function to optimize the best GP-evolved individual using
a neural network.

o Train a simple feedforward neural network on the outputs of the
GP-evolved expression.

6. Iteration:

Table 1
A convergence dynamic deflection of the presented DQA for various R o/R i.

R o/R i (nR ,nθ)

(7,7) (9,9) (11,11) (13,13) (15,15)

1.5 0.2695 0.2153 0.1943 0.1943 0.1943
2 0.2896 0.2689 0.2559 0.2559 0.2559
2.5 0.3593 0.3361 0.3215 0.3215 0.3215
3 0.4389 0.4196 0.4003 0.4003 0.4003
3.5 0.5785 0.5696 0.5381 0.5381 0.5381

Table 2
Comparison between the nonlinear bending result of the present solution with
those reported by [51,71], for the dimensionless deflection of an isotropic
clamped annular sector plate.

R i

R o
= 0.05

R i

R o
= 0.1

R i

R o
= 0.2

Ref.[51] 0.30596 0.39811 0.56931
Ref.[71] 0.3208 0.4186 0.5976
Present 0.3220 0.4194 0.5985
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o Run the evolutionary algorithm for a fixed number of generations,
recording statistics and the best individual in each generation.

7. Results:
o Output the best GP-evolved expression and evaluate its perfor-
mance on the test set after optimization with the neural network.

This section demonstrates how to combine Genetic Programming
with neural networks to address a nonlinear regression problem using a
hybrid evolutionary algorithm. The mathematical formulation of HEAs
that combine GP and neural networks for predicting the nonlinear
transient deflections of multi-layer sector plate on auxetic concrete
foundation is outlined through the following steps:

6.8. Genetic programming component

GP is used to evolve the mathematical model or function that best
describes the nonlinear transient deflections of the system. GP searches
through a space of possible mathematical expressions fGP(x) and evolves
them based on fitness criteria, typically minimizing the prediction error
of the system’s dynamic response.

6.8.1. GP process

• Initialization: Randomly generate an initial population of potential
solutions, represented as tree structures for different mathematical
expressions.

• Fitness Function: Define the fitness function to minimize the error
between the predicted transient deflections ŵ(t) from the GP model
and the actual observed dataw(t). The fitness function can be defined
as:

Fitness =
1
N
∑N

i=1
(w(ti) − fGP(ti))

2 (29)

• Selection, Crossover, Mutation: Evolve the population using ge-
netic operators (crossover, mutation) to create new generations of
candidate solutions.

6.9. Neural network component

A neural network is integrated into the hybrid model to capture more
complex nonlinear interactions that GP might not efficiently represent.
The neural network learns from the residual error between the actual
nonlinear response and the GP prediction. The NN is trained with the
error data e(t):

e(t) = w(t) − fGP(t) (30)

The neural network then outputs a correction term fNN(t) that refines
the GP model:

ŵ(t) = fGP(t)+ fNN(t) (31)

6.10. NN training

The NN model is trained by minimizing the mean squared error be-
tween the corrected prediction ŵ(t) and the true response:

Table 3
Dimensionless displacements of FG-GPLRC multilayer annular plate under the
cosinoidal load.

Boundary conditions U R

h
U Z

h
U θ

h

SSSS Ref.[72] 0.7076 − 36.154 − 0.2284
Present 0.7077 − 36.156 − 0.2287

CSCS Ref.[72] − 0.1891 − 14.010 0.4859
Present − 0.1895 − 14.013 0.4860

Table 4

The time histories of the normalized lateral deflection
U Z

h
([73]) of SSSS FGM annular sector plates subjected to transient loads for SSSS supported.

cT
h

0 10 20 30 40 50 60 70 80 90 100
Ref.[73] 0 0.0047 0.0021 − 0.0038 − 0.0032 0.0017 0.0043 0.0003 − 0.0047 − 0.002 0.0040
Present 0 0.0047 0.0021 − 0.0038 − 0.0032 0.0017 0.0043 0.0003 − 0.0047 − 0.002 0.0040

Fig. 5. The influence of the multi-layer structure’s distribution pattern and
duration of time on the nonlinear transient deflection of the multi-layer sector
plate under external excitation.

Fig. 6. The impact of duration of time and multi-layer layer’s thickness on the
transient deflection of the presented structure under external excitation.
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Loss =
1
N
∑N

i=1

(w(ti) − ŵ(ti))2 (32)

6.11. Hybrid model for nonlinear transient deflections prediction

The final hybrid model combines the GP and NN outputs:

ŵ(t) = fGP(t)+ fNN(t) (33)

The GP captures the primary transient deflections, while the NN
refines the model by addressing the residual complexities. This mathe-
matical framework of HEAs efficiently combines the global approxi-
mation power of GP with the local refinement capability of neural
networks to predict the nonlinear transient deflections of multi-layer
sector plates on auxetic concrete foundation.

7. Results and discussion

In this section, first a verification study between the results of the

current study and published articles in the literature to show the accu-
racy of the current mathematical modeling and solution procedure. In
the next subsection, using the mathematical modeling section, the in-
fluences of various parameters such as distribution pattern of multi-layer
structure, thickness of each multi-layer layer, Winkler coefficient,
Poisson and thickness parameters of auxetic foundation, radius ratio,
WGr, HGr, and external excitation value on the nonlinear dimensionless
dynamic deflection of the current problem. The properties of auxetic
concrete foundation [70] are Ef = 25 [Gpa], and ϑf = − 0.3. In the last
subsection, via the presented artificial inteligence algorithm and the
outcomes of mathematical modeling, the trained, validated and tested
results of the artificial inteligence algorithm to predict the nonlinear
dynamic deflection of the multi-layer structure are presented.

7.1. A convergence study

A convergence study for the presented DQA for various R o/R i is
shown in Table 1. As is observed, eleven node numbers along with R

and θ directions are appropriated for convergence results. Also, from

Fig. 7. The impact of duration of time and Winkler coefficient of auxetic
concrete foundation on the transient deflection of the presented structure under
external excitation.

Fig. 8. The influences of the duration of time and Poisson coefficient of auxetic
foundation on the transient deflection of the current multi-layer sector plate
under external excitation.

Fig. 9. The influences of the duration of time and thickness ratio of auxetic
foundation on the transient deflection of the current multi-layer sector plate
under external excitation.

Fig. 10. The impacts of radius ratio and external excitation’s duration time on
the nonlinear deflection of the current sector plate made of three layers.

P. Guo et al. Structures 70 (2024) 107563 

12 



Table 3 can be seen that increasing the R o/R i parameter, the dimen-
sionless dynamic deflection of the presented system increases.

7.2. Validation

A verification study is presented to show the accuracy of the current
mathematics simulation and solution procedure. In this work by
ignoring the influences of auxetic concrete foundation, multi-layer
multi-layer structure, and higher-order shear deformation terms, the
results can be compared with the outcomes of Refs. [51,71]. As is seen in
Table 2, the dimensionless bending results of the clamped annular sector
plate structure are compared with the outcomes of Refs. [51,71] for
various radius ratios. As is seen, by increasing the radius ratio, due to
decreasing the stability in the system, the dynamic deflection of the
clamped annular sector plate increases. From Table 2 can be concluded
that there is good agreement between the results of current work and
published articles in the literature.

Table 3 compares dimensionless displacements of a functionally

graded graphene platelet-reinforced composite (FG-GPLRC) multilayer
annular plate subjected to a cosinoidal load under two types of boundary
conditions: simply supported-simply supported (SSSS) and clamped-
simply supported-clamped-simply supported (CSCS). The dimension-
less displacements

U R /h,U Z /h, andU θ/h represent radial, axial, and circumferential
displacements normalized by the plate thickness. For the SSSS boundary
condition, the radial displacement from the reference (Ref. [72]) is
0.7076, while the present study yields a similar result of 0.7077. Simi-
larly, axial displacement and circumferential displacement from both
the reference and present study are closely matched. For the CSCS
boundary condition, the comparison shows a similar trend, with slight
variations in the presented values when compared to the reference. The
results from both studies show consistency, validating the present
work’s accuracy when compared to the reference, with differences only
in the fourth decimal place, indicating a high level of agreement be-
tween the two studies for the cosinoidal load analysis on FG-GPLRC
plates.

Table 4 presents the time histories of normalized lateral deflection of
simply supported-simply functionally graded material annular sector
plates subjected to transient loads. The results are compared between a
reference study (Ref. [73]) and the present work. For each time step, the

Fig. 11. The impacts of WGr values of the top and lower layers and external
excitation’s duration time on the nonlinear deflection of the current sector plate
made of three layers.

Fig. 12. The impacts of HGr values of the top and lower layers and external
excitation’s duration time on the nonlinear deflection of the current sector plate
made of three layers.

Fig. 13. The influences of time duration and external excitation value on the
nonlinear transient deflection change of the current multi-layer sector plate.

Fig. 14. As a 3D plot, the influences of hf/h, WGr on the nonlinear transient
deflection for various thicknesses of the layers.
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normalized lateral deflection values are provided. At cT /h = 0, both
the reference and present study show zero deflection, indicating the
initial state. As time progresses, deflection values fluctuate, reaching
maximum and minimum values at different time points. For example, at
cT /h = 30, the deflection is negative ( − 0.0038), while at cT /h = 50,
the value is positive (0.0017). The table shows a high degree of con-
sistency between the reference and the present work, with identical
results up to the fourth decimal place, confirming the accuracy and
reliability of the present analysis in predicting the transient response of
SSSS FGM annular sector plates under dynamic loading conditions.

7.3. Parametric results

Fig. 5 shows the influence of the multi-layer structure’s distribution
pattern and duration of time on the nonlinear transient deflection of the
presented multi-layer structure under external excitation. In this figure,
X − HGr,X − WGr/Core/X − HGr,X − WGr is chosen as pattern 1 of the
multi-layer structure’s distribution pattern. UD − HGr,UD − WGr/

Core/UD − HGr,UD − WGr and X − HGr, X − WGr/Core/UD − HGr, UD −

WGr, respectively are selected as pattern 2, and pattern 3 of the multi-
layer structure’s distribution pattern. As is seen, the distribution

pattern has an important role in the nonlinear transient deflection of the
multi-layer structure under external excitation. It is clearly seen that,
selecting pattern 2 results in the highest nonlinear transient deflection
and results in lowest stability than other patterns. Also, selecting Pattern
1 results in the lowest nonlinear transient deflection and highest sta-
bility than other patterns. It can be concluded that designers for
modeling the current multi-layer system should give careful consider-
ation to the distribution pattern of the multi-layer structure. After
applying mechanical excitation on the system, up and down in the
nonlinear transient deflection for all patterns can be seen. This up and
down of deflection due to mechanical excitation for patterns 1 and 3 are
close to each other.

The impact of the duration of time and the multi-layer layer’s
thickness on the transient deflection of the presented structure under
external excitation is shown in Fig. 6. As is seen, selecting a thinner
multi-layer structure results in lower stability and higher nonlinear
transient deflection than thicker multi-layer structure. This is because,
by increasing the thickness, the increase in stiffness in the system is more
than mass, and finally, the stability of the system increases. As an
amazing result, the influence of thickness on the higher values of
duration of time is greater than lower values of time duration. So, in the
next figures, the results are obtained via pattern 1 of the multi-layer
structure.

The impact of duration of time and Winkler coefficient of auxetic
concrete foundation on the transient deflection of the presented struc-
ture under external excitation is shown in Fig. 7. As is seen, selecting
lower Winkler coefficient results in lower stability and higher nonlinear
transient deflection than higher Winkler coefficient. As an amazing
result, the influence of thickness on the higher values of duration of time
is greater than lower values of time duration.

To know about the influences of the duration of time and Poisson
coefficient of auxetic foundation on the transient deflection of the cur-
rent multi-layer sector plate under external excitation, Fig. 8 appears. As
is seen in this figure, by increasing the Poisson coefficient of the auxetic
foundation, the stability in the system increases, and finally, the
nonlinear transient deflection decreases. This decrease in the higher
values of duration of time due to applied external excitation is more
clear.

Fig. 9 shows the effects of time length and auxetic foundation
thickness ratio on the transient deflection of the current multi-layer
sector plate under external stimulation. This figure illustrates how the
stability of the system grows and the nonlinear transient deflection
eventually diminishes as the auxetic foundation thickness ratio in-
creases. It is more evident how the greater length of time values de-
creases as a result of applied external stimulation.

The impacts of the radius ratio and external excitation’s duration
time on the nonlinear deflection of the current sector plate made of three
layers is shown in Fig. 10. As is seen, by increasing the radius ratio, the
transient deflection and finally the stability in the system increases and
decreases, respectively. As an important outcome, the influence of the
radius ratio on the transient deflection is not dependent on the value of

Fig. 15. As a 3D plot, the influences of hf
h , WGr on the nonlinear transient

deflection for various Kw.

Fig. 16. As a 3D plot, the influences of hf/h, WGr on the nonlinear transient
deflection for various HGr .

Fig. 17. A summary of the used parameter values for the algorithm.
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time duration.
The impacts of WGrvalues of the toper and lower layers and external

excitation’s duration time on the nonlinear deflection of the current
sector plate made of three layers is shown in Fig. 11. As is seen, by
increasing the WGr values, the transient deflection, and finally the sta-
bility in the system decreases and increases, respectively. As an impor-
tant outcome, the influence of the radius ratio on the transient deflection
is highly dependent on the value of time duration. For more clarity, at
the higher duration time, the WGr values have a high influence on the
nonlinear deflection of the current sector plate made of three different
layers.

Fig. 12 illustrates the effects of the external excitation’s duration
time and the top and bottom layers HGrvalues on the nonlinear deflec-
tion of the current sector plate, which is composed of three layers. It is
evident that when the HGr values grow, the system’s transient deflec-
tion and stability eventually rise and fall, respectively. An important
finding is that the value of time duration has a significant impact on the
radius ratio’s effect on the transient deflection. To be more precise, the
nonlinear deflection of the current sector plate, which is composed of
three layers, is greatly influenced by the HGr values at longer duration
times.

The influences of time duration and external excitation value on the
nonlinear transient deflection change of the current multi-layer sector
plate, Fig. 13 is presented. As predicted, by increasing the value of
external excitation, an increase in the nonlinear transient deflection can
be seen in the system. At the initial time duration, the influence of
external excitation value on the nonlinear transient deflection is less
than the middle time duration.

As a 3D plot, the influences of hf/h, WGr on the nonlinear transient
deflection for various thicknesses of the layers, Fig. 14 is presented. As is
observed, by increasing the hf/h the nonlinear transient deflection for all
values of WGr decreases with different slopes. For more detail, in the
lower values of WGr, the influence of hf/h on the nonlinear transient
deflection is less than higher values of WGr. Also, in the lower values of
hf/h, the influence of the thickness of the layers on the nonlinear tran-
sient deflection is more than higher ones. As an important outcome for
related industries, in the lower values of WGr, the influence of the
thickness of the layers on the nonlinear transient deflection is less than
higher ones.

To know about Kw, WGr and hf/h on the nonlinear transient
deflection of the multi-layer sector plate surrounded by auxetic concrete
foundation appears in Fig. 15. As is seen, by increasing the hf/h andWGr,
the transient deflection decreases. Also, by increasing the
Kw parameter, the nonlinear transient deflection decreases. This
decrease in all values of hf/h and WGr is the same. For more detail, the
influence of Kw parameter on the nonlinear deflection is not dependent
on the values of hf/h and WGr parameters.

Fig. 16 presents the impacts of hf/h and WGr on the nonlinear
transient deflection for different HGr as a 3D graphic. It can be shown
that for all values of WGr, the nonlinear transient deflection reduces with
varying slopes as the hf/h increases. More specifically, for lower
WGr levels, hf/h has less of an impact on the nonlinear transient
deflection than at higher WGr values. Furthermore, the impact of HGr
on the nonlinear transient deflection is greater at lower values of hf/h
than at larger ones. A significant finding for linked sectors is that
HGr has less of an impact on the nonlinear transient deflection at lower
levels of WGr than at larger ones.

7.4. The results of trained hybrid deep neural networks

The hybrid evolutionary algorithm combining Genetic Programming
(GP) with neural networks is vital for engineering industries tackling
complex nonlinear problems. This approach leverages GP’s ability to
evolve symbolic mathematical expressions, providing interpretable

Fig. 18. Loss factor against epoch.

Table 5
An analysis of the amplitude performance of the DNN model at various R o/R i

and RMSN values.

R o/R i Fit Predicted

R MSETrain = 0.81 R MSETrain = 0.89 R MSETrain = 0.91

1.5 0.3275 0.4112 0.3596 0.3302
2 0.4746 0.5396 0.4862 0.4779
2.5 0.632 0.7493 0.6769 0.6303
3 0.7392 0.837 0.7716 0.7376
3.5 0.8378 0.9476 0.8852 0.839

Table 6
The amplitude performance of the DNNmodel is assessed over a range of R2 and
R o/R i values.

R o/R i Fit Estimated

R2 = 0.81529 R2 = 0.93593 R2 = 0. 97237

1.5 0.1943 0.2562 0.2169 0.1967
2 0.2559 0.3219 0.2828 0.2581
2.5 0.3215 0.3883 0.3432 0.3245
3 0.4003 0.4588 0.4219 0.4014
3.5 0.5381 0.6135 0.5664 0.5392

Table 7
An analysis comparing the outputs of hybrid deep neural networks (HDNN) with mathematical modeling (MM).

WGr (%) HGr (%)

0 20 40 60

MM HDNN MM HDNN MM HDNN MM HDNN

0 0.596 0.594 0.610 0.616 0.654 0.647 0.701 0.708
0.5 0.401 0.397 0.593 0.598 0.601 0.595 0.621 0.627
1 0.356 0.352 0.481 0.485 0.521 0.515 0.599 0.605
1.5 0.301 0.298 0.401 0.405 0.492 0.487 0.531 0.536
2 0.281 0.278 0.345 0.348 0.432 0.427 0.490 0.494
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models, while neural networks optimize these solutions for accuracy.
Such algorithms are essential in fields like predictive maintenance,
where accurate modeling of equipment behavior is crucial for prevent-
ing failures. In process engineering, they optimize control systems by
accurately capturing nonlinear transient deflections, leading to
improved efficiency and reduced operational costs. Furthermore, in
structural engineering, these algorithms model material properties and
structural responses under various conditions, enhancing design
robustness and safety. By integrating symbolic regression and deep
learning, this hybrid approach offers a powerful tool for solving intricate
engineering challenges, driving innovation, and optimizing processes
across various engineering domains. Below are the values for the pa-
rameters used in the given hybrid evolutionary algorithm:

7.4.1. Genetic programming parameters

1. Population Size: 300
o The number of candidate solutions (individuals) in the population.

2. Generations: 40
o The number of iterations (generations) for the evolutionary
process.

3. Crossover Probability: 0.5
o The probability of mating (crossover) between two individuals.

4. Mutation Probability: 0.2
o The probability of mutating an individual.

5. Tournament Size: 3
o The number of individuals competing in each tournament for
selection.

6. Primitive Set:
o Operations: Addition, Subtraction, Multiplication, and Negation.
o Ephemeral Constants: Random constants uniformly drawn be-
tween − 1 and 1.

7. Tree Constraints:
o Initial Tree Depth: Between 1 and 2.
o Mutation Tree Depth: Between 0 and 2.
o Maximum Tree Depth: 17.

7.4.2. Neural network parameters

1. Model Architecture:
o Input Layer: 1 neuron (input shape of (1,)).
o Hidden Layer: 64 neurons with ReLU activation.
o Output Layer: 1 neuron (for regression output).

2. Optimizer: Adam
o Adaptive Moment Estimation (Adam) optimizer, which adjusts the
learning rate during training.

3. Loss Function: Mean Squared Error (MSE)
o MSE is used to evaluate the difference between predicted and
actual values.

4. Epochs: 50
o The number of times the neural network will iterate over the entire
training dataset.

5. Batch Size: Not explicitly set, using the default value in the model.

Fig. 17 is a summary of the used parameter values for the algorithm:
These parameters provide a balanced approach for the hybrid

evolutionary algorithm, ensuring effective exploration of the solution
space and robust optimization of the evolved expressions. Using the
3750 datasets of the mathematical section the loss factor against epoch
is presented in Fig. 18.

According to the given choices and the results of scientific modeling,
the ready results of hybrid deep neural networks are produced now. The
present investigation assesses the feasibility of the model by looking at
five factual indicators, including root cruel square error (RMSE) and
coefficient of assurance (R2). This section uses Tables 5 and 6 to examine
how R2 and RMSE affect the results. Higher R2 and RMSE parameter

values for a response might be seen as indicating more precision. It is
really helpful to have chosen 3750 tests with RMSE= 0.91, R2 = 0.
97237, and other results.

According to Tables 5 and 6, the amplitude of the structure increases
as the.

R o/R i increases for both the DNN and numerical techniques.
Now using the data of Fig. 16 and Tables 5, and 6, a comparison

study is presented in Table 6. The results of the hybrid deep neural
networks (HDNN) that are shown have been compared with the math-
ematical modeling (MM) findings in Table 7. The effects of WGr and
HGr on the dimensionless nonlinear deflection of the sector plate are
shown in Table 7. Sector plate dimensionless nonlinear deflection de-
creases as the WGr is increased from 0 % to 1 %. The sector plate’s
dimensionless nonlinear deflection decreases as the WGr in Table 5
increases. Table 7 data shows that there is a good alignment between the
MS and MLS findings.

8. Conclusion

Multi-layer sector plates are lightweight and strong, making them
perfect for use in aircraft applications. This is particularly true of those
that include graphene origami-enabled auxetic metamaterial face
sheets. These structures may be used in satellites, armor, and aircraft
parts, where impact protection and weight reduction are vital for effi-
ciency and performance. This study employs a mixed machine learning
technique and mathematical simulation to investigate the nonlinear
transient deflection of a multi-layer sector plate on an auxetic concrete
foundation for the first time. For multi-layer sector plates to function
well in engineering applications, it is essential to comprehend and
anticipate their nonlinear transient deflections. In order to overcome
these issues, this study offers a thorough strategy that incorporates
cutting-edge methods. In particular, we present the idea of auxetic
metamaterial face sheets enabled by graphene origami, which improve
the structures’ auxetic behavior and mechanical characteristics.
Furthermore, to effectively forecast the nonlinear behavior of these
structures under changing loading situations, we offer a hybrid deep
neural network architecture that leverages mathematical datasets and
machine learning capabilities. To further improve the model’s predic-
tive power, the coupled differential quadrature methodology, and
Newmark’s temporal integration method are used. Our approach pro-
vides effective and precise predictive modeling of complex structures by
integrating machine learning with conventional numerical methods.
This offers significant insights for the design and optimization of multi-
layer sector plates and auxetic concrete foundations in engineering ap-
plications. The following outcomes are obtained:

➣ After applying mechanical excitation on the system, up and down in
the nonlinear transient deflection for all patterns can be seen. This up
and down of deflection due to mechanical excitation for patterns 1
and 3 are close to each other.

➣ The influence of thickness on the higher values of duration of time is
greater than the lower values of time duration.

➣ By increasing the Poisson coefficient of the auxetic foundation, the
stability in the system increases, and finally, the nonlinear transient
deflection decreases.

➣ The influence of the radius ratio on the transient deflection is not
dependent on the value of time duration.

➣ At the higher duration time, the WGr values have a high influence
on the nonlinear deflection of the current sector plate made of three
different layers.

➣ The nonlinear transient deflection of the current sector plate, which
is composed of three layers, is greatly influenced by the HGr values
at longer duration times.

➣ At the lower values ofWGr, the influence of the thickness of the layers
on the nonlinear transient deflection is less than higher ones.
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[4] Dastjerdi S, Akgöz B, Civalek Ö, Malikan M, Eremeyev VA. On the non-linear
dynamics of torus-shaped and cylindrical shell structures. Int J Eng Sci 2020;156:
103371.
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