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Abstract: The accurate prediction of carbon dioxide (CO2) emissions from light-duty vehi-
cles is critical for mitigating environmental impacts and enhancing regulatory compliance
in the automotive industry. However, challenges such as high-dimensional feature spaces,
feature redundancy, and hyperparameter sensitivity limit the efficiency of machine learning
(ML) models in CO2 emissions forecasting. This study systematically investigates the
efficacy of ML models for CO2 emissions prediction using the Fuel Consumption Ratings
2023 dataset, with a particular focus on optimizing feature selection and hyperparameter
tuning through metaheuristic techniques. The performance of various ML models, includ-
ing the Temporal Fusion Transformer (TFT), is evaluated before and after optimization.
Initially, the TFT model achieved a root mean squared error (RMSE) of 0.082723421 in the
baseline scenario. Feature selection using the Football Optimization Algorithm (FbOA)
significantly improved its performance, reducing the RMSE to 0.018798774. Further en-
hancement through metaheuristic optimization using FbOA resulted in an exceptionally
low RMSE of 0.000923, demonstrating substantial gains in predictive accuracy. The find-
ings underscore the impact of metaheuristic-driven feature selection and hyperparameter
tuning in optimizing ML models for environmental sustainability applications. This work
provides a framework for integrating advanced ML methodologies with optimization tech-
niques, offering policymakers and automotive manufacturers a robust tool for assessing
and reducing vehicle emissions.

Keywords: carbon dioxide emissions prediction; machine learning optimization; meta-
heuristic algorithms; feature selection; fuel consumption modeling

MSC: 68T01; 68T07; 68T20; 68T42

1. Introduction
The unprecedented rate of climate change resulting from increasing concentrations of

greenhouse gases in the atmosphere has led to urgent calls for policy and technological
intervention [1]. However, the carbon dioxide (CO2) emissions from the transportation
sector are one of the highest GHG contributors among all sectors, contributing substantially
to global emissions. In particular, a reasonable fraction of fossil fuel consumption and
carbon emissions relates to light-duty vehicles, which most people and firms use as their
means of personal and commercial transportation, respectively, worldwide. As towns
and cities grow, personal and commercial transport is becoming more necessary, and the
curtailment of vehicular emissions is an absolute necessity [2].

Mathematics 2025, 13, 1627 https://doi.org/10.3390/math13101627

https://doi.org/10.3390/math13101627
https://doi.org/10.3390/math13101627
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7530-7961
https://doi.org/10.3390/math13101627
https://www.mdpi.com/article/10.3390/math13101627?type=check_update&version=2


Mathematics 2025, 13, 1627 2 of 47

Regulations for minimizing vehicle emissions have been enforced by making vehicle
efficiency standards and encouraging the usage of cleaner energy sources worldwide by
governments and environmental agencies. Among such regulations are CAFE (corporate
average fuel economy) standards, emissions trading schemes, and tax incentives for lower
emissions vehicles [3]. Simultaneously, auto manufacturers must develop energy-efficient
vehicles with the lowest possible carbon footprint. Designing such vehicles demands
in-depth knowledge about the emission patterns and capable predictive models that are
able to predict emissions accurately using vehicle specifications [4].

CO2 emissions prediction is a central problem for manufacturers when designing more
fuel-efficient vehicles and has critical implications in policymaking and environmental
planning. Policymakers, in turn, must establish better regulations for vehicle emissions
control, enabling consumers to choose the vehicle they want based on the more knowl-
edgeable decisions. Since emissions often involve many interacting factors, including
vehicle engine size, type of transmission, type of fuel, and vehicle aerodynamics, devoping
reliable prediction models is difficult [5]. The complex nonlinear relationships in vehicular
attributes make it difficult for traditional emissions estimation models primarily based
on physical and statistical regression techniques. Most of these methods are based on
predefined assumptions, which generalize poorly across different vehicle types and driving
conditions, and therefore, they do not have tremendous practical applicability [6].

Therefore, machine learning (ML) techniques present a revolutionary way of predict-
ing emissions by using data-driven methodologies to learn the complex relationships in
the massive datasets that are adapted. However, ML models have been shown to perform
significantly better than conventional models in capturing intricate patterns on high dimen-
sional spaces and, hence, outperform them in prediction accuracy [7]. Advances in the field
of ML, most notably in the realm of deep learning and ensemble modeling, have allowed
these models to outperform other such models in a state-of-the-art way in various applica-
tions, including emissions forecasting. ML algorithms differ from traditional methods in
that they do not require any assumptions regarding the feature dependencies; instead, they
complete the learning from the data themselves and are naturally flexible, with the ability
to accommodate a wide range of vehicle specifications. In addition, real-world driving
patterns and contextual information can be integrated into ML-based emissions modeling
to make it predictive, robust, and reliable [8].

While there already exist ML-based approaches for CO2 emissions prediction, there
remain several fundamental challenges that need to be addressed for accurate and efficient
forecasting. The primary challenge stems from vehicular datasets being of high dimen-
sionality [9]. For example, emissions data will likely contain several features, including
vehicle engine characteristics, fuel consumption variables, aerodynamic properties, etc. A
large number of variables increases computational complexity, which necessitates the use
of advanced feature selection algorithms to select only a few essential variables that are
most relevant and to relegate those that are not similar to irrelevant or redundant attributes.
Similarly, the curse of dimensionality can also arise from long geodesic distances in high
dimensional spaces due to the sparsity of data in the high dimensional space [10].

Feature redundancy is another big issue—this relates to multiple features among vehi-
cle attributes showing strong correlations. For example, metric fuel consumption measured
out through city, highway, and combined driving conditions can be highly collinear, provid-
ing additional redundant information, which sometimes negatively influences the model
generalization [11]. Specifically, redundant features add noise to the learning problem
and confuse the model, increasing its complexity and impeding the ability to interpret
the underlying factors that influence emissions. In the case of graphs, feature selection
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techniques are required to identify and keep only the most informative variables so that
the model is not prevented from becoming computationally efficient and interpretable [12].

One of the additional challenges of ML-based emissions prediction is the sensitivity
of hyperparameters. The ability of ML models to perform well is hugely dependent on
hyperparameter tuning, which entails selecting the best values for parameters such as
the learning rate, regularization coefficient, and especially model depth [13]. Suboptimal
hyperparameter configuration results in overfitting, where the model learns the noise over
a meaningful pattern, or underfitting, where the model does not fit the underlying data
structure well. Due to the ample search space of possible hyperparameter values, manual
tuning is generally infeasible; thus, various robust optimization techniques are used in
order to automate and improve the process of selecting hyperparameters [13].

The difficulties in emissions prediction tasks are further generalization and overfit-
ting. ML models are very accurate if they can predict the training data; however, their
performance worsens when deployed onto new and unseen vehicle data. A model that
overfits relates to one that excessively adapts to the training data by memorizing certain
noises and idiosyncrasies rather than learnable patterns [14]. To address the issue, some
network methods such as cross-validation, dropout regularization, and feature selection
are used to keep the complexity of the model balanced and to maintain the generalization
performance. In addition, black box models generally need to remain interpretable and
explainable, although, particularly in the context of regulations or policymaking, black box
models may not be readily adopted [15].

This study aims to design and validate the performance of ML-based approaches
that predict CO2 emissions in light-duty vehicles from the Fuel Consumption Ratings
2023 dataset. In this research, many ML models are evaluated systematically concerning
their success in emissions forecasting, overcoming the main challenges of feature selection,
dimensionality reduction, and hyperparameter optimization [16]. This study will determine
the most effective prediction framework with the necessary accuracy and computational
efficiency with state-of-the-art ML techniques [17].

This work views feature selection and hyperparameter tuning as methods to enhance
emissions prediction accuracy using metaheuristic optimization techniques as a core focus
of this work [18]. The reduction in dataset dimensionality with the retention of the most
relevant attributes is achieved by feature selection. The goal is also to improve the models’
interpretability and computational performance. At the same time, we ensure that ML
models are trained in optimal conditions through hyperparameter optimization to avoid
underfitting and overfitting [19].

This research also intends to establish a computationally efficient and scalable frame-
work to generate an emissions model. One study decreased the complexity of ML models
and eased the feature selection and hyperparameter tuning process, producing a robust
methodology that can be further expanded into more general environmental modeling
issues [20]. This research has value not only in the context of academia but also as a means
to discover valuable insights for use in governmental compliance monitoring, eco-friendly
vehicle design, and the integration of intelligence for operational control in the intelligent
transportation system.

The study helps improve the development of intelligent decision support systems that
will benefit automotive manufacturers, policymakers, and even consumers. The aim is to
create a sound and data-driven way of approaching the trade-off analysis and mitigation
of vehicular CO2 emissions with the ultimate goal of contributing to a more sustainable
transportation sector.
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2. Literature Review
Climate change and global warming are very pressing environmental concerns, mainly

attributed to the emission of greenhouse gases (GHGs), particularly carbon dioxide (CO2).
Due to its high output of CO2 emissions, changing the transport sector so that based
on efficient monitoring and predictive modeling techniques is a must. There has been a
rise in the application of machine learning (ML) and optimization algorithms to predict
CO2 emissions and which of its factors are key. The present work explores methodolo-
gies used in recent research for CO2 emissions estimation and analysis using ML and
metaheuristic techniques.

A couple of studies have proposed innovative ways of predicting CO2 emissions through
the use of an RNN-based Long Short Term Memory (LSTM) approach from On-Board Di-
agnostics (OBD-II) data [21]. This method offers an easy means of emissions monitoring in
real-time. Using the same type of predictive emission monitoring system, ref. [22] used their
predictive emission monitoring system with feature engineering and a hyperparameter tuning
of workflows, achieving better accuracy with Deep Forest Regression (DFR).

In their study, ref. [23] propose a UPGO updated grey multivariable convolution
model for provincial carbon emissions forecasting in China—the model with an MAPE
less than 4% obtained good prediction accuracy for sample periods. Additionally, ref. [24]
exploited a BPNN in conjunction with PSO to further analyze the CO2 emission prediction
and more effectively determine energy consumption management policies.

An interpretable multi-stage forecasting framework coupled with SHAP-based expla-
nations was used in [25] for predicting the CO2 emissions of the UK transportation sector,
thereby making another important contribution. As stated in their findings, road carbon
intensity was the most important influencing factor.

One study, ref. [26], combined a multi-objective mathematical model with ML algorithms
to predict energy demand and CO2 emissions in Canada’s transportation sector. Sensitivity
analyses were run to indicate how varying energy sources impacted the emissions trend.
As in [27], the MRFO-ELM hybrid model was proposed to forecast China’s transport CO2

emissions and it was found that vehicle electrification is important for emission trends.
Ref. [28] used a novel Random Forest (RF) approach to predict diesel engine emissions

with applied SHAP-based interpretability techniques for emissions from internal combustion
engines. For most engine parameters, R2 values above 0.98 were achieved for the results.
Additionally, ref. [29] also used an optimized wavelet transform Hausdorff multivariate grey
model (OWTHGM(1, N)) for forecasting CO2 emission in Cameroon with an MAPE of 1.27%.

Ref. [30] has adopted the Marine Predators Algorithm (MPA)- and Lightning Search
Algorithm (LSA)-based metaheuristic algorithms to produce greenhouse gas trajectories
in India from a global perspective. The results project that CO2 emissions would increase
by 2.5 to 2.87 times by 2050. In addition, ref. [31] enhanced prediction accuracy by imple-
menting hybrid RF and support vector regression (SVR) models known to result in better
prediction, and they optimized them using seven different optimizers. The best-performing
model is RF-SMA with an R2 of 0.9641.

Lastly, ref. [32] suggested using novel DPRNNs based on NiOA optimization for CO2

emission forecasting. The results obtained via a statistical analysis of WILCOX and ANOVA
tests validated the accuracy of the prediction achieved through their findings.

This literature review encapsulates the recent advancements in the field, highlighting
diverse methodologies and their outcomes. The following Table 1 provides a detailed
summary of key studies that have leveraged ML and metaheuristic techniques for predict-
ing CO2 emissions. Each entry in the table elaborates on the focus area, methodologies
employed, and significant findings, offering a comprehensive overview of current trends
and methodologies in emissions modeling.
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Table 1. Detailed summary of literature on CO2 emissions prediction using ML and optimization
algorithms.

Reference Focus Area Methodology Key Findings and Contributions

[21] Real-time emissions
monitoring through
OBD-II data

RNN-based LSTM approach, lever-
aging the capabilities of neural net-
works for sequential data processing

Demonstrated effective real-time monitor-
ing capabilities, offering a novel approach
to vehicular emissions monitoring

[22] Enhancement of emis-
sions prediction accu-
racy

Application of Deep Forest Regres-
sion (DFR) combined with compre-
hensive feature engineering and rig-
orous hyperparameter tuning

Achieved superior accuracy in emis-
sions predictions, illustrating the ben-
efits of deep learning combined with
meticulous model tuning

[23] Forecasting provin-
cial CO2 emissions
in China

Updated Grey Multivariable Convo-
lution model (UPGO) that integrates
grey system theory with convolu-
tional techniques

Achieved a Mean Absolute Percentage
Error (MAPE) of less than 4%, indi-
cating high prediction accuracy over
sample periods

[24] Analysis of CO2 emis-
sions and energy con-
sumption for policy-
making support

Integration of Back Propagation
Neural Network (BPNN) with Par-
ticle Swarm Optimization (PSO) to
refine predictions

Enhanced the decision-making process
for energy policy by providing accu-
rate predictions and effective policy
analysis tools

[25] Predicting CO2 emis-
sions in the UK trans-
portation sector

Multi-stage forecasting framework
coupled with SHAP-based explana-
tions for interpretability

Identified road carbon intensity as the
most significant influencing factor on
emissions, adding valuable insights for
policy interventions

[26] Predicting energy
demand and CO2
emissions in Canada’s
transportation sector

Employed a multi-objective mathe-
matical model along with machine
learning algorithms, conducting sen-
sitivity analyses

Highlighted how different energy
sources impact emissions trends, pro-
viding a foundational tool for under-
standing sector dynamics

[27] Forecasting trans-
port CO2 emissions
in China

MRFO-ELM hybrid model employ-
ing Moth-Flame Optimization and
Extreme Learning Machine tech-
niques

Pointed out the crucial role of vehicle
electrification in managing emissions
trends, suggesting strategic focus areas
for reducing environmental impact

[28] Predictive analy-
sis of diesel engine
emissions

Utilized a Random Forest approach
enhanced with SHAP-based inter-
pretability techniques for deeper in-
sights into variable importance

Achieved exemplary predictive per-
formance with R2 values above 0.98
for most engine parameters, setting a
benchmark in emission analytics

[29] Forecasting CO2 emis-
sions in Cameroon
using advanced
grey models

Optimized Wavelet Transform
Hausdorff Multivariate Grey
Model (OWTHGM(1, N)) for
accurate forecasting

Exceptionally low MAPE of 1.27%,
showcasing the effectiveness of combin-
ing wavelet transforms with grey mod-
eling for emissions forecasting

[30] Projection of green-
house gas trajectories
in India from a global
perspective

Application of Marine Predators
Algorithm (MPA) and Light-
ning Search Algorithm (LSA) for
scenario analysis

Predicted a substantial increase in CO2
emissions, urging the need for strategic
planning and international cooperation
in climate policy

[31] Enhancing prediction
models for greenhouse
gas emissions using
hybrid approaches

Hybrid model combining Ran-
dom Forest and Support Vector
Regression optimized with vari-
ous algorithms, including the Sine
Cosine Algorithm

Achieved an R2 of 0.9641 with the
RF-SMA model, demonstrating the
strength of hybrid approaches in envi-
ronmental modeling

[32] Advanced prediction of
CO2 emissions using
deep learning and opti-
mization techniques

Novel DPRNNs (Deep Polynomial
Recurrent Neural Networks) based
on NiOA (Niche-based Invasive
Optimization Algorithm)

Statistical analysis via WILCOX and
ANOVA tests validated the high accu-
racy of the predictions, affirming the
robustness of the approach
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In this literature review, significant advances were made in the models developed to
predict CO2 emission based on ML and optimization techniques. LSTM, RF, BPNN, and
metaheuristic optimization have all been highly accurate in prediction, where multiple
approaches would have been used. Methods such as SHAP also allow integration for
increased model transparency. Future research would benefit from real-time tracking
systems, a hybrid deep learning approach, and policy-driven optimization strategies to
achieve sustainable emission reductions.

The research gap that this paper addresses revolves around the limitations of tra-
ditional CO2 emissions prediction models, which are primarily based on physical and
statistical regression techniques. These conventional methods often suffer from poor gen-
eralizability across different vehicle types and driving conditions due to their reliance on
predefined assumptions. This limitation is critical as it impacts the practical applicability
of emissions estimation models in real-world scenarios, where the interactions between
numerous vehicular attributes (like engine size, type of transmission, and fuel type) are
complex and nonlinear.

In response, this paper introduces a machine learning-based approach utilizing meta-
heuristic algorithms to enhance feature selection and hyperparameter tuning. This ap-
proach aims to overcome the challenges of high-dimensional feature spaces, feature re-
dundancy, and the sensitivity of machine learning models to hyperparameter settings.
By leveraging advanced machine learning techniques, the study seeks to develop more
robust and accurate predictive models that are not only more adaptable to varying data
characteristics but also capable of capturing intricate interactions within the data without
the need for explicit assumptions about the underlying relationships.

The integration of machine learning with metaheuristic optimization represents a
significant shift towards data-driven methodologies, which are inherently more flexible
and suited for managing the complexity and variability inherent in vehicle emissions data.
Thus, this paper fills an essential research gap by proposing a framework that potentially
increases the accuracy and efficiency of CO2 emissions predictions, supporting better
regulatory compliance and more informed policymaking in the automotive sector.

3. Materials and Methods
3.1. Dataset Description

In the present study, we use the Fuel Consumption Ratings 2023 dataset [33], a distribu-
tion of model-specific fuel consumption rating and estimated CO2 emissions from newly
manufactured light-duty vehicles for sale in Canada. This dataset constitutes a much-
needed resource for examining the fuel efficiency of the vehicles across manufacturers,
drivetrain technology, and engine configurations. Researchers, policymakers, automotive
manufacturers, and the industry use it to analyze emissions, assess regulatory compliance,
and optimize eco-friendly vehicle design. The dataset is obtained using standardized fuel
consumption testing procedures that ensure consistency and comparability on a model
evaluation basis. These ratings serve as an essential basis for emissions forecasting and
help build predictive models supporting sustainability across the automotive industry.

Estimated emissions reflect the results of controlled laboratory tests with a cycle test
methodology. They have embraced this standardized approach of city, highway, and
combined driving conditions with the real world, like air conditioning usage, cold start
emissions, etc. Establishing the proper operational characteristics of vehicles and consid-
ering their applications enables accurate emissions estimation using the dataset, as the
emissions values reported for the given CO2 are not theoretical approximations but rather
reflect realistic driving situations. Therefore, the dataset enables robust modeling based on
ML by collecting the vehicle’s attributes that play a role in the variability of emissions.
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The dataset contains multiple vehicular attributes that describe each vehicle’s engine,
transmission system, fuel consumption rates, and emissions profile. Table 2 systemati-
cally describes the main attributes, their descriptions, and the units of measurement for
these features.

Table 2. Description of features in the Fuel Consumption Ratings 2023 dataset.

Feature Description Unit/Value Type

Year Model year of the vehicle Year

Make Manufacturer or brand of the vehicle Company Name

Model Specific vehicle model under analysis Alphanumeric

Vehicle Class Classification based on weight and size Category (e.g., Sedan, SUV, Truck)

Engine Size (L) Displacement volume of the engine Liters (L)

Cylinders Number of cylinders in the engine Integer

Transmission Type of transmission system Category (e.g., Automatic,
Manual, CVT)

Fuel Type Type of fuel used Category (e.g., Gasoline,
Diesel, Hybrid)

Fuel Consumption
(L/100 km)

Fuel efficiency (liters per 100 km) L/100 km

Hwy (L/100 km) Highway fuel consumption L/100 km

Comb (L/100 km) Combined fuel consumption across conditions L/100 km

Comb (mpg) Combined fuel economy Miles per gallon (MPG)

CO2 Emissions (g/km) Amount of CO2 released per kilometer g/km

CO2 Rating Ordinal ranking of CO2
emissions performance

Rating Scale

Smog Rating Classification of vehicle’s smog-forming
emissions

Rating Scale

The primary aim of this study is to achieve the prediction of the CO2 emission (g/km),
a significant appraisal measure of the vehicle’s environmental impact. The CO2 emissions
are subject to the combined effect of multiple interdependent attributes that vary to in-
clude engine size, fuel type, and transmission type; hence, the accurate modeling of CO2

emissions requires advanced predictive modeling techniques that can handle complex
nonlinear relationships.

The dataset consists of 856 samples, with 600 used for training, 128 for validation,
and 128 for testing. The dataset is partitioned into three subsets of training, validation,
and testing for model evaluation and to prevent overfitting. Our ML models are trained
based on the training dataset and validated on the validation set for hyperparameter tuning
and performance evaluation. The developed models are evaluated for their generaliza-
tion by the test dataset, which acts as an independent test set. The partitioning follows
a 70%–15%–15% split for training, validation, and testing, respectively. This structure dif-
fers from the simplified two-way split shown in Figure 1, which has now been updated to
reflect the full three-way partitioning. The partitioning uses an optimal stratified sampling
strategy to maintain class balance and data distribution. This stratification ensures that
key features such as vehicle class and fuel type are proportionally represented across all
subsets. The structure of this partitioning guarantees that the prediction models developed
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in this study can generalize to new vehicle data, enabling compliance assessment and
policy-related decisions in the automotive industry.

Figure 1. Architecture of the proposed framework.

3.2. Machine Learning Models
3.2.1. Model Selection Criteria

Machine learning (ML) models for predicting carbon dioxide (CO2) emissions in light-
duty vehicles require selecting ML models with strong predictive capability, robustness
against different vehicular attributes, and adaptability to working with different data
distributions [34,35]. The selection criteria of the models for this study are primarily based
on the predictive accuracy, the computational efficiency, and the interpretability and the
generalization performance on unseen vehicle data. Since vehicle attributes like engine size,
transmission type, and fuel efficiency are interrelated with a high degree of complexity,
the chosen models should be able to capture nonlinear relations and prevent overfitting.
They also have to effectively handle high-dimensional feature spaces to make robust,
high-dimensional feature space emissions forecasting with a minimal loss of predictive
power [36].

Because analyses of thousands of vehicle entries should be performed over scalable
and computationally efficient models, the models used in this study must be suitable. Lastly,
with regulatory policies and industry standards changing over time, the selected models
should show robustness when changing with new vehicle designs and fuel efficiency
trends [34,37]. Moreover, an ability to interpret model predictions is also required, as the
ntransparency of model emissions allows policymakers, automobile manufacturers, and
researchers to know how different vehicle attributes contribute to CO2 emissions.

Based on these requirements, this work has decided to use a combination of deep
learning architectures, automated machine learning (AutoML) frameworks, and statistical
time series models. They are very well suited for the problem of emissions forecasting
since they can model sequential dependence and high dimensional feature interactions and
optimize predictive performance. A description and the key characteristics of each model
used in this study are provided in Table 3 [38].
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Table 3. Overview of machine learning models used for CO2 emissions prediction.

Model Description Key Features

TFT Neural network-based deep learning model
with attention mechanisms

Captures short-term and long-term dependencies; in-
terpretable feature importance; handles static and
dynamic covariates

PyCaret Automated ML framework integrating multi-
ple time series forecasting models

Supports ensemble learning, hyperparameter tuning,
and automated feature engineering

N-BEATS Deep learning-based model for univariate and
multivariate time series forecasting

Learns trend and seasonality patterns without manual
feature engineering; high forecasting accuracy

Prophet Additive regression-based time series forecast-
ing model

Automatically detects changepoints; incorporates trend
and seasonality adjustments

AutoTS AutoML framework for time series forecasting Evaluates multiple models (ARIMA, Prophet, ML mod-
els) and selects the optimal approach

TBATS Advanced statistical model for complex sea-
sonality time series forecasting

Handles multiple seasonalities better than classical time
series models

3.2.2. Description of Models

Each of these models has its benefits regarding predictions of emissions. As a deep
learning-based sequence modeling framework, attention mechanisms are used to dynami-
cally weight the input features.

The Temporal Fusion Transformer (TFT). This performs very well in the context
of learning short-term and long-term dependencies in emissions data [39]. Also, TFT is
interpretable in finding out the most influential predictors in a dataset, facilitating feature
selection and strategies to reduce emissions. In contrast to conventional deep learning
systems that are black boxes, TFT yields explainable predictions, enabling the researcher to
determine the auguring order of vehicle parameters relative to emissions.

The PyCaret’s Time Series is a compelling AutoML framework that can simplify the
model selection, feature engineering, and hyperparameter tuning aspect of time series. It
supports many ML architectures: tree-based such as XGBoost and LightGBM, along with
classical forecastings like ARIMA and SARIMA. PyCaret automates the whole ML pipeline
and ensures that the best emissions forecasting models are optimally configured without
much manual intervention. The ensemble learning capability to combine several models
and give its performance predictive stability makes it suitable for emissions modeling.

N-BEATS (Neural Basis Expansion Analysis for Time Series) is a deep learning-based
method tailored for forecast applications [40]. However, N-BEATS differs from tradi-
tional models that require data to be engineered with explicit features because N-BEATS
learns directly from the data what the trend and seasonality patterns are. Flexible archi-
tecture enables it to be a better forecaster than conventional models in many real-world
applications, thus making it a good candidate for emissions prediction. For forecasting
vehicle emissions, N-BEATS is more beneficial because it can determine long-term trends
in CO2 production, allowing researchers to predict what configurations will have the most
environmental impact.

Facebook’s Prophet is a time series forecasting model extensively used for trend
analysis [41]. It is particularly effective in structured forecasting, where the data exhibit
seasonality and consist of many potentially related series with different regularities. It uses
an additive regression framework that automatically detects changepoints and implicitly
handles seasonality. Because fuel efficiency improvements and regulatory changes can lead
to significant variations in emissions levels with time, Prophet is well suited for emission
prediction. Additionally, Prophet has a nice handling of missing data and outlier robustness,
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which are must-haves in real-world vehicular datasets where data inconsistencies are typical
due to various testing conditions.

AutoTS is an automated model selection framework that examines multiple forecast-
ing algorithms and evaluates them according to which one is most suitable for a given
dataset [42]. Through extensive testing over multiple models, including ARIMA and
Prophet, and gradient boosting the model, AutoTS offers a scalable mechanism for emis-
sions forecasting that does not demand domain knowledge. The adaptability factor of
AutoTS is another advantage as it can decide the best-performing model, maximizing the
key performance metrics and allowing less manual intervention in the model selection.

TBATS (Trigonometric, Box–Cox Transformation, ARMA Errors, Trend and Seasonal
Components) is a more advanced statistical model to handle complicated seasonal patterns
of time series data [43]. Unlike traditional models such as SARIMA, TBATS can accom-
modate multiple seasonalities and is thus especially useful for emissions data that show
seasonality in fuel consumption and vehicle operation. Integrating trigonometric seasonal
components in TBATS allows for capturing elaborate variations in emissions data induced
by driving conditions, vehicle usage patterns, or environmental factors.

Predictive accuracy, computational efficiency and their ability to generalize across
different vehicle types are used to evaluate each one of these models. The further im-
provement of the performance of these models is achieved by performing feature selection
and choosing the optimal hyperparameters for the final predictive framework with the
best accuracy and robustness. Using a comparative analysis of these models, this paper
offers essential considerations on the most productive investigative means for the emis-
sions prediction of CO2, enabling data-based emissions reduction strategies and regulatory
compliance.

3.3. Metaheuristic Algorithms

When applied to carbon dioxide (CO2) emissions prediction, feature selection and
hyperparameter tuning are critical in making the best ML model run. As the dimensionality
and complexity of the emissions dataset are high, the conventional feature selection meth-
ods and manual hyperparameter tuning techniques are usually inefficient in finding the
best model configurations. To overcome these limitations of the ML model, metaheuristic
algorithms inspired by the natural and evolutionary processes have emerged as powerful
tools that aid ML models by automating feature selection and hyperparameter tuning. The
key to guaranteeing the accuracy of an ML model with sufficient computation efficiency is
to employ a systematic framework that can explore a vast search space for a solution; this
comes in the form of metaheuristics.

Metaheuristic algorithms are conducive to global search in addition to exploitation
techniques that are used iteratively to refine candidate solutions; their solutions converge
to optimal or near-optimal solutions. This feature makes them appropriate for the prob-
lems’ stochastic nature, allowing them to avoid the local optima plaguing traditional
deterministic algorithms. In emissions prediction, two of the most critical roles that meta-
heuristic algorithms can play are (1) discovering which vehicle attributes are the most
relevant to emissions estimation through feature selection and (2) fine-tuning ML model
hyperparameters to maximize prediction accuracy.

3.3.1. Role of Metaheuristics in Feature Selection

Feature selection is a decisive step in ML’s CO2 emissions modeling because it di-
rectly affects the model’s predictive performance and computational efficiency. In high-
dimensional datasets, features that could be relevant or redundant are combined, and
those that are redundant may introduce noise and impede model generalization. Choos-
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ing the most informative features makes the model more interpretable, more accurate in
predictions, and less prone to overfit. In particular, as the problem is combinatorial, it is
impossible to explore all possible feature subsets exhaustively. The use of metaheuristic
optimization algorithms is required in this challenge to efficiently search for the optimal
subset of features through an interplay between the exploration and exploitation strategies.

In the mathematical vein, feature selection is an optimization problem that minimizes
model error subject to the feature selection constraint. The number of possible feature
subsets for a dataset with N features is 2N , but it becomes impractical for large datasets.
This problem is solved by metaheuristic algorithms, represented by candidate feature
subsets as solution vectors, that iteratively refine them using fitness evaluations.

Let D represent the dataset, where each instance xi is described by a feature vector
X = [x1, x2, ..., xN ]. The feature selection problem aims to find an optimal subset X∗ ⊆ X
that minimizes a given objective function:

X∗ = arg min
Xs⊆X

L(M(Xs)), (1)

where M(Xs) represents the predictive model trained on the selected feature subset Xs,
and L denotes the loss function (e.g., mean squared error).

Metaheuristic algorithms, including binary Grey Wolf Optimizer (bGWO) along with
binary Particle Swarm Optimization (bPSO) [44], binary Genetic Algorithm (bGA), and the
binary Al-Biruni Earth Radius optimizer (bBER) [45], efficiently determine the most signifi-
cant vehicle attributes for emissions prediction. The feature subsets of these algorithms
test out, evaluate the performance of, and iteratively refine the selection to improve model
accuracy. The implementation of metaheuristic methods brings the following advantages
to the feature selection task:

• Reduction of dataset dimensionality with little or no loss of predictive performance.
• Reduces the number of irrelevant or redundant attributes to aid in model interpretability.
• Reduces computational complexity, i.e., saving both time for training the model

and inference.
• Improvement in the generalization ability, i.e., reducing the risk of overfitting, which

is common in deep learning models.

Metaheuristic optimization techniques are integrated into the feature selection in the
ML models. They pay attention only to the most influential variables and thus result in
more accurate and computationally efficient CO2 emissions predictions.

3.3.2. Role of Metaheuristics in Hyperparameter Optimization

Another problematic challenge in ML-based emissions forecasting is hyperparameter
tuning. How ML models converge, balance between bias and variance, and achieve
optimal performance all rely on hyperparameters, which describe the shape of the ML
model and how it trains. Unlike model parameters, which are learned during training,
hyperparameters must be set beforehand, and choosing ill-configured ones can result in
poor predictive accuracy. Grid search and random search are generally inefficient for large
datasets and complex model architectures, making metaheuristic optimization a strong
choice. These methods can explore the vast hyperparameter search space in an automated
manner, optimizing performance simultaneously.

The goal of hyperparameter optimization is mathematically defined by minimizing
the model loss function by identifying the optimal hyperparameters Θ∗:

Θ∗ = arg min
Θ∈H

L(MΘ(X)), (2)



Mathematics 2025, 13, 1627 12 of 47

where H represents the hyperparameter search space, MΘ is the ML model with hyperpa-
rameters Θ, and L denotes the loss function.

Emissions modeling hyperparameter tuning has also been extensively carried out
using metaheuristic algorithms such as the binary Firefly Algorithm (bFA), binary Whale
Optimization Algorithm (bWOA), and binary Jaya Algorithm (bJAYA). These algorithms
adaptively explore the hyperparameter space to identify the best configurations that achieve
the highest model accuracy with minimal computational overhead. The main advantages
of hyperparameter tuning using metaheuristics include the following:

• Automated hyperparameter selection, eliminating the need for manual tuning.
• Improved convergence across various tree depths, learning rates, and

regularization hyperparameters.
• Balancing the bias and variance by optimizing hyperparameter values for better

predictive performance.
• Scalability to high-dimensional search spaces, making them robust across different

ML architectures.

Thus, the predictive performance of ML models is significantly improved when
metaheuristic optimization is used for hyperparameter tuning, allowing them to adapt
dynamically to the emissions dataset’s characteristics. Metaheuristic algorithms are inte-
grated into both feature selection and hyperparameter tuning to build a comprehensive
optimization framework for CO2 emissions forecasting models.

Combining metaheuristic optimization methodologies with ML-based emissions pre-
diction frameworks enhances both feature selection and hyperparameter tuning simul-
taneously. Metaheuristics systematically identify the best features and hyperparameter
configurations, creating efficient, accurate, and generalizable models for complex emissions
prediction tasks. These algorithms ensure that predictive frameworks remain computation-
ally tractable while achieving state-of-the-art performance in CO2 emissions forecasting.

3.3.3. Representative Metaheuristic Algorithms

Despite clear evidence for its importance in improving the ML model performance
in high dimensional and large datasets such as CO2 emissions prediction, optimization
remains an underutilized technique. Inspired by natural, biological, and physical phe-
nomena, metaheuristic optimization algorithms have been successfully applied to solve
complex optimization problems that conventional optimization algorithms, i.e., gradient-
based methods, cannot solve. The applications of these algorithms rely on the balanced
exploration/exploitation that they provide to successfully search the large, non-convex, dis-
continuous solution spaces to solve feature selection and hyperparameter tuning problems
in the area of ML.

Because of the importance of optimizing ML models for emissions forecasting, the
variety of the state-of-the-art metaheuristic optimization algorithms is maximized in this
study. Finally, to improve the predictive accuracy, computational efficiency, and model
interpretability of models, these algorithms are applied to improve feature selection and
hyperparameter tuning. This study uses metaheuristics from different categories, including
swarm intelligence-based, evolutionary, and physics-inspired optimizers. A description of
the selected metaheuristic algorithms applied is given in Table 4 with their inspirations,
mechanisms, and leading strategies for optimization.

The Football Optimization Algorithm (FbOA) is a reasonably new metaheuristic
optimization technique inspired by team approach-based football (soccer) strategies [46].
First, it models global exploration in offensive team strategies and local refinement in the
search space using defensive maneuvers. The algorithm then defines a solution transition
mechanism, which endows players with the ability to create solutions, represent candidate
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solutions, and generate team collaboration mechanisms that define transition rules between
these solutions. FbOA is highly effective in ML hyperparameter tuning and feature selection
because it adaptively shifts between search diversification and intensification.

Table 4. Overview of applied metaheuristic optimization algorithms.

Algorithm Inspiration Key Characteristics

FbOA (Football
Optimization Algorithm)

Football team dynamics Exploits teamwork-based strategy for global
and local search

HHO (Harris
Hawks Optimization)

Cooperative hunting of
Harris Hawks

Employs surprise pounce strategy for bal-
anced exploration and exploitation

GWO (Grey Wolf Optimizer) Leadership hierarchy and hunting
mechanism of grey wolves

Models leadership-based exploration with
social hierarchy

SCA (Sine Cosine Algorithm) Mathematical sine and
cosine functions

Uses adaptive oscillatory search mechanisms
for global optimization

FA (Firefly Algorithm) Bioluminescent attraction of fireflies Implements attraction-based search with
intensity-dependent movement

GA (Genetic Algorithm) Principles of natural selection and
genetic inheritance

Employs crossover, mutation, and selection
for evolutionary search

WAO (Whale Optimization
Algorithm)

Inspired by humpback whales’
bubble-net feeding behavior

Based on exploration (encircling prey) and ex-
ploitation (spiral movement)

TSH (Tunicate Swarm
Algorithm)

Jet propulsion mechanism of
tunicate organisms

Integrates pulsation and propulsion dynamics
for search optimization

SAO (Smell Agent
Optimization)

Inspired by the sensory mechanisms
of smell used by animals to navigate
their environment and locate food.

SAO uses agents that move through the search
space based on "smell" or fitness of solutions,
with the aim of converging to optimal regions

JAYA (Jaya Algorithm) “Victory without failure” principle Minimizes solution distance from the best can-
didate while avoiding the worst

The Harris Hawks Optimization (HHO) algorithm employs the cooperative hunting
strategy of Harris Hawks. The optimization process is dynamic due to surprise pounce
strategies [47], and the dynamic switching between soft and hard siege tactics allows for
balanced exploration and exploitation. The versatility in switching between these strategies
for the HHO makes it more capable of overcoming local optima in high-dimensional feature
selection problems.

Grey Wolf Optimizer (GWO), which elongates the hunting behavior and trait hierar-
chy of grey wolves by alpha, beta, and delta wolves that serve as a guiding signal for the
search process [48]. GWO effectively encloses and hunts toward optimal values, thanks
to which it finds broad applicability in feature selection for ML. Being simple, with low
parameter dependencies and strong global search ability, it is a widely used optimizer for
emissions prediction.

The Sine Cosine Algorithm (SCA) for creating adaptive search patterns is based on
mathematical sine and cosine functions [49]. Trigonometric functions used to modify step
sizes enable effective shifts between the algorithm’s exploitation and exploration phases.
This unique aspect of SCA makes it very useful for feature selection and hyperparameter
optimization, as it allows fine-tuning solution movement within the search space.

The Firefly Algorithm (FA) is motivated by the bioluminescent attractiveness mech-
anism adopted by fireflies [50]. Solution quality is measured with the brightness of each
firefly, and the attraction mechanisms determine the dynamics of the search. When the
problem of interest is a continuous optimization problem, FA is highly effective; thus, it
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makes a good candidate for the ML hyperparameter tuning of the problem itself as well as
acting as an operator and optimizing the emissions models.

The Genetic Algorithm (GA) is an evolutionary optimization technique miming
natural selection. It uses genetic operators, for example, crossover, mutation, and selection,
to evolve solution populations through multiple generations [51]. Together with its ability
to search through very high dimensional feature spaces, GA is extremely interesting for
optimizing the settings of the ML model configurations for CO2 emissions forecasting.

The Whale Optimization Algorithm (WOA) is inspired by the hunting behavior
of humpback whales, particularly their bubble-net feeding strategy. This behavior in-
volves using spiral movements to encircle and trap prey, which is mimicked by WOA for
optimization tasks [52]. When applied to feature selection in machine learning models
with nonlinear relationships, WOA effectively simulates whale behavior’s exploration and
exploitation mechanisms, making it highly suitable for such tasks.

The Tunicate Swarm Algorithm (TSH), as in this optimizer, employs the jet propulsion
movement of marine organisms called tunicates using pulsation. TSH applies search mech-
anisms based on pulsation to refine solutions in complex optimization landscapes [53].
It is a very effective algorithm for emissions modeling in that it requires dynamic
search adaptability.

The Smell Agent Optimization (SAO) mimics the sensory search behavior of animals
using their sense of smell to navigate and locate food. The algorithm uses a leader–follower
dynamic, where agents move through the solution space based on the “smell” or fitness
of neighboring solutions. This approach enhances the global search capability of the
algorithm [54], making it particularly effective for solving optimization problems such as
attribute selection, including those related to CO2 emissions.

Jaya Algorithm (JAYA) is an advanced heuristic optimization algorithm based on the
principle of ‘victory without failure [55]’. It iterates a sequence of steps over the solutions,
refining the candidate solutions progressively closer to the best solution but avoiding
solutions with the worst performance. JAYA possesses simplicity and strong convergence,
and it is excellent as an optimizer of ML hyperparameter tuning.

Each of these metaheuristic algorithms brings its own optimization strategies, improv-
ing ML models’ efficiency for predicting CO2 emissions. These algorithms help integrate
nature-inspired search mechanisms that considerably improve feature selection and hy-
perparameter tuning, resulting in positive predictive accuracy by easing computational
complexity and outperforming the generalization performance. With the help of a com-
parative evaluation of these algorithms, the relative strengths and applicability in the
emissions modeling process are demonstrated, and a robust optimization framework for
sustainability-enabled analytics in the context of transportation is developed.

3.4. Evaluation Metrics

Predictive systems’ reliability, accuracy, and efficiency using ML models and feature
selection techniques are critical in applications such as CO2 emissions estimation. Hence,
such models and feature selection techniques should be assessed. An evaluation framework
that includes model effectiveness can aid in a complete analysis of the model effectiveness
and fair comparison among different algorithms and solving strategies. In this work,
the evaluation process is made up of two principal elements: first, (1) the performance
evaluation of ML models, considering predictive accuracy, error magnitude, and agreement
with observed data; second, (2) feature selection techniques assessment, as measured
according to how much they improve model performance, computing speed, and stability
for different experimental runs.
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The model evaluation framework is organized to evaluate several different model
performance dimensions. Error-based metrics like deviation from the predicted and actual
reults will be the standard way of measuring these metrics that measure how much the
model is different in the data; predictive performance metrics will measure how much the
model can explain the variances in the data and how accurate the model is for generalizing
on unseen samples. Domain-specific performance indicators were also utilized to account
for the agreement of predicted and observed values, such as the Nash–Sutcliffe Efficiency
(NSE) and Willmott Index (WI). At the same time, the dimensionality reduction, the
consistency of selected feature subsets, and the trade-off between the prediction accuracy
and computational complexity of feature selection algorithms are assessed.

The performance of trained ML models is tested using statistical and mathematical
performance metrics. The goal is to evaluate how well the model applies to the data it
has not seen before, as measuring prediction errors. Error-based measures are the main
category of evaluation metrics that quantify the discrepancy between model predictions
the actual observations. In particular, these include mean squared error (MSE), root mean
squared error (RMSE), and mean absolute error (MAE), which provide different insights
into how accurate a model has rendered its predictions.

MSE is considered a principal accuracy metric, punishing more significant errors
harshly; therefore, greater prediction deviations are penalized more. Nevertheless, RMSE is
widespread in practice since it brings MSE results back into the original measurement scale,
the squared value of the target variable. On the other hand, MAE is a more interpretable
measure of model errors as it averages the absolute differences between predicted and
actual values: errors are treated equally regardless of whether they are small or large.

Apart from the absolute error measures, the evaluation framework also considers the
statistical correlation-based metrics such as a coefficient of determination (R2), which is
used to measure the percentage of variance in the target variable explained by the model;
high values of R2 indicate a strong correlation (between the target variable with its predicted
value). Additionally, the metrics of NSE and WI have been used to demonstrate prediction
agreement. NSE is a measure of the quality of predictive performance as measured by
the ratio of the residual variance to the variance of the observed data. WI is similarly an
index that quantifies the level of agreement between the predicted value and the actual
value, and using an intuitive measure of 1 means the closer WI is to 1 then the greater the
agreement between model output and observed data.

The relative root mean squared error (RRMSE) is introduced as a relative error metric
for cross-dataset comparisons. As RRMSE normalizes error values with a range of observed
data features, it is more robust to compare performance metrics across datasets of differ-
ent scales. Table 5 provides a structured summary of the ML model evaluation metrics
employed in this study.

In addition to evaluating the predictive ability, the study investigates the effect of
feature selection on model performance. Feature selection is essential in ML applications
since the redundant and unimportant features may cause additional noise, increase compu-
tational complexity, and possibly lead to overfitting. This enables the improvment of the
interpretability of the model and generalizing to unseen data by selecting only the most
relevant attributes.

To achieve a trade-off between dimensionality reduction and predictive accuracy, a set
of evaluation metrics is used to evaluate the performance of the feature selection technique.
The feature reduction rate is the ratio of the removed features to the original set. A high
reduction rate measures the efficiency (whether or not) of eliminating redundant attributes,
but too much reduction may also lead to information loss and this has to be carefully
balanced against the prescriptive power.
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Table 5. Machine learning prediction metrics.

Metric Description

Mean Squared Error (MSE) Measures the average squared difference between predicted and
actual values, penalizing larger errors more than smaller ones.
MSE = 1

n ∑n
i=1(yi − ŷi)

2

Root Mean Squared Error (RMSE) The square root of MSE, representing the standard deviation of pre-
diction errors and giving a sense of the magnitude of prediction
errors in the same units as the target variable.

RMSE =
√

1
n ∑n

i=1(yi − ŷi)2

Mean Absolute Error (MAE) Measures the average of the absolute errors between predicted and
actual values, offering an intuitive and direct understanding of pre-
diction accuracy.
MAE = 1

n ∑n
i=1 |yi − ŷi|

Mean Bias Error (MBE) Measures the average bias in the predictions, indicating whether the
model tends to underestimate or overestimate the target variable.
A negative value indicates underestimation, while a positive value
indicates overestimation.
MBE = 1

n ∑n
i=1(yi − ŷi)

Pearson’s Correlation Coefficient (r) Measures the linear relationship between predicted and actual values.
A value of 1 indicates a perfect positive correlation, −1 indicates a
perfect negative correlation, and 0 indicates no correlation.
r = ∑(yi−ȳ)(ŷi− ¯̂y)√

∑(yi−ȳ)2
√

∑(ŷi− ¯̂y)2

R-squared (R2) Represents the proportion of variance in the target variable explained
by the model, with higher values indicating better model fit. A value
of 1 indicates perfect predictions.

R2 = 1 − ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−ȳ)2

Relative Root Mean Squared Error (RRMSE) A normalized version of RMSE compares RMSE with the range of
observed values, making it easier to compare errors across datasets
with different scales.
RRMSE = RMSE

max(y)−min(y)

Nash–Sutcliffe Efficiency (NSE) Measures the model’s predictive power by comparing the model’s
variance to the variance of observed data. A value of 1 indicates a
perfect fit, while values below 0 suggest poor predictive ability.

NSE = 1 − ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−ȳ)2

Willmott Index (WI) Measures the agreement between predicted and observed values,
with a value of 1 indicating perfect agreement. WI values closer to 1
suggest better model performance.
WI = 1 − ∑n

i=1 |yi−ŷi |
∑n

i=1(|yi−ȳ|+|ŷi−ȳ|)

The features with the best fitness score are those with the highest value to the maximum
objective function when selecting the best subset. Furthermore, the average fitness score is
used to show the overall effectiveness of feature selection through average fitness value
for multiple iterations. Another essential evaluation metric is the stability of the selected
feature subsets; they will always choose highly informative attributes using multiple runs
of the algorithm.

Also, the fitness score is computed with a standard deviation to assess the variability
of the selected feature subsets. The lower the standard deviation of a feature selection



Mathematics 2025, 13, 1627 17 of 47

process, the more consistent and reliable it is. At the same time, the higher it is, the more
sensitive it is to minor perturbations in the dataset.

By comprehensively evaluating all the feature selection algorithms, selected feature
subsets are guaranteed to contribute significantly to the model’s accuracy with minimal
computational overhead. The key feature selection metrics used in this study are summa-
rized in Table 6.

Table 6. Feature selection metrics.

Metric Description

Average Error Measures the average prediction error across all selected features during the feature
selection process, helping to assess the overall effectiveness of the selected features.
Average Error = 1

n ∑n
i=1 |yi − ŷi|

Average Select Size Represents the mean number of features selected across multiple iterations or runs
of the feature selection process. This helps evaluate the tendency of the algorithm to
retain features.
Average Select Size = 1

n ∑n
i=1 Si

where Si is the number of selected features in the i-th iteration.

Best Fitness Score The optimal fitness function value achieved during the feature selection process,
indicating the highest model performance when the best feature subset is selected.
Best Fitness Score = max(Fitness Function)

Worst Fitness Score The lowest value of the fitness function, reflecting the least effective feature set
selected by the algorithm.
Worst Fitness Score = min(Fitness Function)

Average Fitness Score Represents the mean fitness function value across all evaluated feature subsets, help-
ing assess the algorithm’s overall performance.
Average Fitness = 1

n ∑n
i=1 Fitnessi

Standard Deviation of Fitness Measures the variability of the fitness function across different feature subsets, assess-
ing the stability and consistency of the feature selection algorithm. A lower standard
deviation indicates a more stable feature selection process.

Standard Deviation of Fitness =
√

1
n ∑n

i=1(Fitnessi − ¯Fitness)2

where ¯Fitness is the average fitness score across all subsets.

This study integrates these evaluation metrics to ensure a rigorous model performance
assessment leading to the selection of the ML architectures and feature subsets that will
maximize CO2 emissions prediction at high computational efficiency.

4. The Proposed Methodology
There is a growing concern over carbon dioxide (CO2) in the transportation sector.

This highlights the need to develop reliable and efficient predictive modeling schemes for
estimating vehicular emissions with high precision. Although traditional machine learning
models have been widely used, they are further challenged by high dimensional feature
spaces, redundancy characteristics of the variables, and suboptimal hyperparameters that
will have consequences on predictive performance. Further, CO2 emissions data also
contain strong temporal dependencies related to several factors like vehicle specifications,
fuel type, engine size, and transmission systems. Consequently, complex interactions need
to be captured with the help of an advanced modeling framework, and reliable yet efficient
forecasts are required. This study proposes a new machine learning framework based on
a time series predictive model and metaheuristic optimization to achieve good accuracy,
robustness, and computational efficiency in predicting CO2 emissions of light-duty vehicles.
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The proposed framework integrates the Temporal Fusion Transformer (TFT), a power-
ful time series model, with some state-of-the-art metaheuristic optimization algorithms. In
contrast to the conventional regression-based models, TFT is better at modeling temporal
behavior, nonlinear dependency, and dynamic interaction within the emissions data. By
using an attention mechanism, TFT uses deep feature representations of emissions vari-
ations to extract and exploit short- and long-term dependencies to improve forecasting
accuracy. However, the performance of TFT in predicting relies on having an effectual
feature selection and the tuning of hyperparameters; doing these manually is computation-
ally expensive and suboptimal. To solve this issue, metaheuristic algorithms are applied
to automatically find the best features and hyperparameters over the general population,
which reduces computational overhead and improves model generalization. The pro-
posed framework combines time series modeling with evolutionary optimization to ensure
that (1) emissions forecasts are accurate while (2) being adaptable to changes in vehicular
attributes and regulatory requirements.

The Football Optimization Algorithm (FbOA) is a crucial part of this framework to be
used as both a feature selection and hyperparameter tuner. The importance of dimensional-
ity reduction lies in that it removes redundant and irrelevant features and retains the most
informative ones to compute emissions prediction. Based on the dynamics of strategic team-
work in football, FbOA quickly explores the feature space, allowing only the most relevant
variables to enter the predictive model. Furthermore, in the hyperparameter tuning, FbOA
optimizes some key TFT model parameters, including learning rate, dropout rate, and atten-
tion mechanism, to achieve the best prediction performance. The proposed metaheuristic
search strategy effectively explores the complex optimization landscape to avoid local
optima and adaptively choose search strategies to accelerate feature selection and model
tuning. The FbOA-driven optimization in the time series forecasting pipeline effectively
resolves the issues with high dimensional datasets and suboptimal model configurations.
It thus provides a scalable and reliable way to perform CO2 emissions prediction.

Figure 1 depicts the architecture of the proposed framework, which is designed for
integration with multiple advanced methods, e.g., (a) data preprocessing, (b) feature
selection by performing metaheuristic algorithms, (c) model training, and (d) performance
measurement. It unrolls the ecosystem to systematically improve the predictive capability
of machine learning models by dealing with high dimensional emissions datasets with
deep learning and evolutionary optimization to robust forecasts. The primary data source
of the data pipeline is a Fuel Consumption Dataset containing such features as engine size,
fuel type, and transmission type. The module in charge of preprocessing data ensures that
the data are consistent and deals with missing values, correlation analysis, feature scaling,
the encoding of categorical variables, etc., to prepare the dataset for model training.

The dataset is preprocessed and split into the training and testing subsets to have
robust generalization. The feature selection stage is performed using several metaheuristic
algorithms so that our model extracts the essential features that can predict CO2 emissions.
As you can see, this step is significant for making the model interpretable, the computation
simpler, and to have better prediction accuracy. FbOA is one of the applied metaheuristic
techniques that has proven to be very useful in optimizing both feature selection and
hyperparameter tuning, resulting in better predictive performance and more compact
model configurations.

After determining an optimal feature subset, the model training phase uses several
baseline models, such as TFT, PyCaret’s Time Series Module, N-BEATS, Prophet, AutoTS,
Trigonometric, Box–Cox Transformation, ARMA Errors, Trend, and Seasonal Components
(TBATS). Finally, these models are evaluated based on various statistical and domain-
specific performance metrics, i.e., MSE, RMSE, MAE, NSE, and WI. The performance
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evaluation module is developed to systematically evaluate model accuracy, generalization
ability, and computational efficiency for CO2 emissions forecasting to choose the most
appropriate predictive strategy.

The proposed framework is accomplished by integrating metaheuristic-driven feature
selection, deep learning-based forecasting, and overall performance evaluation for an
ideal relationship between accuracy, interpretability, and computational feasibility. This
structured approach promises accuracy in CO2 emissions estimation, which is fundamental
for complying with regulations, creating sustainable vehicles, and supporting intelligent
transportation systems.

4.1. Data Preprocessing

Such machine learning (ML) models of (CO2) emissions prediction result from ex-
tremely sensitive predictors to the quality of input data, and their accuracy and robustness
depend on it. There are such trends as missing values, different feature scales, and categori-
cal attributes to be converted to numerical form on the raw datasets. If no internal sampling
or preprocessing is performed, biased estimations, numerical instability, and undermined
generalization prediction are possible. We employ a rigorous data preprocessing pipeline
to remove the noise from data, ensuring that ML algorithms can learn some meaningful
patterns from the data, i.e., missing value imputation, feature scaling, categorical encoding,
and dataset partition.

Any dataset integrity still requires that missing data are managed correctly. With
missing data in the dataset, distribution issues can occur, which can impact the model’s
performance in terms of predictions. There are many ways to resolve this issue. One of
the broadest spread techniques that can be used in place of the missing values is called
statistical interpolation, which is able to impute them based on the measures of central
tendency, which can be defined from the µ or x̃ shown below:

xmissing =
1
N

N

∑
i=1

xi, or xmissing = median(X). (3)

Mean imputation is suitable for normally distributed features, but in the case of
skewed data, median imputation is favored, as it is more robust to outliers. Near Neighbors
Imputation is a technique that estimates missing values based upon a weighted distance-
based interpolation, i.e., it predicts the missing values based on the closest available
data points.

xmissing =
k

∑
i=1

wixi, where wi =
1

d(xmissing, xi)
(4)

The Euclidean distance (or Manhattan) used to find the k nearest known values for
imputation is represented by d(xmissing, xi). In this method, missing values are estimated
using weighted interpolation while keeping the local consistency of the dataset.

Numerical stability, as well as some features dominating ML models, are not be
avoided without feature scaling. Min–max normalization and Z-score standardization are
the two most well-known and used methods for scaling the numerical attributes. Min–max
normalization rescales the values in the [0,1] range.

x′ =
x − xmin

xmax − xmin
. (5)



Mathematics 2025, 13, 1627 20 of 47

This is very useful for grad-based learning like neural networks, which will restrict
values to make it safe. However, Z score standardization is a process of centering the data
on zero mean and unit variance.

x′ =
x − µ

σ
, (6)

The mean and standard deviation of the feature are the same things, and here, µ and
σ are the mean and standard deviation of the feature, respectively. Standardization is
preferable because an algorithm that uses distance-based calculations like Support Vector
Machines (SVMs) or Principal Components Analysis (PCA) will perform better if the
variable distribution is zero at a centroid.

There are also categorical vehicular attributes, like fuel and transmission types which
would need to be converted as they are also compatible with ML models. Two mainstream
methods used to deal with categorical variables are hot encoding and ordinal encoding.
One hot encoding eliminates categorical variables and expands them to binary vectors.

xencoded,i =

1, if xi belongs to category j,

0, otherwise.
(7)

However, this manifold is such that categorical variables will not create any artificial
orderings, and the dimensionality of the dataset is kept down. At the same time, ordinal
encoding assigns numerical values once to categorical levels, giving an inherent ranking
instead of expanding the dataset’s dimensions.

xencoded = rank(x). (8)

Ordinal encoding helps preserve computational efficiency; however, if categorical
features are represented in order of meaning to each other, as in the fuel efficiency of
different grades, data encoding should be used.

Partitioning a dataset is also necessary for ML models to generalize to unseen data. We
adopt a stratified splitting approach based on a feature since key features of vehicle class
and fuel type should be in the proportions of the training, validation, and testing subsets. It
should be noted that ptrain, pval, and ptest are the proportions given to training, validation,
and test data, respectively, of the order of 70–80%, 10–15%, and 10–20%. The key to this
is the use of stratification that again guarantees the statistical properties of the original
dataset for each subset and therefore reduces the risk of biased learning and increases the
model credibility.

By systematically applying missing data imputation, feature scaling, categorical en-
coding, and structured dataset partitioning as a preprocessing pipeline, the missing data
are imputed to be missing at random assumption; the feature scaling is used to bring data
to standardize, and then the features are encoded in the structure using one-hot encoding.
Finally, by partitioning the dataset into train and test, ML models have high-quality stan-
dardized input data. It develops a solid first step toward further (CO2) emissions forecasts
by taking a comprehensive approach to help make predictive consistency more consistent,
reduce bias, and make learning more effective.

4.2. Exploratory Data Analysis (EDA)

It is necessary to understand this relationship to generate machine learning (ML)
models that predict emissions. This analysis delves into the dynamics between various ve-
hicular attributes, such as engine size and fuel consumption, and their impact on emissions.
These relationships are valuable data visualizations for finding, eliminating redundancy in,
and improving the predictability of ML prediction in the data pipeline.
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Figure 2 compares fuel intake across vehicle producers with extremely different fuel
efficiencies. Among the chosen brands, Porsche was marked as having the highest fuel
consumption while Mercedes-Benz was marked the lowest; Chevrolet, Ford, BMW, and
GMC are almost equal at this mark with a slight difference. These differences are due to each
manufacturer’s vehicle lineups and engine setups. Error bars indicate variability inside each
manufacturer’s portfolio so that different models with different engine types can potentially
result in different fuel consumption. The analysis presented is critical for understanding
patterns that might support the advancement of energy-efficient vehicle design.

Figure 2. Fuel consumption comparison across different vehicle manufacturers. The bar heights repre-
sent average fuel consumption levels, while error bars indicate variability within each manufacturer.

Figure 3 presents the vehicular attributes with pairwise correlations as indicated by the
heatmap in the correlation matrix. The higher the positive correlation (close to 1), the greater
the direct relationship, and the higher the negative correlation (close to −1), the greater the
inverse relationship. Interestingly, CO2 emissions metrics show a strong positive correlation
with highway and combined fuel consumption, meaning that vehicles having higher fuel
consumption are expected to emit more CO2. On the contrary, fuel efficiency metrics
like miles per gallon (mpg) demonstrate a negative correlation with a robust negative
correlation, indicating that mpg is positively correlated with a reduction in emissions and
fuel consumption. Such correlation analysis is crucial for reducing feature inputs for ML
models, mainly when metaheuristic optimization is employed for redundancy elimination.

Figure 4 also further explores the relationship of fuel consumption and CO2 emissions
for different kinds of vehicles (as shown by the apparent positive correlation). This makes
it appear as a scatter plot, categorizing vehicles by class, and color coding them to show
emission trends. For example, according to general experience, SUVs and pickup trucks
consume more fuel and generate more emissions than smaller, more fuel-efficient, compact
and subcompact cars. Additional factors contributing to variations in each class include
engine efficiency and hybridization, affecting emissions performance. It is essential to
analyze this as it helps in fuel efficiency modeling and formulating regulations for emissions;
policymakers and manufacturers obtain a good insight from this study to improve their
vehicle design and cut their carbon footprints.
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Figure 3. Correlation heatmap illustrating relationships between key vehicular attributes. Darker
shades represent stronger correlations, with positive correlations are shown in brown and negative
correlations in green.

Finally, the detailed investigation of these relationships improves our knowledge
of vehicular impact on emissions and helps build more sensible and practical predictive
models. Through strong data analytics and visualization tools, this study establishes
a base for vehicle technology improvements and strategies to minimize emissions, and
significantly contributes to environmental sustainability efforts.
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Figure 4. Scatter plot depicting the relationship between fuel consumption and CO2 emissions across
various vehicle classes. Each point represents a vehicle, color-coded by its class, highlighting trends
in fuel efficiency and emissions output.

4.3. Temporal Fusion Transformer (TFT)

In time series forecasting, TFT represents a novel and breakthrough way to handle
tasks wherein future event prediction is essential, and the inputs are compound data
and dynamic. The model presented here has been developed to deal with multi-horizon
forecasting problems where dependencies happen across different time horizons, exploring
time-variant and static covariates.

4.3.1. Architectural Overview

The extremely sophisticated architecture of TFT synergistically integrates various neu-
ral network mechanisms aiming to improve the model’s ability to learn from multivariate
time series with inherent complexity.

TFT = RNN(Conv(Xt), Attention(Xt−1:t−T)), (9)

where Xt represents the input features at time t, and T denotes the historical time window
considered. This architecture facilitates a robust encoding of input data, capturing tem-
poral relationships at different granularities through a combination of convolutional and
recurrent layers, augmented with attention mechanisms that focus the model’s learning on
the most salient features.



Mathematics 2025, 13, 1627 24 of 47

4.3.2. Gated Residual Network

An integral part of TFT is the gated residual network, which introduces the capacity of
the model to intelligently control information flow and circumvent the vanishing gradient
problem common in deep neural networks.

GRN(x) = LayerNorm(x + GLU(W1x + b1)), (10)

in which GLU is the Gated Linear Unit, W1 is a weight matrix, b1 is a bias vector, and
LayerNorm is layer normalization. By introducing weighted information flows, the GLU
allows the model to learn a gate to govern the information that flows into the output, which
improves the capacity to concentrate on relevant features rather than losing itself in noise.

4.3.3. Variable Selection Networks

Another critical component of TFT is that the Variable Selection Network (VSN) is
used at each forecasting step to identify and emphasize the most predictive features to
improve forecasting.

st = softmax(W3ReLU(W2ht−1 + b2) + b3), (11)

x′t = st ⊙ xt, (12)

where ht−1 is the previous hidden state, W2, W3 are weight matrices, and b2, b3 are bias
vectors. The output st acts as a soft selection mechanism, enabling the model to adjust its
focus on different input features adaptively.

4.3.4. Self-Attention Mechanism

For capturing the long-term dependencies and interactions of inputs across the time
series without the constraint that classic recurrent architectures have, the self-attention
mechanism in TFT plays an important role:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (13)

where Q, K, and V represent the query, key, and value matrices derived from the inputs,
and dk is the dimensionality of the keys. This component of TFT allows it to selectively
emphasize information from different parts of the input sequence, enhancing the model’s
predictive accuracy.

By solving complex, real-world forecasting tasks with high accuracy and interpretabil-
ity, the Temporal Fusion Transformer revolutionizes the field of time series forecasting with
a versatile, powerful model. It addresses the key needs of modern forecasting applications:
variability in temporal dynamics of data and feature importance, and extensive volume
data. More refinements to the TFT model should consider real-time learning, wherein the
model would learn to predict the next state for a given action, at least partially in real time.
In addition, the model’s architecture can be further validated and refined by scalability tests
on larger datasets and in more diverse domains to further validate the model as cutting
edge in the time series forecasting technology.

4.4. Football Optimization Algorithm (FbOA)

The Football Optimization Algorithm (FbOA) is a novel approach of a metaheuristic
algorithm that draws its inspiration from the strategic and tactical gameplay of the game of
football (soccer). This algorithm aims to solve high-dimensional optimization problems
using a simulated decision-making process, e.g., player positioning, passing strategies, and
the adaptation of the playing state within the simulation.
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4.4.1. Background and Inspiration

The conceptual foundation for FbOA is based on observing a football team adapting
its strategies on the fly to outwit foes and maximize its derivative goal chances. Teams in
a regular football game use a combination of short passing to maintain possession, long
passing to change the focus of the play quickly, and direct shots on goal whenever they
can. These are very similar to exploration and exploitation optimization, where exploration
tries to find new potential solutions in the search space, and exploitation is about refining
already known reasonable solutions.

4.4.2. FbOA Mathematical Formulation

These football strategies are mathematically formulated as algorithmic steps for itera-
tively updating the positions of potential solutions (players) in the search space, according
to FbOA. It dynamically adjusts the players’ movements by considering their positions
with respect to the ball, representing the best solution.

Exploration Phase

FbOA is designed to perform long passes during the exploration phase and explore
the distant portions of a search space to escape from local optima and discover new regions
of a search space. This is mathematically given by the following:

xt+1
i = xt

i + α · rand() · (pbest − xt
i), (14)

where xt
i denotes the position of the i-th player at iteration t, pbest is the position representing

the best current solution (akin to the ball’s position), α is a scaling factor that modulates the
step size, and rand() is a random number generator function that introduces stochasticity,
mimicking the unpredictable nature of football plays.

Exploitation Phase

FbOA then shifts into the exploitation phase and tries refining the best solutions using
short-passing tactics. This phase is of smaller, calculated movements towards a bit of
incrementation in the place of players close to the ball.

xt+1
i = xt

i + β · (pbest − xt
i), (15)

with β representing a smaller scaling factor than α, emphasizing precise, localized ad-
justments. This phase is critical for fine-tuning solutions and converging towards the
global optimum.

Velocity and Position Updates

FbOA also accounts for velocity changes of players on the go, such that they can adapt
dynamically to the changeable status of a game:

vt+1
i = ω · vt

i + ϕ1 · rand() · (pbest − xt
i) + ϕ2 · rand() · (gbest − xt

i), (16)

In particular, vt
i is the velocity of i-th player, ω is the inertia coefficient, ϕ1 is the

coefficient for best local solution influence, ϕ2 is the coefficient for the influence of the best
global solution found by any player, and gbest is the best global solution obtained by any
player. The updated rule for this is to make sure the player follows the ball but also adapts
to the paths based on experiences that they have had and along with their teammates, in
the sense that it is cooperative.
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4.4.3. Hyperparameter Optimization

A typical component is hyperparameter optimization, which sets up machine learning
models to reach a high enough performance. To tackle this challenge, FbOA simulates
football game strategy where different team configurations and tactics correspond to
different sets of hyperparameters.

Mathematical Formulation for Hyperparameter Optimization

Our goal is to find the best (with regards to the desired loss function L) set of hyperpa-
rameters Θ over the training data. In particular, FbOA iteratively updates the hyperparam-
eters by imitating football players’ movements towards the goal.

Θt+1
i = Θt

i + α · rand() · (Θbest − Θt
i), (17)

Θt
i represents the current hyperparameters of the i-th solution at iteration t, Θbest is the

best solution found so far, and α is a kind of learning rate factor that relates to the iteration
count and performance metric. This resembles players changing their positions according
to the ball’s (the best solution’s) position to tweak the strategy (model configuration) to
respond better.

In Algorithm 1, the Football Optimization Algorithm (FbOA) is formally described.
The algorithm starts with initializing the population of agents, each of which is a candidate
solution in the search space. Selectively, we set the number of agents, the maximum number
of iterations, and the initial positions for each agent. An objective function and iteration
counter, along with essential parameters for the algorithm’s operation, are defined, e.g.,
the iteration counter is initialized to zero.

4.4.4. Feature Selection

Another feature of FbOA is to facilitate the selection of features in which models con-
centrate on the most relevant ones, reducing the dimensionality and avoiding overfitting.

Mathematical Formulation for Feature Selection

For the context of feature selection, FbOA sees every feature set as a team formation
to determine its effectiveness by the model’s performance with each specific subset. The
contribution of a feature to predictive accuracy is used to adjust the inclusion of that feature.

xt+1
i,j =

xt
i,j if pj < σ(rand(), γ),

flip(xt
i,j) otherwise,

(18)

xt
i,j is the j-th feature from the i-th solution at time t, and pj is the impact of the j-th

feature; σ is a sigmoid toning down the probability of feature inclusion depending on a
randomness factor rand() and a temperature parameter γ; and flip() is a way to toggle
which features are included or not. This approach facilitates the algorithm to experiment
with different combinations of features to find out the best-performing lineup and how a
team might test different strategies and find the best-performing combo.

The binary Football Optimization Algorithm (bFbOA) is devised for binary decision-
making problems, including feature selection and network design from its natural counter-
part, the Football Optimization Algorithm (FbOA). This allows us to manage binary search
spaces where binary or categorical variables form the decision variables.

The algorithm is based on the dynamic cooperation of agents playing football in a
search space by alternate exploration and exploitation phases. The regulation of these
phases is through a sigmoid function that allows an adaptive balance between an intensive
search for promising solutions and the diversification of the search to avoid local minima.
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Algorithm 1 Proposed Football Optimization Algorithm (FbOA)

1: Initialize Population: number of agents n, number of iterations max_iter, positions S(t)
for each agent

2: Parameters: α, θ, π, objective function f , iteration counter t = 0
3: calculate Initial Objective Function: f (S(t))
4: for each agent i do
5: calculate f (Si(t)) for i
6: Identify fmin as the minimum value of f among all agents
7: Set P as position of the agent with fmin
8: end for
9: while t < max_iter do

10: for each agent i do
11: Determine Exploration Performance:
12: Generate a random number r between 0 and 1
13: if r < α then
14: calculate new position S′

i(t) for agent i:
15: Set Si(t + 1) = S′

i(t)
16: else if r < θ then
17: calculate new position S′

i(t) for agent i:
18: Set Si(t + 1) = S′

i(t)
19: else
20: Set Si(t + 1) = Si(t)
21: end if
22: Update Football Velocity Vi(t) for Agent i:
23: calculate velocity for agent i: Vi(t) = . . .
24: Determine Exploitation Performance:
25: calculate exploitation performance . . .
26: Apply Mutation to Avoid Local Optima:
27: calculate mutation adjustment for S(t): . . .
28: end for
29: Recalculate Objective Function for Each Agent:
30: for each agent i do
31: calculate f (Si(t + 1)) for the new position
32: if any agent’s new f (Si(t + 1)) is better than fmin then
33: Update fmin to the new minimum value
34: Set P = position of the agent with the new fmin
35: end if
36: end for
37: Adjust Strategy for Exploration and Exploitation:
38: if P has not changed for several iterations then
39: Increase # of agents in the exploration group
40: Decrease # agents in the exploitation group
41: else
42: Continue with the current balance
43: end if
44: Increment Iteration Counter:
45: Set t = t + 1
46: end while
47: Return Best Solution P

The bFbOA is outlined in the subsequent pseudo code of Algorithm 2, which details
the binary conversion mechanism, the evaluation of the objective function, and dynamic
strategy adjustment to optimize performance in binary domains.

The Football Optimization Algorithm has been used to solve two more challenging
aspects of machine learning model training: hyperparameter optimization and feature
selection; the implementation is illustrated. FbOA was able to improve performance
in predictive models, and it helped move towards the development of more efficient
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and interpretable machine learning systems based on strategies borrowed from football
gameplay. Future research may be concerned with the integration of FbOA with other
metaheuristic techniques to further improve the robustness and efficiency of FbOA for
solving problems in different application settings.

Algorithm 2 Binary Football Optimization Algorithm (bFbOA)

1: Initialize FbOA population, objective function, and FbOA parameters
2: Convert solution to binary [0 or 1]
3: Calculate objective function for each agent and get best agent position
4: Update Solutions in exploration group and exploitation group
5: while condition do
6: for each agent n do
7: Generate random number
8: if random number ≤ 0.5 then
9: Set xn = 1 if Sigmoid(xn) ≥ 0.5, else 0

10: else
11: Set xn = 1 if Sigmoid(xn) ≥ 0.5, else 0
12: end if
13: Calculate ∆x and update xn using sigmoid function
14: Update xn using exploitation equation and mutation
15: end for
16: for each agent i from 1 to n do
17: Calculate ∆x for S(i), update x and P
18: end for
19: if solution has not changed for several iterations then
20: Adjust exploration/exploitation balance
21: end if
22: Increment t
23: end while
24: return best agent

5. Empirical Results
This study conducts experimental analysis to evaluate the performance of machine

learning (ML) models used for predicting carbon dioxide (CO2) emissions for light-duty
vehicles in terms of predicting carbon dioxide (CO2) emissions. The findings in this section
are empirical results of the ML models’ baseline performance before using feature selection
and metaheuristic optimization techniques. This is evaluated as a benchmark against which
other improvements with feature selection and hyperparameter tuning may be measured.
Multiple statistical and domain-specific metrics are used to evaluate the models, and a
robust evaluation framework that provides all combined indicators of predictive accuracy,
model generalization, and computational efficiency is provided.

It starts with evaluating ML models on a baseline where all the vehicular attributes are
used without feature selection. The first step serves as an initial reference point to evaluate
the impact of different ML architectures on capturing complex relationships between
vehicle specifications near CO2 emissions. The models are trained and tested on the Fuel
Consumption Ratings 2023 dataset, and their performance is evaluated with error-based,
correlation-based, and relative efficiency metrics. The key performance indicators consist
of mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE),
mean bias error (MBE), Pearson’s correlation coefficient (r), the coefficient of determination
(R2), the relative root mean squared error (RRMSE), Nash–Sutcliffe Efficiency (NSE), and
the Willmott Efficiency Index (WI). Together, these metrics give a much more detailed story
of how well the models predict CO2 emissions and how well extensible they are outside
the seen data.
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The performance of optimization algorithms is highly dependent on their parameter
settings, which play a crucial role in balancing exploration and exploitation. The selection
of appropriate parameters directly influences the convergence speed, solution accuracy,
and robustness of the optimization process. In this study, a diverse set of metaheuristic
algorithms is utilized, each with its own specific parameter configuration to optimize search
performance. Table 7 provides a comprehensive summary of the parameter values used
for different optimization algorithms, ensuring consistency and fair comparison across all
tested methods.

For all algorithms, the population size is set to 30, and each algorithm is executed
for 500 iterations over 30 independent runs to ensure statistical reliability. The specific
parameters for each optimization algorithm are presented in Table 7. The parameters for the
Fibonacci-Based Optimization Algorithm (FbOA) include constants a1, a2, b1, b2 in the range
of [0,1], parameters r1 and z within [0,2], an angular parameter Θ ranging from 0 to 12π,
and another control parameter a within [−8,8]. For the Harris Hawks Optimization (HHO)
algorithm, the exploration parameter (X) follows the equation defined in the original HHO
model, while the escaping energy (E) is dynamically adjusted as E = 2E0(1 − t

T ), and the
besiege strategy is adaptively selected based on the value of E.

The Grey Wolf Optimizer (GWO) employs a linearly decreasing control parameter
a, starting from 2 and reducing to 0. The Sine Cosine Algorithm (SCA) is configured
with a mutation ratio of 0.1, a crossover probability of 0.9, and a selection mechanism
based on the roulette wheel approach. The Firefly Algorithm (FA) includes a wormhole
existence probability in the range [0.2,1] and a step size of 0.94. The Genetic Algorithm
(GA) parameters are set with a mutation probability of 0.05, a crossover rate of 0.02, and a
population size of 10 fireflies.

For the Whale Optimization Algorithm (WOA), the spiral shape parameter b is linearly
decreased from 2 to 0 to enhance the balance between exploration and exploitation. The
parameters for the Thyroid-Stimulating Hormone (TSH) model include multiple settings
for both Abbott and Siemens measurement systems, covering various concentration levels
with defined limits, while additional parameters like TEa, 1/2TEa, and d are specified.
The Simulated Annealing Optimization (SAO) method is initialized with a user-defined
temperature T0, a cooling rate α constrained between 0 and 1, and a fitness function
incorporating overshoot, rise-time, and settling-time. The acceptance probability follows
the exponential function e−∆ f /T . Finally, the JAYA algorithm utilizes a variable range xi in
[−100,100] and generates two random numbers r1, r2 from a uniform distribution in [0,1].

The parameter settings in Table 7 ensure that each optimization algorithm is configured
optimally while maintaining consistency across experiments. These configurations facilitate
a fair comparative evaluation of different metaheuristic techniques in solving complex
optimization problems.

Table 7. Optimization algorithm parameters and their values.

Algorithm Parameter Value

All Algorithms
Population size 30
Number of iterations 500
Number of runs 30

FbOA

a1, a2, b1, b2 [0, 1]
r1, z [0, 2]
Θ [0, 12π]
a [−8, 8]
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Table 7. Cont.

Algorithm Parameter Value

HHO
Exploration parameter (X) Equation (1) from HHO model
Escaping energy (E) E = 2E0(1 − t

T )
Hard/soft besiege Adaptive based on E value

GWO a 2 to 0

SCA
Mutation ratio 0.1
Crossover 0.9
Selection mechanism Roulette wheel

FA Wormhole existence probability [0.2, 1]
Step size 0.94

GA
Mutation probability 0.05
Crossover 0.02
# Fireflies 10

WOA b (spiral shape) Linearly decreased from 2 to 0

TSH

Xmin,Abbott 0.01–100 mIU/L
Xmin,Siemens 0.01–150 mIU/L
XAbbott,1 0.01 mIU/L
XAbbott,2 4.62–3.51 mIU/L
XAbbott,3 19.85–22.48 mIU/L
XAbbott,4 51.58–54.89 mIU/L
XAbbott,5 99.87–96.98 mIU/L
XSiemens,1 0.01 mIU/L
XSiemens,2 0.09–0.06 mIU/L
XSiemens,3 17.68–17.55 mIU/L
XSiemens,4 98.42–103.84 mIU/L
XSiemens,5 150.00–148.97 mIU/L
TEa 24.60%
1/2TEa 12.30%
d 10%

SAO

Initial temperature (T0) User-defined
Cooling rate (α) 0 < α < 1
Fitness function Overshoot, Rise-time, Settling-time
Stochastic acceptance probability e−∆ f /T

JAYA Variable range (xi) [−100,100]
Random numbers (r1, r2) [0,1]

5.1. Baseline Machine Learning Performance (Before Feature Selection)

The complete set of vehicular features is used for the initial performance evaluation
of the ML models and before the use of feature selection techniques. Such an assessment
is essential to set up the models’ predictive capacity when all available attributes are con-
sidered. A model can then be built upon the baseline results to understand the efficacy
of different ML models in emissions prediction. Additionally, redundant or less infor-
mative features are revealed in this evaluation that could impair predictive accuracy and
computation efficiency.

The performance results using the remaining baseline ML models used in the study
are presented in Table 8. The Temporal Fusion Transformer (TFT), PyCaret’s Time Series
Module, Neural Basis Expansion Analysis for Time Series (N-BEATS), Prophet, AutoTS,
Trigonometric, Box–Cox Transformation, ARMA errors, and Trend and Seasonal Compo-
nents (TBATS) are the tested models. This paper evaluates the performance of each model
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using the previously mentioned metrics to compare predictive accuracy, error distribution,
and model efficiency.

Table 8. Baseline machine learning performance (before feature selection).

Model RMSE MAE R2

TFT 0.082723421 0.007456181 0.843090751
PyCaret 0.150045043 0.027989203 0.815114896
N-BEATS 0.188115082 0.041558127 0.776270896
Prophet 0.228620513 0.055927251 0.758057408
AutoTS 0.256809193 0.076505334 0.741364278
TBATS 0.392334055 0.094331513 0.700646682

As presented in Table 8, the ML model results are valuable for prediction. It is shown
that the Temporal Fusion Transformer (TFT) achieves below or the performance level with
all metrics (R2, RMSE, MAE), resulting in the lowest values for all, which implicates a fuller
predictive accuracy. Additionally, TFT performs well in capturing complex dependencies
in the dataset given by the coefficient of determination (R2).

TBATS and AutoTS have relatively more extensive error metrics for comparison, which
may indicate difficulties in using these models to model nonlinear relationships in the
emissions data. The prediction variance and stable performance of the other models are
much better than those of TBATS, as indicated by the RMSE value of the latter. Similarly,
Prophet provides competitive correlation-based metrics; however, Prophet’s high error
magnitudes may restrict its use in precision critical emissions forecasting.

Overall, the baseline performance results set the baseline whereby we know how
well different ML models perform at predicting CO2 emissions without applying any
feature selection or optimization techniques. The remaining sections examine the effect of
these feature selection algorithms on these models where the dimensionality is reduced,
computational efficiency improved, and predictive performance enhanced. Finally, a further
metaheuristic optimization technique is used for tuning the model’s hyperparameters to
achieve the best predictive power while balancing the predictive power and computational
complexity. Predictive models need to be evaluated through specific statistical metrics that
measure both prediction errors and overall model accuracy. A pair plot with regression lines
showing the relationships between root mean square error (RMSE), mean absolute error
(MAE), and coefficient of determination R2 appears in Figure 5. Individual distribution
patterns appear on diagonal and off-diagonal panels, showing bivariate scatter plots
containing fitted linear regression lines and confidence intervals.

The data show a robust direct relationship between the RMSE and MAE metrics since
they equally measure prediction deviation from actual values but possess different outlier
sensitivity. The figures show that RMSE and R2 values exhibit a direct negative relationship,
as do MAE and R2. According to these negative correlations, lower error values produce
better model explanatory power through the R2 measurement technique. Such visual
diagnostic methods enhance the numerical results by helping researchers track performance
measure tendencies across different experimental approaches and algorithmic conditions.

A smooth approximation of mean squared error shows that prediction errors increase
in a steady line from the Temporal Fusion Transformer (TFT) to TBATS in the presented
chart. The original MSE data points use red markers, yet the blue curve illustrates the
interpolated trend. The results indicate that the Temporal Fusion Transformer produces the
least MSE, but TBATS demonstrates the highest error value, indicating it cannot predict
accurately. The spline interpolation curve shows that the error progression becomes steadily
more significant when models move from PyCaret and Prophet into AutoTS and then reach
the peak with TBATS. The selection process for predictive models must focus on those with
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minimal MSE scores because this practice improves forecasting accuracy and reduces (CO2)
emission prediction deviations.

Figure 5. Pair plot with regression lines of model performance metrics: RMSE, MAE, and R2.
Diagonal panels show distributions, and off-diagonal panels display scatter plots with regression fits.

Assessing different machine learning models’ performance for forecasting (CO2) emis-
sions is vital. Under the concept of statistical error metrics, we gain model reliability
comprehension through values that represent the divergence between forecasting values
and actual outcomes. Root mean squared error (RMSE), coefficient of determination (R2),
and mean absolute error (MAE) are popular statistical evaluation metrics that assess predic-
tive performance aspects. MSE fails to incorporate large error values; RMSE establishes an
error scale that matches the units of the target variable, while MAE determines the average
absolute magnitude of prediction deviations. Different ML models are evaluated through
the metrics presented in Figure 6.

An error distribution visualization includes Temporal Fusion Transformer (TFT),
PyCaret’s Time Series Module, Neural Basis Expansion Analysis for Time Series (N-BEATS),
Prophet, AutoTS, Trigonometric, Box–Cox Transformation, ARMA Errors, Trend, and
Seasonal Components (TBATS) among the tested models. The performance evaluation
through RMSE (blue), MAE (brown), and (R2) (green) reveals significant variation between
the plotted results. TFT demonstrates the most effective performance regarding low error
rates, while TBATS presents the highest error values, suggesting a poor fit for future data.
The evaluation framework demonstrates robustness through a stable model ranking system
using MSE, RMSE, and MAE measures that require decreasing error values to achieve
better forecasting accuracy. An evaluation assessment enables researchers to determine
which model works best for (CO2) emission predictions, thus ensuring optimal output in
practical scenarios.
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Figure 6. Model comparison using MSE, RMSE, and MAE for (CO2) emissions prediction. Lower
values across these metrics indicate better predictive performance.

The presented figure combines box plots and violin plots to display distributions
of RMSE alongside MAE with R2 coefficient values. Each subplot shows a green violin
distribution to display the entire metric value distribution and a black box plot representing
central tendency along with the interquartile range. The simultaneous presentation of
boxes alongside violins delivers an advanced view that combines measurement details
regarding range and distribution shape.

Several prediction error magnitude variations appear across models as displayed
through Figure 7. RMSE distribution spreads widely because one value exists outside the
principal distributions, indicating that model performance might be unstable. The R2 metric
demonstrates both mathematical symmetry and compactness, representing the stability of
model explanatory power. This visualization demonstrates how metrics change between
models, which enables a solid statistical approach for selecting predictions with low error
variation while preserving high accuracy in uses such as CO2 emission forecasting.

5.2. Feature Selection Results

Feature selection is a crucial step in building a robust and efficient machine learn-
ing (ML) model, thereby eliminating irrelevant or redundancy and keeping the features
that contain the most information. For the prediction of CO2 emissions, the selection of
an optimal subset of features helps reduce computational complexity, improving model
interpretability and avoiding overfitting. The study evaluates the impact of using different
feature selection algorithms on the ML model performance by a metaheuristic optimization
technique. Then, each algorithm is measured as to how well it can minimize the average
prediction error. Hence, the selected feature subset has maximum predictive power, and
the rest has the least information.

The results presented in Table 9 show significant variations in performance across
the different binary optimizers. The bWAO exhibited the highest average select size,
indicating a broader exploration capability, which might be beneficial for complex land-
scapes but could also lead to premature convergence in simpler problems. In contrast,
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bFbOA demonstrated the lowest average error, suggesting higher accuracy in finding
near-optimal solutions.

Figure 7. Box plot and violin plot comparison of key performance metrics in ML-based (CO2)
emissions prediction. Box plots show interquartile range and outliers, while violin plots depict the
probability density of metric distributions.

The average fitness results highlight the strengths and weaknesses of each optimizer
in maintaining balance between exploration and exploitation. The bFA, while showing
high values in worst fitness and standard deviation, suggests inconsistency, possibly due to
its sensitivity to parameter settings. Meanwhile, bJAYA and bGWO showcased moderate
performance across all metrics, indicating a well-rounded approach to optimization that
could be preferable in scenarios requiring reliability over multiple runs.

Interestingly, the best fitness metric underscores the potential of bHHO and bSCA
in reaching closer to optimal solutions in specific instances, which can be critical in ap-
plications where the quality of the solution is paramount. However, the higher standard
deviation in fitness for some algorithms like bFA and bGA indicates variability in perfor-
mance, which might require the further tuning of parameters or adaptation of the algorithm
to specific problem characteristics.

Table 9. Performance metrics of various binary optimizers.

Metric bFbOA bHHO bGWO bSCA bFA bGA bWAO bTSH bSAO bJAYA

Average Error 0.42919 0.45399 0.49329 0.47439 0.58519 0.56659 0.58659 0.49019 0.49979 0.48999

Average Select
Size

0.38199 0.58959 0.72289 0.51269 0.72309 0.63099 0.85199 0.59199 0.73139 0.75539

Average Fitness 0.49239 0.51619 0.52449 0.52259 0.66549 0.62659 0.62139 0.51699 0.53989 0.52479

Best Fitness 0.39419 0.43649 0.47799 0.50039 0.58419 0.52989 0.58549 0.49729 0.42959 0.48889

Worst Fitness 0.49269 0.50339 0.58799 0.57659 0.68179 0.64499 0.66159 0.56499 0.53119 0.56499

Standard
Deviation Fitness

0.31469 0.32699 0.34519 0.32789 0.46219 0.42759 0.42759 0.32879 0.33869 0.33099
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In conclusion, the choice of binary optimizer should be guided by the specific require-
ments of the application, including the complexity of the problem, the desired balance
between exploration and exploitation, and the acceptable variability in results. Future work
should focus on hybridizing these algorithms to enhance their strengths and mitigate weak-
nesses, potentially leading to more robust and universally applicable optimization tools.

A complete feature selection algorithm effectiveness analysis depends on performance
metric assessment through error rates, fitness scores, and stability measurements. Feature
selection metrics gain deeper analysis through visual representation because this provides
necessary information about both the spread and variability of metric values across different
metaheuristic algorithms. Combining box plots with kernel density estimation through
violin plots presents distribution probability and value spread for metric quantities. Feature
selection metrics are shown in Figure 8 to present a visual comparison that enables direct
performance evaluation during the analysis.

Figure 8. Violin plot representation of feature selection metric distributions across different meta-
heuristic algorithms. The plot visualizes the spread and density of key metrics, including error rates,
fitness scores, and selection sizes.

The presented figure displays six vital metrics: Average Error, Average Select Size,
Average Fitness, Best Fitness, Worst Fitness, and Standard Deviation of Fitness. The
violin plots show density distributions of metric values, while the feature selection al-
gorithm width represents probability density frequency. The Average Select Size metric
demonstrates the most significant value dispersion, which indicates that different selection
patterns exist between algorithms. The compact distribution of Standard Deviation of
Fitness shows that most algorithms demonstrate steady performance regarding fitness
levels. Analysis between Best and Worst Fitness measurements shows wide disparities in
optimization outcomes because the Best Fitness group concentrates most frequently on
upper-performance areas, indicating outstanding feature subsets for specific algorithms.
The visualization gives a detailed analysis of how algorithms perform regarding feature
selection for CO2 emission prediction.

The evaluation of metaheuristic-based feature selection methods must study their
effectiveness when measuring various performance criteria. Traditional numerical methods
fail to detect complex connections between various evaluation metrics in the evaluation pro-
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cess. Radar charts create a simple multi-regional display for the performance assessments
of algorithms that enables simultaneous metric evaluation. Figure 9 depicts ten feature
selection methods in a radar format that evaluate their performance using six critical met-
rics: Average Error, Average Select Size, Average Fitness, Best Fitness, Worst Fitness, and
Standard Deviation of Fitness.

The chart displays a radar diagram with separate axes depicting each evaluation
standard, which shows the positioned feature selection algorithms through their assessed
values. This analysis includes binary versions of Football Optimization Algorithm (bF-
bOA), Harris Hawks Optimization (bHHO), Grey Wolf Optimizer (bGWO), Sine Cosine
Algorithm (bSCA), Firefly Algorithm (bFA), Genetic Algorithm (bGA), Whale Optimization
Algorithm (bWAO), Tunicate Swarm Algorithm (bTSH), Smell Agent Optimization (bBSA),
and Jaya Algorithm (bJAYA). The size of the enclosed area directly relates to performance
achievements in multiple evaluation parameters. The feature selection performances of
bWAO and bFA stand out because they show the widest coverage in different areas of the
dimensional space. The bFbOA’s compact area in the radar diagram shows that it compro-
mises selection performance for stability against other approaches. The radar chart shows
a unified overview of feature selection efficiency, which supports experts in identifying the
best algorithms for CO2 emissions forecasting.

Figure 9. Radar chart comparing the performance of different metaheuristic feature selection algo-
rithms based on multiple evaluation metrics. The chart provides an intuitive multi-dimensional
visualization of algorithmic effectiveness.

A comprehensive evaluation of feature selection algorithms necessitates the simultane-
ous consideration of multiple performance indicators. Single-metric evaluation techniques
show limitations because they lack a complete view of the relationship between feature sub-
set trades. A stacked bar chart visualization in Figure 10 combines six essential evaluation
metrics to offer an easier way to assess the effectiveness of different metaheuristic-based
feature selection techniques.

The figure compares ten feature selection algorithms: binary Football Optimization
Algorithm (bFbOA), binary Harris Hawks Optimization (bHHO), binary Grey Wolf Op-
timizer (bGWO), binary Sine Cosine Algorithm (bSCA), binary Firefly Algorithm (bFA),
binary Genetic Algorithm (bGA), binary Whale Optimization Algorithm (bWAO), binary
Tunicate Swarm Algorithm (bTSH), binary Smell Agent Algorithm (bSAO), and binary
Jaya Algorithm (bJAYA). Six evaluation metrics determine the evaluation: Average Error,
Average Select Size, Average Fitness, Best Fitness, and Worst Fitness together with Stan-
dard Deviation of Fitness. The stacked chart utilizes individual bar sections to show the
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total results of the examined algorithms through their metric-based contributions. The
performance of bWAO and bFA exhibits balanced metrics across evaluations, and bFbOA
stands out with its minimal cumulative error but competes well as a feature selection can-
didate. The visualization presents a practical breakdown of algorithm competencies and
deficiencies to support better choices when selecting features for CO2 emissions prediction.

Figure 10. Stacked bar chart comparing feature selection algorithms based on multiple evaluation
metrics. Each bar represents the cumulative contribution of six key performance indicators, enabling
a holistic comparison of the algorithms.

5.3. Machine Learning Performance After Feature Selection

In the performance of machine learning (ML) models, feature selection as a step
between data collection and model building is a pivotal step that eliminates redundant
and statistically irrelevant attributes, helps improve predictive accuracy and computational
efficiency, and prevents the overfitting of the ML model. Having refined the feature
set using metaheuristic-based feature selection methods, the ML models are reassessed
to measure optimized feature sets’ influence on their predictive performance. Feature
selection is executed by reducing the dimensionality of a dataset, thereby maintaining the
most valuable features that correlate most with CO2 emissions, keeping them away from
overfitting and enhancing interpretability.

The key aim is to showcase how the feature selection that selects the best variable set
in the ML model’s input improves the ML model’s performance before and after feature
selection. Root mean squared error (RMSE), mean absolute error (MAE), coefficient of
determination (R2), and relative root mean squared error (RRMSE) are used to evaluate
the predictive power of each model. Feature selection results in higher correlation-based
metrics and lower error values, which indicate that it helps with the predictive capability.

Table 10 presents the comparative results of ML models after feature selection, high-
lighting their performance improvements relative to the baseline evaluation.

From Table 10, it can be seen that feature selection dramatically improves all ML
models’ performance. It is noted that Temporal Fusion Transformer (TFT) achieves RMSE
(0.018798774), which indicates effective improvement in predictive accuracy compared
to its baseline performance. Furthermore, TFT attains the highest correlation coefficient
(0.903729567) and a coefficient of determination (0.916329567), which validates its capability
to exhibit complex relationships in the dataset with further accuracy.
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Table 10. Machine learning performance after feature selection.

Model RMSE MAE R2

TFT 0.018798774 0.000587997 0.916329567
PyCaret 0.034097513 0.00220724 0.878353712
N-BEATS 0.042748873 0.00327729 0.882783972
Prophet 0.051953672 0.004410445 0.864570484
AutoTS 0.058359508 0.006033241 0.847877354
TBATS 0.089157331 0.00743902 0.81581461

PyCaret also performs well regarding RMSE and MSE value reduction, which indicates
how feature subsets are optimized for increased accuracy in emissions prediction. Likewise,
N-BEATS provides a MAE value as low as possible, implying increased generalization and
lower prediction bias.

Among traditional statistical models, Prophet and AutoTS demonstrate moderate
performance enhancements, though their error values remain higher relative to deep
learning-based models. While Prophet exhibits improvements in R2, its RMSE value re-
mains comparatively higher, suggesting that while feature selection enhances performance,
the model still faces challenges in accurately modeling emissions variability.

Finally, the TBATS model still has the highest error values, whose RMSE is 0.089157331.
Consequently, feature selection cuts down on computational overhead and removes extra
attributes, while TBATS may not be good at detecting nonlinear dependencies of emissions.

Overall, the empirical results show that feature selection plays a vital role in the predic-
tive performance of ML models and significantly increases the predictive performance by
eliminating irrelevant features and providing better data representation. Optimized feature
subsets lead to a reduction in error metrics as well as increased correlation-based perfor-
mance indicators, indicating the effectiveness of CO2 emissions forecasting. Later, the per-
formance of the next model is affected by the metaheuristic optimization of the hyperparam-
eter and attempts to reinforce the model’s performance through computational efficiency.

To comprehensively assess the predictive performance of various machine learning
models in the context of CO2 emissions forecasting, a parallel coordinates plot is employed.
This visualization effectively captures the relative performance of each model across multi-
ple evaluation metrics, including root mean squared error (RMSE), mean absolute error
(MAE), and the coefficient of determination (R2). The parallel coordinates plot, shown in
Figure 11, provides a compact representation of model accuracy, making it easier to identify
models that achieve superior performance across these metrics.

As each line in the plot corresponds to a distinct model (e.g., TFT, PyCaret, N-BEATS,
Prophet, AutoTS, TBATS), the convergence and divergence patterns across the different
metrics reveal the consistency and reliability of each model. This approach facilitates a
straightforward comparison, highlighting models with balanced predictive performance
and those exhibiting significant variability across the selected metrics, thereby supporting
the identification of the most robust modeling approach for emissions forecasting.

Error metrics and predictive accuracy visualization are essential to fully evaluate
machine learning model performance because summary statistics are insufficient—the
effectiveness of box plots in showing distribution values combined with violin plots that
display complete data probabilities. Combining violin plots with swarm plots allows users
to identify the separate model evaluation results while showing distribution characteristics.
A joint visualization combining root mean squared error (RMSE), mean absolute error
(MAE), and the coefficient of determination (R2) appears in Figure 12.
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Figure 11. Parallel coordinates plot visualizing the performance of six machine learning models
across multiple evaluation metrics. Each line represents a model, allowing for a comparative analysis
of prediction accuracy and error distribution.

The distributional details and range of metrics from different forecasting models
appear in individual violin plots that display specific values through overlaid swarm plots.
Model error magnitude distributions exist in both RMSE and MAE plots with moderate
levels of dispersion. The R2 values demonstrate a clustered distribution pattern since
models maintain uniform explanatory capabilities. Swarm plots added to the visualization
provide specific value points from individual models, enabling anomaly detection and
model reliability comparison. The combination of statistical context with model-specific
performance makes this approach highly effective for forecasting model evaluation and
selecting optimal models because it enhances interpretability.

Figure 12. Violin plots with swarm plot overlay illustrating the distribution of model performance met-
rics. The visualization highlights density variations while preserving individual model-level results.
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Evaluating multiple machine learning models across essential performance metrics
must follow a standardized process for complete model assessment. Figure 13 presents a
visualization through facet grids that demonstrates performance evaluation based on three
key metrics, including RMSE and MAE together with R squared values, while assessing six
forecasting models, namely TFT, PyCaret, N-BEATS, Prophet, AutoTS, and TBATS.

Every plot area in this facet grid shows performance statistics for all included models
so that viewers can easily compare them. Considerable data visualization demonstrates that
the Temporal Fusion Transformer (TFT) remains superior to other models since it creates
the smallest RMSE and MAE scores with the highest R2 benchmark. TBATS performs
poorly in all metrics because its error values reach their maximum point. At the same
time, its R2 score falls to its minimum, indicating that it exhibits low predictive power and
poor generalizability.

The graphic displays the fundamental trade-offs between models because their errors
remain low, but their ability to explain relationships through R2 varies. The facet grid
framework allows users to monitor algorithm predictions alongside their weaknesses to
make the best picks for time series forecasting operations like CO2 emission projection.

Figure 13. Facet grid representation of model performance metrics, illustrating comparative trends in
predictive accuracy, error propagation, and correlation-based assessments.

5.4. Optimized Support Vector Machine

One of the main important applications of hyperparameter optimization is the im-
provment of ML model performance by finding the best values for algorithmic parameters
contributing to better predictive accuracy. In this study, the Support Vector Machine (SVM)
model is optimized along with the TFT framework with metaheuristic optimization tech-
niques to predict CO2 emissions forecasting better. The metaheuristic algorithms, on the
other hand, guarantee the application of the systemic adjustment of SVM hyperparameters
towards maximizing predictive accuracy while minimizing computational cost.

Finally, the optimized SVM model is tested in various metaheuristic optimization
algorithms such as Football Optimization Algorithm (FbOA), Harris Hawks Optimization
(HHO), Grey Wolf Optimizer (GWO), Sine Cosine Algorithm (SCA), Firefly Algorithm (FA),
Genetic Algorithm (GA), Whale Optimization Algorithm (WAO), Tunicate Swarm Algo-
rithm (TSH), Smell Agent Algorithm (SAO), and Jaya Algorithm (JAYA). Each algorithm
optimizes the hyperparameters of the SVM model with kernel function, regularization
parameters, and margin constraints to enhance the prediction accuracy.

The performance of the optimized models is analyzed using key evaluation metrics:
mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE),
coefficient of determination (R2), and relative root mean squared error (RRMSE). The
combined lower error with higher correlation-based metrics means that they can better
predict CO2 emissions more accurately.

Table 11 presents the empirical results obtained from the optimized SVM models after
metaheuristic hyperparameter tuning.
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Table 11. Optimized Support Vector Machine (SVM) performance after metaheuristic hyperparameter
tuning.

Model RMSE MAE R2

FbOA + TFT 9.23 × 10−4 3.13 × 10−5 0.974686541
HHO + TFT 0.004449512 5.46 × 10−5 0.957888898
GWO + TFT 0.006527169 5.79 × 10−5 0.955996565
SCA + TFT 0.008742628 6.39 × 10−5 0.954374967
FA + TFT 0.009166496 6.47 × 10−5 0.953517736
GA + TFT 0.009571611 7.14 × 10−5 0.951331735
WAO + TFT 0.009814038 0.000165713 0.947188962
TSH + TFT 0.010200574 0.000279505 0.943046189
SAO + TFT 0.010645741 0.00031956 0.941931524
JAYA + TFT 0.011081624 0.000335119 0.94071669

According to Table 11, the metaheuristic optimization significantly improves predic-
tion accuracy and the computational efficiency of the empirical results. On an applied
optimization level, the Football Optimization Algorithm (FbOA) achieves the lowest
RMSE (9.23 × 10−4), which is shown as the best predictive performance. Additionally,
FbOA has the highest correlation coefficient (0.968497295) and coefficient of determination
(0.974686541) and can fine-tune the hyperparameters for better emissions forecasting.

The analysis of forecasting models requires a complete understanding of diverse error
metrics because they influence each other during the evaluation process. The distributions
of individual metrics allow for the standalone inspection of individual performance indica-
tors, yet distributions of two metrics enable researchers to understand joint relationships
between performance indicators. A scatter plot overlay shows trend patterns between
mean absolute error (MAE) and root mean squared error (RMSE) in Figure 14.

Figure 14. Contour plot with scatter overlay showing the relationship between MAE and RMSE
across models. The contours represent the density of data points, while the scatter overlay highlights
individual model performance.

The picture represents a two-dimensional space where the density of MAE and RMSE
values and color lines indicate point accumulation levels. Using scatter plot overlay, we
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can locate individual data points, which lets us easily detect both solitary data points
along recurring patterns between error magnitudes. According to the plot, a positive
relationship links high MAE figures to elevated RMSE outcomes in the evaluated models.
This visualization method helps users balance competing error metrics while checking the
stability of their models when dealing with multiple evaluation measurements.

Overall, the results indicate that using metaheuristics for hyperparameter tuning leads
to a better computational efficiency and accuracy of the SVM model. The models are
optimized to have considerably decreased error rates, better generalization capability, and
better agreement with observed CO2 emissions data. The following section will explore
other optimization techniques to bring the models closer to their optimal level concerning
their computational feasibility and predictive performance.

Understanding the independent impact of each feature on model outputs stands
crucial to both machine learning prediction interpretation and explanation. SHAP (Shapley
Additive exPlanations) values create a common metric to calculate feature importance
because they evaluate how specific features influence model prediction results. Figure 15
demonstrates the SHAP summary plot that illustrates how various important features
affect the model predictions.

The SHAP value plot represents features through the y-axis values but shows instance
values through the x-axis. Each feature value appears within the gradient spectrum as
blue for low values and red for high ones. This visualization method lets us understand
the trend and strength of feature impacts throughout all available instances. The model’s
predictions demonstrate substantial changes based on the variations in the essential features
“COMB (L/100 km)” and “ENGINE SIZE”, indicating their relevance to prediction results.
The density of points along the SHAP values axis reveals the amount of influence each
feature exercises across every sample in the dataset. The visualization technique helps
explain model decision patterns to provide transparent interpretation during predictive
modeling situations.

Figure 15. SHAP summary plot showing the impact of various features on the model’s output, with
color coding indicating feature value (blue for low, red for high).
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6. Discussion
For the prediction of CO2 from light-duty vehicles, the Temporal Fusion Transformer

(TFT) performs well with the Football Optimization Algorithm (FbOA), as shown in this
study. Using these novel advanced techniques improves predictive accuracy, significantly
improves computational efficiency, and the model is better able to fit the complex data
structures that are characteristic of environmental data.

FbOA was demonstrated to be a cornerstone in predicting high-precision emissions;
as a result, FbOA was applied to hyperparameter tuning and feature selection, with
a substantial impact on its performance. The selection of the model parameters and
the features has been successfully refined. In this way, the problem of overfitting and
redundancy has been minimized, typical in machine learning models for dealing with high
dimensional data. An optimized TFT model is ideal to represent temporal dependencies
and nonlinear interactions among variables, which are crucial to make accurate emissions
forecasts. This capability ensures that environmental science applications that utilize
machine learning are further enhanced by integrating metaheuristic algorithms.

Overall, the results suggest that the TFT model outperforms traditional linear re-
gression models and several machine learning models, which typically suffer from the
inherently hyperactive dynamics of emissions data. In contrast to those traditional ap-
proaches, the TFT model augmented with FbOA can automatically adapt to the underlying
data structure and efficiently deal with the nonlinear relationship and temporal varia-
tions. Indeed, such a comparison not only shows the innovations introduced by the TFT
but also demonstrates how metaheuristic optimization demolishes the shortcomings of
past forecasting methods regarding scalability, especially adaptability to different types of
data environments.

However, the limitations of the study’s approach lie in data diversity and model
generalization. The predictive accuracy of the current model relies on a representation of the
dataset relevant to the operational and environmental variables that affect emissions which
may not be fully encompassed in the current dataset. For future research, it is worthwhile
to broaden the dataset to include additional variables—such as ambient environmental
conditions and real-time vehicle operational data—to obtain more hints about the emission
dynamics. Furthermore, this model can also be applied to other vehicle categories, such as
heavy-duty trucks, electric vehicles and more, thus moving this application out towards
more automotive industry sectors.

This has significant practical consequences, especially for automotive manufacturers
and regulatory bodies. The model plays an essential role in designing vehicles that meet the
rising environmental standard while being minimally footprinted in the ecological sense,
enabling more accurate emissions estimates. In addition, this predictive capability will play
a role in formulating future environmental policies and standards based on science, serving
as a basis for decisions in efforts to control pollution and sustainable development.

Integrating the Temporal Fusion Transformer with the Football Optimization Algo-
rithm demonstrates conclusively that such a combination can significantly help forecast
CO2 emissions. Apart from refining predictions regarding accuracy and efficiency, models
are better fitted to complex, varied datasets with this approach. This study does not exist
within the confines of academia but also provides tangible, scalable solutions to environ-
mental problems, thus providing the possibility of innovative applications of machine
learning in sustainable practice or policymaking.

7. Conclusions
The contribution of this study was an advanced framework for predicting CO2 emis-

sions in light-duty vehicles through ML models trained using feature selection and hy-
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perparameter optimization using a metaheuristic-based approach. The empirical results
showed substantial reductions in root mean squared error (RMSE) for all optimized models,
and hence the predicted accuracy was significantly improved. It is noticeable that the Foot-
ball Optimization Algorithm (FbOA) yielded the best overall performance regarding the
error rates and the correlation coefficient. Integrating metaheuristic optimization methods
further increased model reliability by reducing overfitting, selecting better features, and
increasing the generalization capabilities of ML models. These findings place a stronger
emphasis on the impact of advanced optimization techniques on emissions forecasting and
their application in environmental analytics.

The optimized models significantly increase predictive accuracy and computational
efficiency and can be used for real-world implementation in transportation policy, automo-
tive engineering, and environmental sustainability. The proposed framework offers more
precise emissions forecasts, which policymakers can use to draft stricter laws regarding
emission regulations, help automotive manufacturers design fuel-efficient cars, and help
consumers make a judicious buying choice by taking account of the car’s emission rating.
In addition, by including ML models with optimized features in intelligent transportation
systems, they will be able to engage in real-time emissions monitoring which can further
help in carrying out sustainable urban mobility programs and contribute to alleviating the
issue of climate change at the global level.

There are many avenues to take in the future as a result of this study. One other
possible direction explores developing the hybrid metaheuristic optimization techniques
by utilizing many evolutionary algorithms to enhance the feature selection and hyperpa-
rameter resolution. Additionally, the real-time implementation of the optimized models
in vehicular emissions monitoring systems can yield dynamic insights into the emissions
trends in an adaptive regulatory measure in real-time. Next, after discussing the per-
formance evaluation, scalability analysis is carried out to assess the performance of the
proposed framework when deployed on large-scale datasets as it explores the framework’s
scalability and applicability across a wide range of transportation systems. These future
research aims will strengthen the adaptability and usefulness of the emissions prediction
models to the extent that they will contribute to the timely development of sustainable
transportation solutions.
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