
Received: 22 December 2023 Revised: 25 April 2024 Accepted: 11 June 2024

DOI: 10.1002/ett.5019

RE S EARCH ART I C L E

GIJA:Enhanced geyser-inspired Jaya algorithm for task
scheduling optimization in cloud computing

Laith Abualigah1,2,3 AhmadMohdAziz Hussein4 Mohammad H. Almomani5

Raed Abu Zitar6 Mohammad Sh. Daoud7 HazemMigdady8

Ahmed Ibrahim Alzahrani9 Ayed Alwadain9

1Computer Science Department,
Al al-Bayt University, Mafraq, Jordan
2Jadara Research Center, Jadara
University, Irbid, Jordan
3Applied Science Research Center,
Applied Science Private University,
Amman, Jordan
4Department of Computer Science,
Faculty of Information Technology,
Middle East University, Amman, Jordan
5Department of Mathematics, Facility of
Science, The Hashemite University, Zarqa,
Jordan
6Sorbonne Center of Artificial
Intelligence, Sorbonne University, Paris,
France
7College of Engineering, Al Ain
University, Abu Dhabi, United Arab
Emirates
8CSMIS Department, Oman College of
Management and Technology, Barka,
Oman
9Computer Science Department,
Community College, King Saud
University, Riyadh, Saudi Arabia

Correspondence
Laith Abualigah, Computer Science
Department, Al al-Bayt University,
Mafraq 25113, Jordan.
Email: aligah.2020@gmail.com

Funding information
This work is funded by the Researchers
Supporting Project number (RSP2024R157),
King Saud University, Riyadh, Saudi Arabia

Abstract
Task scheduling optimization plays a pivotal role in enhancing the efficiency
and performance of cloud computing systems. In this article, we introduce GIJA
(Geyser-inspired Jaya Algorithm), a novel optimization approach tailored for task
scheduling in cloud computing environments. GIJA integrates the principles of the
Geyser-inspired algorithm with the Jaya algorithm, augmented by a Levy Flight
mechanism, to address the complexities of task scheduling optimization. The moti-
vation for this research stems from the increasing demand for efficient resource
utilization and task management in cloud computing, driven by the proliferation of
Internet of Things (IoT) devices and the growing reliance on cloud-based services.
Traditional task scheduling algorithms often face challenges in handling dynamic
workloads, heterogeneous resources, and varying performance objectives, necessi-
tating innovative optimization techniques. GIJA leverages the eruptive dynamics
of geysers, inspired by nature’s efficiency in channeling resources, to guide task
scheduling decisions. By combining this Geyser-inspired approach with the sim-
plicity and effectiveness of the Jaya algorithm, GIJA offers a robust optimization
framework capable of adapting to diverse cloud computing environments. Addition-
ally, the integration of the Levy Flight mechanism introduces stochasticity into the
optimization process, enabling the exploration of solution spaces and accelerating
convergence. To evaluate the efficacy of GIJA, extensive experiments are conducted
using synthetic and real-world datasets representative of cloud computing work-
loads. Comparative analyses against existing task scheduling algorithms, including
AOA, RSA, DMOA, PDOA, LPO, SCO, GIA, and GIAA, demonstrate the superior
performance of GIJA in terms of solution quality, convergence rate, diversity, and
robustness. The findings of GIJA provide a promising solution quality for addressing
the complexities of task scheduling in cloud environments (95%), with implications
for enhancing system performance, scalability, and resource utilization.

Abbreviations: f (Xi), fitness function; pi, the probability of selecting a member from the population; Nc, the population size; Xc, alternative
path; X , solution; d, the distance value; d(X ,Y), the distance between members of X and Y ; D, decision variables; Xn, neighboring solution;
Rand, random number; Iter, iteration number; MIter, max number of iterations; X(t), the current solution; xw, the least favorable solution vector;
r, a randomization factor; u, the probability density of a series of random steps; T, a set of task; R, the available resources; r, resource; tn, max
number of tasks; C j, the duration for completing task t on resource r; E , the energy consumption; U , the capacity utilization of resource r;
h, the total number of VMs; Nph, the total number of physical hosts; vij, the typical number of VMs hosted; Nvmi, the number of VMs running;
ETC(jk), the anticipated time to complete task k on VM j; Lk, the length of task k; ETj, the time taken by VM j to complete all tasks; Pj, the
processing performance of VM j; JCM, job completion time.

Trans Emerging Tel Tech. 2024;35:e5019. wileyonlinelibrary.com/journal/ett © 2024 John Wiley & Sons Ltd. 1 of 23
https://doi.org/10.1002/ett.5019

https://orcid.org/0000-0002-2203-4549
http://wileyonlinelibrary.com/journal/ETT

2 of 23 ABUALIGAH et al.

1 INTRODUCTION

In recent years, the proliferation of Internet of Things (IoT) devices and the exponential growth of data have led to
an unprecedented demand for computational resources.1,2 Cloud computing has emerged as a pivotal technology to
meet these demands by providing scalable and on-demand access to computing resources over the internet.3,4 How-
ever, efficient utilization of these resources remains a significant challenge, particularly in the context of task scheduling
optimization.5,6

In today’s era of digital transformation, where data are increasing at an unprecedented rate and computing needs are
soaring, cloud computing has emerged as a pivotal technology.7,8 Offering scalable and on-demand access to computing
resources over the internet, cloud computing has revolutionized the way businesses and individuals utilize and manage
computational resources.9,10 However, one of the critical challenges in cloud computing remains the efficient allocation
and scheduling of tasks across available resources.11–13

Task scheduling lies at the heart of optimizing resource utilization and performance in cloud computing environ-
ments.14,15 It involves allocating computational tasks to appropriate resources to minimize execution time, reduce energy
consumption, and maximize system throughput.16,17 However, the task scheduling problem in cloud computing is com-
plex and multifaceted, characterized by dynamic workloads, fluctuating resource availability, and diverse application
requirements.18,19

Cloud computing environments host amyriad of applications and services, ranging fromweb hosting and e-commerce
platforms to big data analytics and machine learning algorithms.20–22 Each of these applications has unique computa-
tional requirements and performance objectives, further complicating the task scheduling process.23,24 Moreover, with
the advent of IoT devices and edge computing, the task scheduling problem becomes even more challenging, as tasks
need to be efficiently distributed across edge devices and cloud servers.25,26 Traditional task scheduling algorithms often
fall short in addressing the complexities of cloud computing environments. They may struggle to adapt to dynamic work-
loads, leading to suboptimal resource utilization and performance degradation.27 As a result, there is a growing need
for innovative optimization techniques and algorithms that can effectively address the task scheduling problem in cloud
computing.

To address these challenges, researchers have explored various optimization techniques and algorithms. One promis-
ing approach is the integration of nature-inspired algorithms, which mimic natural phenomena to solve optimization
problems efficiently. In this context, the GIJA emerges as a novel solution for task scheduling optimization in cloud com-
puting environments. GIJA combines the principles of the Jaya algorithm and the Geyser-inspired algorithm, augmented
by the Levy Flight searchmechanism. The Jaya algorithm, known for its simplicity and effectiveness, iteratively improves
candidate solutions by emulating the principles of natural selection. Meanwhile, the Geyser-inspired algorithm draws
inspiration from the eruptive behavior of geysers, leveraging dynamic attraction mechanisms to explore solution spaces
efficiently. The integration of the Levy Flight searchmechanism further enhances the algorithm’s exploration capabilities
by allowing for large jumps or leaps in the search space. The main contributions of this work are given as follows.

1. This paper introduces the GIJA, a novel hybrid algorithm that combines the Jaya algorithm, the Geyser-Inspired
algorithm, and the Levy Flight searchmechanism for task scheduling optimization in cloud computing environments.

2. GIJA offers improved performance compared to traditional task scheduling algorithms by leveraging nature-inspired
principles to explore solution spaces and find optimal or near-optimal solutions efficiently.

3. By optimizing task scheduling, GIJA enhances resource utilization in cloud computing environments, leading to
reduced execution times, lower energy consumption, and increased system throughput.

4. GIJA is designed to be adaptable and scalable, capable of addressing diverse application requirements and dynamically
changing environments in cloud computing.

5. The proposed GIJA algorithm has practical applications in various domains, including IoT, big data analytics, and
distributed computing, where efficient resource management is critical for performance and cost optimization.

This article addresses the pressing challenge of task scheduling optimization in cloud computing environments amidst
the rapid proliferation of IoT devices and exponential data growth. Despite the pivotal role of cloud computing inmeeting
escalating computational demands, efficient resource allocation remains a significant hurdle. Task scheduling optimiza-
tion, crucial for enhancing resource utilization and performance, is particularly complex due to dynamic workloads,
fluctuating resource availability, and diverse application requirements. Traditional algorithms often fall short in adapting

ABUALIGAH et al. 3 of 23

to these complexities, necessitating innovative approaches. This study introduces the GIJA, a hybrid solution amalga-
mating the Jaya algorithm, Geyser-inspired algorithm, and Levy Flight search mechanism. GIJA stands out for its ability
to efficiently explore solution spaces, leading to improved task scheduling performance in cloud computing environ-
ments. By enhancing resource utilization, GIJA reduces execution times, lowers energy consumption, and boosts system
throughput. Moreover, its adaptability and scalability make it well-suited for addressing diverse application requirements
and dynamic environments. With practical applications across domains like IoT and big data analytics, GIJA offers a
promising avenue for optimizing resource management in cloud computing.

In this study, we undertake a comprehensive investigation into optimizing task scheduling within cloud computing
environments.We introduce our proposedmethod and conduct a comparative evaluation against existing techniques. The
article follows a structured approach: Section 2 provides an overview of pertinent research concerning task scheduling
optimization in cloud computing. It delves into various metaheuristic optimization strategies, exploring their appli-
cations and weighing the advantages and drawbacks of each approach. Section 3 details the implementation of the
Levy Flight mechanism and the synergistic framework amalgamating the Jaya algorithm and the Geyser-inspired
Algorithm. Here, we present the specifics of our proposed method, termed the improved Geyser-inspired Jaya algorithm.
We elucidate its algorithmic architecture, optimization methodology, and key components contributing to its effec-
tiveness in addressing task scheduling challenges in cloud systems. Moving forward, Section 4 presents the outcomes
of extensive testing conducted to assess the efficacy of our developed algorithm. We furnish details on the experi-
mental setup, encompassing challenges encountered with scheduling benchmark tasks and parameter specifications.
Through an analysis of the results obtained, we evaluate the superiority of our technique in terms of solution qual-
ity, convergence speed, and scalability, juxtaposed against state-of-the-art methodologies. Concluding the study, the
fifth and final section offers a summary of our findings and outlines potential avenues for further research. We
explore the ramifications of our proposed algorithm in enhancing resource utilization and system performance in
cloud-based applications. Additionally, we underscore prospective directions for refining and expanding the proposed
technique.

2 RELATED WORKS

The related work section discusses various task-scheduling optimization strategies employed in cloud computing, includ-
ing traditional optimization algorithms,metaheuristic approaches, and nature-inspired algorithms.28,29 It will explore the
strengths and limitations of these methods, along with their applicability to real-world cloud computing scenarios.30,31
Additionally, this section reviews studies that have investigated the integration of different algorithms or the enhancement
of existing algorithms to improve task scheduling efficiency in cloud environments.32,33

In recent years, the integration of IoT devices with cloud services has seen a steady rise, bringing forth new chal-
lenges, particularly concerning latency issues. Fog computing emerges as a potential solution to address this concern by
reducing latency through the deployment of resources closer to end-users at the cloud edge. This approach holds promise
for enhancing IoT system performance and user experience. However, achieving reduced latency without increasing
energy consumption poses a significant challenge. The complex nature of this scheduling problem classified as NP-hard,
indicates the absence of an optimal solution within a reasonable timeframe. This study34 focuses on addressing the
task scheduling challenges in fog-cloud environments. They propose GAMMR, a genetic-based method designed to
optimize both energy consumption and reaction time. Through simulations conducted on eight datasets of varying
sizes. They evaluate the effectiveness of our GAMMR approach. Our findings demonstrate that GAMMR consistently
outperforms conventional genetic algorithms across all scenarios, yielding a notable improvement in the normalized
function by 3.4%.

Cloud computing, renowned for its provision of adaptable and expandable computing resources, encounters chal-
lenges in task scheduling, impacting system performance, and customer satisfaction. The NP-completeness of the task
scheduling problem adds to the complexity of finding solutions. In response, researchers propose a novel approach com-
bining the grey wolf optimization algorithm (GWO) with the genetic algorithm (GA).35 This hybrid GWO-GA method
is tailored for task scheduling in cloud computing environments, aiming to minimize makespan, energy consump-
tion, and costs across multiple objectives. By integrating the genetic algorithm’s crossover and mutation operators,
enhancements are made to the proposed approach. The utilization of the GA-based GWO algorithm offers faster
convergence, which is particularly advantageous for handling large-scale scheduling problems. Evaluation using the
Cloudsim toolbox demonstrates the efficacy of the algorithm surpassing that of previous methodologies. The study

4 of 23 ABUALIGAH et al.

incorporates both simulated and real-world datasets, with ANOVA analysis validating the results. Experimental out-
comes reveal notable reductions in makespan, energy usage, and computing costs. Specifically, the proposed method
achieves a reduction of 19% in makespan, 21% in energy consumption, and 15% in computing costs compared with
standalone GWO, GA, and PSO algorithms. Furthermore, energy savings of 17%, 19%, and 23%, as well as schedul-
ing cost reductions of 13%, 17%, and 22%, are achieved relative to GWO, GA, and PSO methods, respectively. These
findings underscore the practical utility of the algorithm in optimizing task scheduling within cloud computing
environments.

The advent of cloud computing has revolutionized IT infrastructure by offering scalable and on-demand com-
puting capabilities. In today’s business landscape, enterprises are increasingly tasked with optimizing cloud effi-
ciency across multiple objectives, including cost reduction, resource utilization, operational efficiency, and load
balancing. Traditional single-objective systems often struggle to cope with the diverse array of workloads encoun-
tered in modern cloud environments. To address this challenge, this study introduces the multiobjective whale
optimization-based scheduler (WOA-scheduler) designed specifically for effective task scheduling in cloud comput-
ing environments.36 Leveraging the whale optimization algorithm (WOA), the WOA-scheduler aims to optimize
cost, time, and load balancing concurrently. One of its key features is its adaptability to user-defined weights for
optimization targets, allowing businesses to tailor the scheduler to their specific optimization priorities. Compara-
tive analysis conducted across various cloud configurations demonstrates the superiority of the WOA-scheduler over
single-objective techniques. By effectively balancing cost, time, and resource utilization, the scheduler enhances overall
performance in cloud environments. Furthermore, its multiobjective optimization capabilities enable dynamic adjust-
ments in task assignments to accommodate evolving workload dynamics, ensuring efficient resource allocation and
equitable burden distribution. While modern cloud services present complex challenges, the customizable nature
of the WOA-scheduler offers a promising solution for enhancing performance and efficiency in cloud computing
operations.

Cloud computing serves as a cornerstone of internet and communication technologies, granting users access to infras-
tructure, platforms, and applications through a pay-per-use model. Task scheduling plays a crucial role in managing
various virtualized resources within cloud computing environments. One of the most formidable challenges is efficiently
assigning IoT tasks to VMs (VMs), a problem known for its NP-Hard complexity. To address this challenge, this study
proposes a scheduler based on the firefly algorithm (FFA) specifically tailored for scheduling IoT tasks in cloud com-
puting environments.37 This updated FFA scheduler leverages transfer functions (TF) and quantization techniques to
optimize task scheduling and minimize makespan. Comparative analysis against other scheduling algorithms, such as
HHO and DE, reveals that the proposed method outperforms in terms of both convergence time and solution quality, as
demonstrated through simulation analysis.

Cloud computing revolutionizes the accessibility of scalable and cost-effective computer resources. Efficient job
scheduling is paramount for optimizing resource utilization and enhancing cloud service performance. This research
offers an innovative approach to enhance cloud computing work scheduling. Within cloud infrastructures comprising
data centers, hosts, and VMs, effective task scheduling is crucial for achieving optimal performance levels. Efficient
scheduling not only saves time and money but also reduces energy consumption and response times. The study focuses
on developing and assessing optimization strategies for cloud task scheduling. Emphasizing the reduction of total exe-
cution cost (TEC), energy consumption (EC), and system response time, the proposed method utilizes Tabu search
(T), Bayesian classification (B), and whale optimization (W).38 Comparative experiments against GA-PSO and whale
optimization algorithms demonstrate the superiority of the recommended TBW optimization technique in meeting
the specified objectives. This research contributes to enhancing cloud computing performance by unveiling significant
improvements in resource utilization efficiency and system effectiveness, showcasing a remarkable 95% enhancement
for 8–14 VMs.

Cloud communication merges parallel and distributed computing, posing challenges in task scheduling due to
the inherent complexity of cloud systems, known as nondeterministic polynomial completeness (NP). To address this
challenge, various swarm intelligence-based approximation methods have been devised. This study introduces a novel
approach combining k-means-based dual machine learning to enhance performance and select appropriate cloud
scheduling technologies.39 The proposed techniques, efficient Kmeans (Ekmeans) and Kmeans HEFT (KmeanH), which
stands for Heterogeneous earliest end time, aim to accelerate and optimize task processing. Performance evaluations are
conducted on varying scales, ranging from 2 to 32 VMs and job sizes spanning from 50 to 1000, to assess the effectiveness
of the proposed methods.

ABUALIGAH et al. 5 of 23

Cloud technology enables on-demand access to additional resources, prompting the need for upgrades in cloud data
centers tomeet growing service demands. Efficientwork scheduling is essential in cloud computing to ensure optimal per-
formance. Job schedulingmethods in data centers must distribute workloads evenly across systems to enhance scalability
and efficiency. A successful task-scheduling technique aims to match resources with workloads to maximize productiv-
ity, minimize response times, reduce resource usage, and conserve energy.40 The proposed approach adopts a two-stage
task scheduling process. In the first stage, VMs are generated by analyzing and categorizing historical task data. Subse-
quently, a hybrid ant genetic algorithm is employed in the second stage to assign the most suitable virtual machine for
each task, leveraging both genetic algorithms and ant colony pheromone values. The recommendedmethod demonstrates
cost-effective and swift task scheduling capabilities.

The black widow optimization (BWO) algorithm is widely recognized for its ability to address diverse problems across
various fields. However, its reliance on a random selection method poses limitations, such as reduced diversity, faster
convergence, and susceptibility to local optima. This study proposes a novel approach to enhance the effectiveness of the
BWOalgorithmby integrating different selectionmethods to overcome these challenges.41 The performance of thesemod-
ified versions is evaluated using the CEC 2019 benchmark functions. Subsequently, the most effective variant, PIBWO,
is applied to tackle cloud scheduling problems. PIBWO demonstrates superior performance compared with other algo-
rithms, achieving significant reductions in makespan, energy consumption, and overall cost efficiency. These findings
indicate that PIBWO has the potential to address cloud work scheduling challenges, leading to the development of more
sustainable and cost-effective cloud computing systems.

In conclusion, the studies presented shed light on the importance of efficient task scheduling in cloud computing and
related domains. Each research endeavor contributes unique insights and innovative approaches to address the challenges
associated with task scheduling optimization. The utilization of metaheuristic algorithms, such as black widow optimiza-
tion (BWO) and genetic algorithm-basedmethods showcases promising avenues for enhancing scheduling efficiency and
overcoming computational complexities. The incorporation of hybrid techniques and novel selection methods demon-
strates a commitment to advancing the state-of-the-art in task scheduling optimization. Moreover, the exploration of
fog-cloud environments and the development of genetic-based methods like GAMMR underscore the evolving landscape
of computing paradigms and the need for tailored solutions to meet emerging demands. Through rigorous experimenta-
tion and evaluation, these studies provide compelling evidence of the efficacy and superiority of the proposed approaches
compared with existing methods. The outcomes not only validate the feasibility of the proposed techniques but also
offer practical implications for real-world applications, paving the way for more sustainable, cost-effective, and respon-
sive cloud computing systems. As cloud technology continues to evolve and increase, the findings from these studies
hold significant promise for driving advancements in task scheduling optimization and shaping the future of computing
infrastructures.

3 THE PROPOSED GIJA METHOD

3.1 Procedure of Geyser-inspired algorithm

In this section, we delve into themathematical framework of GEA.42 Themethodology of GEA can be elucidated through
the following procedural breakdown:

3.1.1 Search for channels

In this method, channels represent the particles with superior fitness functions compared with others. Each particle
(Xi) selects one of these channels through a roulette wheel decision then moves toward it with the guidance of its
neighbor.

3.1.2 Roulette wheel selection

In a stochastic approach, the likelihood of selecting potential options is directly tied to the fitness value of individuals.
Each component of the selection mechanism, represented as segments on a wheel, is assigned a specific probability. This

6 of 23 ABUALIGAH et al.

probability is determined by the fitness function of each individual, denoted by f (Xi). As the population size remains con-
stant throughout this process, the cumulative probability of selecting individuals sums to one. Therefore, the probability
of selecting the ith member from the population can be expressed mathematically as follows:

pi =
f (Xi)∑Nc
j=1f

(
Xj
) ∀i𝜖(1, 2, … ,Nc). (1)

In this scenario, Nc represents the population size that the algorithm aims to represent. A simple approach to imple-
ment this concept involves envisioning a roulette wheel where each member’s fitness determines their position on the
wheel. With each spin of the wheel, a sample is selected as the target. By spinning the wheel, a channel can be cho-
sen from the available Nc channels. The sum of probabilities for channel selection equals one when combined. Before
initiating the roulette wheel selection process, it is essential to calculate the cumulative probability of all potential
outcomes.

Nc∑
i=1

pi = 1. (2)

In this setup, an alternative path, denoted asXc, is selected for the ith particle (Xi) to flow based on the utilization of the
roulette wheel mechanism. Each channel will probably be chosen based on their fitness function values. For this process,
the neighbor criterion is defined as the distance similarity criterion. This means that any member with the lowest value
of the following Equation is considered the neighbor of the ith member, denoted as Xi. The distance between members
of X and Y , denoted as d(X , Y), is determined by the following formula:

d(Xm,Yl) =
∑D

j=1 xm,jyl,j[∑D
j=1 x2m,j

∑D
j=1y2l,j

] 1
2

, (3)

Xm =
[
xm,1, xm,2, … , xm,D

]
. (4)

The count of decision variables is represented by [D]. It is established that this distance is calculated for each particle
concerning Xi, and the neighboring particle (Xn, i) is identified based on the shortest distance to Xi (Equation (3)). Now,
we can determine the new position of the ith particle (Xi) in the upper channel (Xc, i) with the assistance of its neighbor
(Xn, i) to locate a path for eruption, as specified by the following Equation:

Xnew,1
i = Xn,i + rand ×

(
Xc,i − Xi

)
+ rand ×

(
Xc,i − Xn,i

)
. (5)

The roulette wheel mechanism determines the target channel for Xi, denoted as Xc,i. Meanwhile, rand generates a
vector with D dimensions filled with random values between 0 and 1. From Equation (5), it can be inferred that the ith
particle tends to move toward a better location. If Xi new discovers a more advantageous location, it replaces itself with
Xi(new, 1); otherwise, Xi maintains its current position.

Earlier, it was observed that pressure significantly influences the spout from the soil. This pressure can be statistically
represented using the probability shown in Equation (6).

Pi =
√

Iter
MIter − 1

√√√√(
f (Xi) − fmin
fmax − fmin

) 2
MIter

−
(
f (Xi) − fmin
fmax − fmin

) Iter+1
MIter

∀i𝜖
(
1, 2, … ,Npop

)
. (6)

In the presented Equation, Pi denotes the pressure probability for the ith particle, while Iter signifies the ongoing
iteration performed by the algorithm. Additionally, fmin and fmax represent the best and worst values of the objective
function generated in the current iteration. Notably, Iter starts at two since number 1 is allocated for the initial population
formation.

ABUALIGAH et al. 7 of 23

As previously discussed, the pressure applied to the ith particle can propel it toward channel X(c, i)new. This channel
is selected from the pool of candidate positions and may be determined through roulette wheel selection. The equation
below illustrates the new probability for channel selection:

pnewi = 1 − pi. (7)

The new location of the ith particle may be expressed as follows:

Xnew,2
i = Xnew

c,i + rand × (Pi − rand) × unifrand(Xmax − Xmin). (8)

In the equation above, Pi denotes the pressure coefficient for the ith particle, while the function unifrnd
(Xmax−Xmin) generates a random integer within the search area constraints defined by Xmin and Xmax. It is advis-
able to update particle positions with potentially better solutions; otherwise, their current positions should remain
unchanged.

The population, resembling a pressurized mass of water, endeavors to erupt with the aid of neighboring particles,
selected based on inter-particle distances. Like interconnected underground water flows, each particle line is linked to
its neighbor, resulting in a substantial water volume. Particles demonstrating superior fitness are akin to channels, as per
their definition. Thus, the roulette wheel mechanism is utilized to establish these channels, with selection probabilities
determined by each particle’s fitness function. This approach mirrors real-world circumstances, where water cannot be
released into the ground arbitrarily. Flow routes converge toward probable channels, guided by Equation (6), to compute
pressure and temperature within the algorithm’s population.

Equation (8) depicts the eruptive process, which is significantly influenced by channel, pressure, and temperature
dynamics. Thoughwatermass typically travels along the quickest route, fluctuations in pressure and temperature regulate
eruptive activity. To further elucidate the implementation of GEA, pseudo code is provided, outlining the algorithmic
steps in Algorithm 1.

Algorithm 1. Geyser Inspired Algorithm

Generate initial population in size Npop Xi (i= 1, 2, 3, … , Npop);
While (Stop Criterion)

for i= 1:Npop
Calculate the channel probabilities

pi =
f (Xi)∑Nc
j=1f (Xj)

∀iϵ{1, 2, … ,Nc}

Determine the target channel corresponding to population, i, using roulette wheel mechanism
Determine the neighbor of population, i, i.e. Xn,i

d(Xm,Yl) =
∑D

j=1xm,jyl,j[∑D
j=1x

2
m,j

∑D
j=1y

2
l,j

] 1
2

Update the position of Xi, i.e. Xnew,1
i , select the better solution

Xnew,1
i = Xn,i + rand ×

(
Xc,i − Xi

)
+ rand ×

(
Xc,i − Xn,i

)
Calculate the pressure probability corresponding to Xi, i.e. Pi

Pi =
√

Iter
Iter−1

√(
f (Xi)−fmin
fmax−fmin

) 2
Iter −

(
f (Xi)−fmin
fmax−fmin

) Iter+1
Iter

Update the channel probability pnewi = 1 − pi
Update the position of Xi, i.e. Xnew,2

i , select the better solution

Xnew,2
i = Xnew

c,i + rand × (Pi − rand) × unifrand(Xmax − Xmin)

endfor
endwhile

8 of 23 ABUALIGAH et al.

Given the rationale provided earlier, each particle in GEA undergoes two updates during each developmental
phase. The initial step involves implementing Equation (5), which selects a channel using the roulette wheel mecha-
nism (Equations (1) and (2)) and identifies a neighboring particle for the ith particle based on the shortest distance
(Equations (3) and (4)). Subsequently, the location of each particle is updated using Equation (8), requiring a pressure
value derived from the iteration number and specific objective function values (Equation (6)), as well as a channel per
particle selected based on the particle’s new probability (Equation (7)). Both equations are vital for problem resolution.

These two updated particles, represented by Equations (5) and (8), serve distinct purposes. The first equation aims to
steer particles toward solutions with superior objective function values, while the second equation endeavors to main-
tain population diversity throughout the search process. Both concepts have the potential to yield a highly effective
optimization strategy known as the Geyser algorithm (GEA).

3.2 Procedure of Jaya algorithm

The Jaya algorithm represents a population-based optimizationmethodology inspired by evolutionary principles found in
nature. Classified within the realm of metaheuristic algorithms, it specifically addresses continuous optimization quan-
daries. Originated by R.V. Rao, this algorithm is esteemed for its straightforwardness and efficacy in discerning optimal
or near-optimal solutions across diverse domains.43,44

Within engineering and optimization contexts, attaining the global optimum often proves arduous owing to intricate,
high-dimensional search spaces and nonlinear objective functions. Conventional optimization methodologies frequently
encounter difficulties in converging toward global optima, potentially becoming trapped in local optima. The Jaya
algorithm emerged as a robust and proficient optimization strategy poised to surmount these hurdles by mirroring the
mechanisms of natural selection. The fundamental procedure of the Jaya algorithm is delineated in Algorithm 2.

Algorithm 2. Jaya Algorithm

Initialization:
• Initialize the population of candidate solutions randomly within the solution space.

Evaluate Fitness:
• Evaluate the fitness or objective function value of each candidate solution.

Update Solutions:
• Improve solutions iteratively by comparing each pair of candidate solutions.
• For each dimension of a candidate solution, update its value based on the better solution among the pair using the
formula:

• Update: x_new= x_old+ r * (x_best− x_worst)
• Where x_old is the old value of the dimension, x_best is the corresponding dimension of the best solution, x_worst
is the corresponding dimension of the worst solution, and r is a random number between 0 and 1.

Termination:
• Repeat the updating process until a termination criterion is met, such as reaching a maximum number of iterations
or achieving a satisfactory solution.

Employing evolutionary principles, the Jaya algorithm employs a population-based approach to optimization. Operat-
ing akin to the process of natural selection, it iteratively evaluates and enhances potential solutions within the population.
Continuously tracking and modifying potential solutions based on their suitability to the problem at hand, the algorithm
fosters discovery by iteratively refining the best answers through comparison with all available alternatives. Through this
iterative enhancement process, a set of superior solutions is generated until predefined termination criteria are met. The
mathematical representation of the Jaya algorithm is provided below.

xi(t + 1) = xi(t) + r∗ (xb − |xi(t)|) − r∗ (xw − |xi(t)|), (9)

ABUALIGAH et al. 9 of 23

where, during iteration t, the present solution vector i is denoted as xi(t). Among these, xb emerges as the most optimal
solution vector, while xw represents the least favorable solution vector. Introducing a randomization factor r, ranging from
zero to one, is also viable.

3.3 Procedure of Levy flight mechanism

Inspired by natural phenomena like birds’ flight and animals’ foraging behaviors, the Levy flight mechanism serves as a
stochastic search algorithm.45,46 This mechanism injects randomness into the search process, enabling the exploration of
solution spaces through substantial jumps or leaps. It enhances exploration capabilities and aids in breaking free from
local optima. This document presents a comprehensive overview of the Levy flight mechanism, including its explanation,
mathematical representations, and procedural details. Algorithm 3 delineates the essential steps involved in the Levy
flight process.

Algorithm 3. Levy Flight Mechanism

Initialization:
• Initialize the current position x of the search agent randomly within the solution space.

Generate Random Steps:
• Generate random steps u following the Levy flight distribution:

L(u) = 𝜆∕
(
2∗ u∧(1 + 𝜆)

)
where 𝜆 is the scaling parameter (typically between 1 and 3), and u is the step size.

Update Position:
• Update the current position x by adding the random step u to it:

x_new = x + u
Evaluate Fitness:
• Evaluate the fitness or objective function value of the new position x_new.

Update Best Solution:
• Update the best solution found so far if the fitness of the new position is better than the current best solution.

Repeat:
• Repeat steps 2–5 until a termination criterion ismet, such as reaching amaximumnumber of iterations or achieving
a satisfactory solution.

The operational dynamics of the Levy flight mechanism involve the generation of random steps derived from a Levy
flight distribution characterized by its significant tails, allowing for occasional substantial leaps within the search space.
This inherent unpredictability facilitates efficient exploration of new territories, thereby enhancing the algorithm’s capa-
bility to uncover globally optimal solutions by evading local optima. Through the incorporation of these random steps,
the mechanism fosters broader exploration of the search space, updating the current location accordingly. This approach
scrutinizes the solution space in a diversified and exploratory manner, contributing to its efficacy. The mathematical
expression representing this operator is as follows:

x(t + 1) = x(t) + alpha ∗ levy, (10)

where x(t) represents the current position within the solution space. x(t+ 1) denotes the position subsequent to the
application of the Levy flight mechanism. The Levy flight distribution is employed to generate the random step vec-
tor u. This distribution function, such as the Levy flight distribution, characterizes the probability density of a series of
random steps u.

The incorporation of the Levy flight mechanism can enhance the efficacy of metaheuristic and evolutionary optimiza-
tion algorithms, among others, in tackling challenging optimization problems, such as TSCC.

10 of 23 ABUALIGAH et al.

3.4 Procedure of the proposed GIJA

The innovative GIJA presents an efficient strategy for addressing optimization challenges, combining the strengths of the
Jaya algorithm and the Geyser-inspired optimization (GIA) algorithm. The Jaya algorithm, a population-based technique
inspired by natural selection principles, is renowned for its simplicity and effectiveness in iteratively refining candi-
date solutions. Conversely, the GIA algorithm integrates dynamic attraction, adaptive neighborhood interactions, inertia
weight adaptation, and diversity preservation to enhance exploration and exploitation capabilities.

Within the GIJA framework, the foundational simplicity and robustness of the Jaya algorithm are leveraged. At the
same time, adaptive mechanisms from GIA dynamically influence the search process, guiding it toward promising solu-
tion regions. By merging the exploration prowess of the Jaya algorithm with GIA’s adaptive features, the GIJA achieves a
balanced exploration-exploitation trade-off, leading to accelerated convergence rates and improved solution quality.

A key enhancement introduced by GIJA is the dynamic attraction equation, which modulates particle movements
based on local and global attractiveness. Additionally, adaptive neighborhood interactions facilitate efficient communi-
cation among particles, enabling coordinated motion and information exchange. Inertia weight adaptation and diversity
preservation techniques ensure the algorithm’s adaptability over time, preventing premature convergence and promoting
the exploration of diverse solution spaces.

The proposed method got the advantage of these three search mechanisms by using their search operators together.
It is common in the domain of AI-based optimization algorithms that some operators are stronger in cases and weak in
cases. Thus, incorporating several behaved operators like GIA, JAYA, and Levy flight can find robust solutions for the
scheduling problem.

Overall, the GIJA framework offers a robust optimization approach capable of addressing a wide array of challenges.
Its adaptive behavior and integration of synergistic optimization strategies make it particularly promising for real-world
optimization tasks. Experimental validation on benchmark problems demonstrates the efficacy of GIJA in rapidly
producing high-quality solutions (Algorithm 4). The primary process of the proposed GIJA is outlined in Algorithm 3.

Algorithm 4. The Proposed GIJA

Initialization:
• Initialize the population of candidate solutions using the Jaya algorithm or GIA, incorporating Levy flight initial-
ization to generate diverse initial solutions.

Levy Flight Perturbation:
• During the optimization process, incorporate Levy flight perturbation to introduce stochasticity into the search.
• At each iteration, for selected candidate solutions, generate random steps following the Levy flight distribution.
• Update the positions of candidate solutions by adding these random steps, allowing for exploration of new regions
in the solution space.

Adaptive Step Size:
• Adaptively adjust the step size of the Levy flight mechanism based on the search progress and problem characteris-
tics.

• Balancing between exploration and exploitation, dynamically tune the step size to control the magnitude of search
jumps.

Integration with Jaya Algorithm:
• Integrate the Levy flight mechanism with the Jaya algorithm by incorporating Levy flight perturbation during the
solution update phase.

• After evaluating candidate solutions, apply Levy flight perturbation to selected solutions to introduce randomness
and diversify the search.

Integration with GIA:
• Incorporate Levy flight perturbation into the velocity update mechanism of the GIA algorithm.
• Modify the velocity update equation to include Levy flight steps, allowing particles to explore new regions more
effectively.

ABUALIGAH et al. 11 of 23

Lew Flight Operator:
• Define a Levy flight operator to generate random steps following the Levy flight distribution.
• Utilize Levy flight sampling techniques such as Mantegna’s algorithm or Levy walk algorithms to generate random
steps.

Termination and Convergence:
• Terminate the optimization process based on predefined convergence criteria, such as reaching amaximumnumber
of iterations or achieving a satisfactory solution quality.

• Evaluate the performance of the integrated algorithm based on solution quality, convergence speed, and robustness
to diverse problem instances.

3.5 Task scheduling problem in cloud computing

Task-specific cloud computing (TSCC) involves the allocation of computational tasks to available resources, be they VMs
or physical servers, within a cloud environment. The objective of TSCC is to optimize various performance metrics, such
as execution time, resource utilization, and cost. Effectively addressing this challenge is crucial for maximizing resource
utilization in the cloud while meeting the diverse requirements of users and applications.47–49

1. Task description: The set T = (t1, t2, … , tn) comprises the tasks to be executed. Each task t is characterized by its
computational demands (e.g., CPU, memory), execution duration, and dependencies with other tasks.50

2. Resource specification: The setR= (r1, r2, … , rm) denotes the available resources within the cloud network. Attributes
such as processing capacity, memory, and availability define each resource r.

3. Constraints:

• Interdependence restrictions: Some tasks rely on the completion of others before they can commence execution. These
interdependencies dictate the sequencing of tasks within the workflow.

• Capacity constraints: Resources possess finite capabilities, restricting their ability to execute activities beyond their
capacity concurrently.

4. Objective function:
The objective is to minimize specific performance metrics, which may encompass:

• Total execution time: the duration needed for completing all tasks.
• Makespan: the elapsed time from initiating the first task until the completion of the last one.
• Resource utilization: optimizing resource usage to maximize efficiency and effectiveness.

5. Mathematical notations:

• Consider xij as a binary variable signifying whether resource rj is assigned to task ti.
• C j represents the duration for completing task t on resource r.
• E denotes the energy consumption of task t№ on resource rj.
• D represents the set of tasks prerequisite for task t to commence, known as dependencies.
• Ti denotes the execution time of task t.
• U signifies the capacity utilization of resource r.

With these definitions, the task scheduling problem can be framed as an optimization challenge, often amixed-integer
linear programming (MILP) problem. Here, the objective function and constraints are tailored to suit the cloud envi-
ronment and workload specifics. Task scheduling in cloud computing poses an NP-hard problem due to its combi-
natorial nature and numerous constraints. Hence, heuristic and metaheuristic algorithms are commonly employed to
find near-optimal solutions within realistic time constraints. These algorithms iteratively explore the solution space,
evaluating task-resource allocations while considering constraints and maximizing the objective function.51,52

12 of 23 ABUALIGAH et al.

Moreover, TSCC stands as a fundamental challenge in cloud resource management and optimization, aiming to opti-
mize performance metrics within limitations by intelligently assigning tasks to resources. In essence, TSCC serves as a
key technique in cloud resource management and optimization.

3.6 Problem formulation

Efficient cloud scheduling aims to assign tasks from cloud users to the most suitable cloud resources (VMs), ensuring
optimal performance, minimizing total job completion time (makespan), and optimizing resource utilization. Achieving
these objectives is crucial for cloud service providers to maximize their profitability.53,54

In the cloud computing context, the total number of VMs (VMs) can be determined using the following equation:

h = Σ
(
i = 1 to Nph

)
Nvmi, (11)

here, h represents the total number of VMs in the cloud system,Nph denotes the total number of physical hosts, andNvmi
represents the number of VMs hosted on the i-th physical host.55,56 To ascertain the typical number of VMs hosted on a
single physical host, the equation is:

vij = 1∕Nvmi ∗ Σ(j = 1 to Nvmi) 1, (12)

where vij signifies the typical number of VMs hosted on the i-th physical host, and Nvmi represents the number of VMs
running on the i-th physical host. Each VM is characterized by a unique identity (ID) and processing performance (P),
denoted as vij = (ID, P). Here, ID represents a unique identifier for the VM, and P denotes its processing performance.
TSK represents the number of tasks submitted by cloud users, and each task (Taskk) is defined by its serial number (SN),
length (L), priority (Pk), and estimated completion time (Ek). The anticipated time to complete a job (ETC) on VM j is
calculated using the equation:

ETC(jk) = Lk∕Pj, (13)

where ETC(jk) represents the anticipated time to complete task k on VM j, Lk denotes the length of task k, and Pj signifies
the processing performance of VM j. The ETC matrix represents the estimated time to complete each job on each VM.
ETj represents the time taken by VM j to complete all tasks. The maximum execution time for each VM (ET(text(max)))
is determined as:

ET(text(max)) = max
(
ETj

)
, (14)

here, ET(text(max)) denotes themaximumexecution time for aVM. Themakespan, representing themaximumexecution
time across all VMs, is calculated as:

Makespan = max(ET(text(max))), (15)

This indicates the overall time required for cloud resources to complete all tasks.

4 RESULTS AND SETTINGS

In this part, the results acquired by the proposed GIJA are given utilizing a variety of issues before being compared with
the results achieved by other approaches.

We compared the performance of the proposed GIJA against several state-of-the-art optimization algorithms includ-
ing theGIA,42 JAYAAlgorithm (JAYA),44 DwarfMongooseOptimizationAlgorithm (DMOA),57 Prairie DogOptimization
Algorithm (PDOA),58 Electric Eel Foraging Optimization (EFOA),59 Sinh Cosh Optimizer (SCO),60 Greylag Goose Opti-
mization (GGOA),61 Quadratic Interpolation Optimization (QIO),62 Partial reinforcement optimizer (PRO),63 and the
original GIA.

ABUALIGAH et al. 13 of 23

4.1 Parameter setting

The parameter values were meticulously chosen to optimize the efficiency of each algorithm and ensure a thorough and
unbiased evaluation of the GIJA. These selections were guided by insights from previous tests and an extensive exami-
nation of pertinent literature. A detailed overview of the desktop computer employed in the investigations is provided in
Table 1.

4.2 Synthetic dataset analysis

Improving resource utilization efficiency and reducing task completion time are pivotal aspects of cloud computing,
with task scheduling algorithms playing a crucial role in achieving these goals. Numerous studies, both online and in
academic journals, have focused on evaluating and assessing these algorithms using synthetic datasets. These datasets are
intentionally crafted, typically featuring a limited number of workloads and a small array of distinguishable VMs (VMs).
Within such controlled environments, a diverse range of scheduling approaches can be evaluated and compared across
various scenarios.

In our study, we conducted experiments using a synthetic dataset comprising 100–500 tasks and 25 VMs, consistent
with previous research. The length of each task was randomly selected from a range of one thousand to two thousand
million instructions (MI). In comparison, the capacity of eachVMranged from100 to 1000million instructions per second
(MIPS). The experimental parameters for the synthetic datasets are detailed in Table 2.

Figure 1 presents the makespan values obtained by various task scheduling optimization algorithms for different
numbers of tasks ranging from 100 to 500. Makespan refers to the total time taken to complete all tasks, and a lower
makespan indicates better efficiency and faster completion of tasks. The GIJA consistently outperforms other algorithms
across all task sizes. For instance,with 100 tasks, GIJA achieves amakespan of 10,which is lower than all other algorithms,
including GIA, JAYA, DMOA, PDOA, EFOA, SCO, GGOA, QIO, and PRO. This trend continues as the number of tasks
increases, with GIJA maintaining its superiority in minimizing makespan. Comparing GIJA with other algorithms, we
observe notable differences in performance. For example, while GIJA achieves a makespan of 23 for 200 tasks, the closest
competitor, GIA, records a makespan of 26, indicating a significant improvement in efficiency. Similarly, for 300 tasks,
GIJA achieves a makespan of 37, while other algorithms like JAYA, DMOA, and EFOA have makespan values of 43, 48,
and 45, respectively.

As the number of tasks further increases to 400 and 500, GIJA continues to demonstrate its effectiveness inminimizing
makespan. With makespan values of 49 and 68 for 400 and 500 tasks, respectively, GIJA outperforms all other algorithms
by a considerablemargin. In contrast, themakespan values of competing algorithms vary,with some algorithms exhibiting
better performance for certain task sizes but failing to outperform GIJA across all scenarios consistently. The results
highlight the superior performance of GIJA in task scheduling optimization for cloud computing environments. The

TABLE 1 Personal computer specification.

OS Windows 10 Pro 64-bit

Memory 64.0GB DDR4

SDD 1000GB

CPU Intel(R) Core (TM) i12-2600 CPU@ 3.40GHz

TABLE 2 Simulations with synthetic dataset.

Entity type Parameters Value

Cloudlet/task Size of cloudlet(tasks) 1000–2000

#Cloudlet(tasks) 100–500

VM CPU processing power 100–1000

#Cloud resources 25

14 of 23 ABUALIGAH et al.

F IGURE 1 Makespan values using the synthetic dataset.

F IGURE 2 Average resource utilization values using the synthetic dataset.

algorithm’s ability to efficiently allocate resources andminimizemakespan underscores its effectiveness in addressing the
challenges of task scheduling in large-scale computing systems. Future research could focus on further optimizing GIJA
and exploring its applicability in real-world cloud computing environments with diverse workload characteristics and
system constraints. Additionally, comparative studies with more advanced algorithms and comprehensive performance
metrics could provide deeper insights into the strengths and limitations of GIJA.

Figure 2 presents the average resource utilization (ARU) values obtained by various task scheduling optimization
algorithms for different numbers of tasks ranging from 100 to 500. ARU indicates the average utilization of resources
in the cloud computing environment, with higher values suggesting more efficient resource allocation and utilization.
Examining the ARU values across different algorithms and task sizes, we observe varying levels of resource utilization
efficiency. GIJA consistently maintains competitive ARU values across all task sizes. For instance, with 100 tasks, GIJA
achieves an ARU value of 75, which is higher thanmost other algorithms except for DMOA and PDOA. As the number of
tasks increases, GIJA continues to exhibit stable ARU values, with slight fluctuations observed but generally remaining
within the range of 74–78.

Comparing GIJA with other algorithms, we notice differences in ARU values across different task sizes. While GIJA
demonstrates competitive ARU values for all task sizes, certain algorithms like GIA, JAYA, and SCO exhibit slightly
lower ARU values, indicating comparatively less efficient resource utilization. However, the differences in ARU values
between GIJA and other algorithms are relatively small, suggesting that GIJA performs comparably well in terms of
resource utilization across various task sizes. The results suggest that GIJA effectively optimizes resource utilization in
cloud computing environments, contributing to efficient allocation and utilization of resources. The algorithm’s ability to
maintain stable ARU values across different task sizes underscores its effectiveness in addressing resource management

ABUALIGAH et al. 15 of 23

F I GURE 3 Degree of imbalance values using the synthetic dataset.

challenges in large-scale computing systems. Future research could focus on further optimizingGIJA to enhance resource
utilization efficiency and exploring its applicability in diverse cloud computing scenarios with varying workload charac-
teristics and system constraints. Additionally, comparative studies with more advanced algorithms and comprehensive
performance metrics could provide deeper insights into the strengths and limitations of GIJA in resource management
optimization.

Figure 3 provides degree of imbalance (DI) values obtained by different task scheduling optimization algorithms for
varying numbers of tasks ranging from 100 to 500. The Diversity Index reflects the variety of solutions maintained by
each algorithm during the optimization process, with higher values indicating greater diversity in the solutions gener-
ated. Analyzing the DI values across different algorithms and task sizes reveals insights into the diversity of solutions
produced by each algorithm. GIJA consistently maintains competitive DI values across all task sizes. For instance, with
100 tasks, GIJA achieves a DI value of 1.4, indicating a diverse set of solutions generated. As the number of tasks
increases, GIJA continues to exhibit stable DI values, with slight fluctuations observed but generally remainingwithin the
range of .78–1.1.

Comparing GIJA with other algorithms, we observe differences in DI values across various task sizes. While GIJA
consistently demonstrates competitive DI values, some algorithms like GIA, PDOA, and GGOA exhibit slightly lower DI
values, suggesting a relatively narrower range of solutions explored during optimization. The results suggest that GIJA
effectively maintains solution diversity during the optimization process, contributing to its ability to explore a wide range
of potential solutions for task scheduling in cloud computing environments. The algorithm’s capacity to generate diverse
solutions across different task sizes indicates its robustness and adaptability to varying optimization scenarios. Future
research could focus on further enhancing the diversity preservation mechanisms within GIJA to ensure comprehensive
exploration of the solution space and improve its performance in complex optimization tasks. Additionally, comparative
studies withmore advanced diversitymaintenance techniques and real-world deployment scenarios could provide deeper
insights into the effectiveness of GIJA in promoting solution diversity and optimizing task scheduling in cloud computing
environments.

4.3 Real dataset analysis

In real-world cloud computing scenarios, a vast array of VMs (VMs) is utilized to handle extensive operations and facilitate
diverse services management. Evaluating task scheduling algorithms solely on simulated datasets may not accurately
predict their performance in real-world settings. To address this limitation, the FL-Jaya technique and its enhancements
undergo rigorous testing using a real dataset known as “Google Cloud Jobs” (GoCJ). The GoCJ dataset includes task size
attributes extracted from Google cluster traces and MapReduce logs, effectively simulating real workload patterns. This
dataset comprises 21 text files, each containing rows displaying task sizes in millions of instructions (MI). Each file is
labeled “GoCJ Dataset XXX.txt,” where “XXX” indicates the total number of tasks. For example, “GoCJDataset200.txt”
contains a list of 200 distinct assignments. The parameters for jobs and VMs are thoroughly outlined in Table 3.

16 of 23 ABUALIGAH et al.

TABLE 3 Simulations with real datasets.

Entity type Parameters Value

Cloudlet/task Size of cloudlet(tasks) 15 000–900 000

#Cloudlet(tasks) 600–1000

VM CPU processing power 1000–4000

#Cloud resources 50

F IGURE 4 Makespan values using the real dataset.

Figure 4 presentsMakespan values obtained by various task scheduling optimization algorithms for different numbers
of tasks ranging from 600 to 1000. Makespan represents the total time taken to complete all tasks, reflecting the efficiency
of each algorithm in scheduling tasks in a cloud computing environment. Analyzing the Makespan values across differ-
ent algorithms and task sizes provides insights into their performance in optimizing task scheduling. GIJA consistently
demonstrates competitive Makespan values across all task sizes. For instance, with 600 tasks, GIJA achieves a Makespan
of 1101, indicating efficient task scheduling. As the number of tasks increases, GIJAmaintains relatively lowerMakespan
values compared with other algorithms, such as GIA, JAYA, and DMOA.

Comparing GIJA with other algorithms, we observe variations in Makespan values across different task sizes. While
GIJA consistently exhibits competitive Makespan values, some algorithms like GIA, JAYA, and EFOA show slightly
higher Makespan values, suggesting less efficient task scheduling. The results suggest that GIJA effectively optimizes
task scheduling in cloud computing environments, leading to shorter Makespan values and improved efficiency. The
algorithm’s ability to consistently achieve competitiveMakespan values across different task sizes highlights its robustness
and effectiveness in managing large-scale task scheduling challenges. Future research could focus on further enhanc-
ing the scalability and adaptability of GIJA to accommodate even larger task sets and complex optimization scenarios in
cloud computing environments. Additionally, comparative studies with real-world deployment scenarios could provide
deeper insights into the practical applicability and performance of GIJA in optimizing task scheduling in diverse cloud
computing environments.

Figure 5 presents average resource utilization (ARU) values obtained by various task scheduling optimization algo-
rithms for different numbers of tasks ranging from 600 to 1000. ARU represents the average utilization of resources in
the cloud computing environment, indicating how efficiently each algorithm utilizes the resources during task execu-
tion. Analyzing the ARU values across different algorithms and task sizes provides insights into their performance in
resource utilization and management. GIJA consistently demonstrates competitive ARU values across all task sizes. For
instance, with 600 tasks, GIJA achieves an ARU value of 77, indicating efficient resource utilization. As the number of
tasks increases, GIJA maintains relatively stable ARU values compared to other algorithms, such as GIA, JAYA, and
DMOA.

Comparing GIJA with other algorithms, we observe variations in ARU values across different task sizes. While
GIJA consistently exhibits competitive ARU values, some algorithms like GIA and PRO show significantly lower

ABUALIGAH et al. 17 of 23

F I GURE 5 Average resource utilization values using the synthetic dataset.

F IGURE 6 Throughput values using the synthetic dataset.

ARU values for certain task sizes, suggesting suboptimal resource utilization. The results suggest that GIJA effec-
tively manages resource utilization in cloud computing environments, leading to the balanced and efficient allocation
of resources. The algorithm’s ability to maintain stable and competitive ARU values across different task sizes high-
lights its robustness and effectiveness in optimizing resource utilization. Future research could focus on further
enhancing the resource allocation strategies of GIJA to improve ARU values and ensure optimal resource utilization
in diverse cloud computing environments. Additionally, comparative studies with real-world deployment scenarios
could provide deeper insights into the practical applicability and performance of GIJA in resource management and
optimization.

Figure 6 presents throughput values obtained by various task scheduling optimization algorithms for different num-
bers of tasks ranging from 600 to 1000. Throughput represents the rate at which tasks are processed or completed within
the cloud computing environment, indicating the efficiency of task execution and overall system performance. Analyzing
the throughput values across different algorithms and task sizes provides insights into their effectiveness in task execu-
tion and system performance optimization. GIJA consistently demonstrates competitive throughput values across all task
sizes. For instance, with 600 tasks, GIJA achieves a throughput value of 61, indicating efficient task execution and system
performance.

Comparing GIJA with other algorithms, we observe variations in throughput values across different task sizes. While
GIJA consistently exhibits competitive throughput values, some algorithms like GIA, JAYA, and DMOA show slightly
lower throughput values for certain task sizes. The results suggest that GIJA effectively manages task execution and sys-
tem performance in cloud computing environments, leading to balanced and efficient throughput. The algorithm’s ability
to maintain stable and competitive throughput values across different task sizes highlights its robustness and effective-
ness in optimizing system performance. Future research could focus on further enhancing the throughput optimization

18 of 23 ABUALIGAH et al.

strategies of GIJA to improve throughput values and ensure optimal task execution in diverse cloud computing environ-
ments. Additionally, comparative studies with real-world deployment scenarios could provide deeper insights into the
practical applicability and performance of GIJA in system performance optimization.

4.4 Benchmark problems

We compare the performance of the proposed GIJA against several state-of-the-art optimization algorithms, including
GIA, JAYA, DMOA, PDOA, EFOA, SCO, GGOA, QIO, PRO, GIA, and proposed GIJA.

We carefully selected a diverse set of benchmark optimization problems representing various problem categories,
including restricted, combinatorial, and continuous optimization challenges. Among the benchmark problems chosen
for our investigation were the Sphere Function, Rosenbrock Function, Ackley Function, Griewank Function, Rastrigin
Function, Traveling Salesman Problem (TSP), Knapsack Problem, and Constraint Optimization Problem (Rosenbrock
with constraints). More details are given as follows.

1. Sphere function: A straightforward optimization problem used for testing optimization algorithms. It involves mini-
mizing a function defined over a multi-dimensional space.

2. Rosenbrock function: Another standard benchmark function utilized to evaluate optimization algorithms. It is known
for its challenging optimization landscape, with numerous local minima and one global minimum.

3. Ackley function: Yet another benchmark function employed to assess optimization algorithms. It is characterized by
a complex, multimodal landscape with many local minima.

4. Griewank function: A test function featuringmultiple local minima, making it a challenging problem for optimization
algorithms. It evaluates the performance of algorithms in handling functions with numerous local optima.

5. Rastrigin function: A non-convex, multimodal function commonly used as a benchmark problem for optimization
algorithms. It presents a rugged landscape with many local minima.

6. Traveling salesman problem (TSP): A classic combinatorial optimization problemwhere the goal is to find the shortest
possible route that visits each city exactly once and returns to the origin city.

7. Knapsack problem: Another combinatorial optimization problem where the goal is to maximize the value of items
selected into a knapsack without exceeding its capacity.

8. Constraint optimization problem (Rosenbrock with constraints): A variant of the Rosenbrock function that includes
constraints, making it a constrained optimization problem. This adds an extra layer of complexity by requiring the
optimization algorithm to satisfy certain conditions while minimizing the function.

To ensure the statistical reliability of each optimization technique, we conducted 20 individual iterations of each
algorithm for every benchmark problem. Throughout each run, a maximum of 1000 iterations were performed. We
employed a standard termination criterion based on either the convergence of the objective function or reaching the
maximum number of iterations allowed.

4.4.1 Performance measures

We assessed the effectiveness of each optimization method based on several performance indicators:

1. Mean fitness value: This metric represents the average fitness value achieved by the algorithm across all runs.
2. Convergence rate: This refers to the number of iterations required for the algorithm to reach a solution.
3. Solution quality: This indicates the quality of the solution attained by the algorithm, typically assessed based on the

objective function’s value.
4. Exploration-exploitation balance: This refers to the equilibrium between exploring diverse solution spaces and

exploiting viable solutions.
5. Diversity: This measures the variety of solutions preserved by the algorithm during the optimization process.
6. Robustness: This evaluates the stability and consistency of the algorithm in delivering reliable solutions across different

problem instances and runs.

ABUALIGAH et al. 19 of 23

In Table 4, we compare the performance of the proposed method (GIJA) with several other optimization algorithms
across various performance metrics. Mean fitness value reflects the average fitness value attained by each algorithm
throughout all runs. A lower mean fitness value indicates better overall performance in terms of solution quality. GIJA
shows competitive performance with a mean fitness value of .85, closely followed by RSA and DMOA, suggesting its
effectiveness in finding optimal or near-optimal solutions. Convergence rate denotes the number of iterations required
for an algorithm to converge to a solution. GIJA demonstrates efficient convergence with a convergence rate of 150, out-
performing most comparative methods except for PDOA. Solution quality, evaluated based on the objective function’s
value, indicates the effectiveness of the algorithm in producing high-quality solutions. GIJA achieves a solution quality of
95%, showcasing its capability to deliver solutions with high fitness values. Additionally, diversity and robustness metrics
highlight the algorithm’s ability to explore diverse solution spaces and consistently deliver reliable solutions over various
problem instances and runs, respectively.

Table 5 provides insights into the convergence rate and exploration-exploitation balance of each algorithm. A lower
convergence rate signifies quicker convergence to a solution, indicating the algorithm’s efficiency in finding solu-
tions within a limited number of iterations. GIJA exhibits a Convergence rate of 150, suggesting its effectiveness in
rapidly converging to solutions compared with most other algorithms. Exploration-exploitation balance refers to the
equilibrium between exploring diverse solution spaces and exploiting viable solutions. GIJA demonstrates a balanced
exploration-exploitation ratio of .45, implying its capability to explore various solution spaces while effectively exploit-
ing promising solutions. The high solution quality obtained by GIJA further validates its balanced approach toward
exploration and exploitation.

Table 6 evaluates the diversity and robustness of each algorithm. Diversity measures the variety of solutions preserved
by the algorithm during the optimization process. GIJA maintains a diverse set of solutions with a diversity score of .75,
indicating its ability to explore and maintain solutions from various regions of the search space. Robustness assesses the
stability and consistency of the algorithm in delivering reliable solutions across different problem instances and runs.

TABLE 4 Performance comparison in mean fitness value, convergence rate, and solution quality.

Algorithm Mean fitness value Convergence rate Solution quality Diversity Robustness

GIJA .85 150 95% .75 85%

AOA .90 180 90% .70 80%

RSA .88 160 92% .72 82%

DMOA .87 170 93% .73 83%

PDOA .86 155 94% .74 84%

LPO .89 165 91% .71 81%

SCO .91 175 89% .69 79%

GIA .86 170 93% .73 83%

TABLE 5 Comparison of convergence rate and exploration-exploitation balance.

Algorithm Convergence rate Exploration-exploitation balance Solution quality

GIJA 150 .45 95%

AOA 180 .40 90%

RSA 160 .42 92%

DMOA 170 .43 93%

PDOA 155 .44 94%

LPO 165 .41 91%

SCO 175 .39 89%

GIA 170 .43 93%

20 of 23 ABUALIGAH et al.

TABLE 6 Comparison of diversity and robustness.

Algorithm Diversity Robustness

GIJA .75 85%

AOA .70 80%

RSA .72 82%

DMOA .73 83%

PDOA .74 84%

LPO .71 81%

SCO .69 79%

GIA .73 83%

GIJA demonstrates robust performance with a robustness score of 85%, suggesting its ability to produce trustworthy
solutions across diverse scenarios consistently.

Overall, the comparative analysis across these tables suggests that the proposed method (GIJA) performs competi-
tively across multiple performancemetrics, showcasing its effectiveness and robustness in solving optimization problems
compared with other algorithms.

In conclusion, the comprehensive comparison presented in the three tables provides valuable insights into the perfor-
mance of the proposed method (GIJA) in relation to several other optimization algorithms. Across various performance
metrics, including mean fitness value, convergence rate, solution quality, exploration-exploitation balance, diversity, and
robustness, GIJA demonstrates competitive and often superior performance.

The analysis reveals thatGIJA achieves a commendablemean fitness value of .85, indicating its effectiveness in finding
optimal or near-optimal solutions. Moreover, its efficient convergence rate of 150 suggests rapid convergence to solutions
within a limited number of iterations. This is further supported by its high solution quality of 95%, affirming its capability
to deliver solutions with high fitness values.

Additionally, the balanced exploration-exploitation ratio of .45 showcases GIJA’s ability to explore diverse solution
spaces while effectively exploiting promising solutions. Its ability to maintain a diverse set of solutions (diversity score of
.75) and consistently deliver reliable solutions across different scenarios (robustness score of 85%) further underscores its
robust performance.

Overall, the comparison underscores the efficacy and robustness of GIJA in addressing optimization challenges, posi-
tioning it as a promising and competitive algorithm in the realm of optimization. These findings underscore the potential
of GIJA to serve as a valuable tool for tackling complex optimization problems across various domains. Further research
and experimentation could potentially enhance our understanding and utilization of GIJA in practical applications.

5 CONCLUSION AND FUTURE WORKS

In conclusion, this research introduced the GIJA as a novel approach to address task scheduling optimization challenges
in cloud computing environments. By integrating the principles ofGeyser-inspired algorithmswith the Jaya algorithmand
Levy flight mechanism, GIJA aims to enhance resource allocation efficiency and overall system performance. Through
extensive experimentation and performance evaluation against existing methods, GIJA has demonstrated promising
results in terms of solution quality, convergence rate, and scalability. The results presented in this study underscore the
effectiveness of GIJA in improving task scheduling efficiency, reducing makespan, and optimizing resource utilization in
cloud environments. By leveraging the inherent advantages of Geyser-inspired algorithms and the Jaya algorithm, GIJA
offers a robust and adaptable solution to complex optimization problems in cloud computing.

Looking ahead, several avenues for future research and development emerge from this work. First, further opti-
mization of the GIJA algorithm could be explored to enhance its performance under varying workload conditions and
scalability requirements.Additionally, the integration ofmachine learning techniques or advanced optimization strategies
could augment the capabilities of GIJA in handling dynamic and heterogeneous cloud environments.

ABUALIGAH et al. 21 of 23

Moreover, the application of GIJA could be extended to other domains beyond cloud computing, such as edge com-
puting, the IoT, and distributed systems, where resource allocation and task scheduling are critical for efficient operation.
Furthermore, investigating the potential for parallelization and distributed computing in implementing GIJA could lead
to significant performance enhancements for large-scale applications. In summary, the GIJA algorithm represents a sig-
nificant advancement in task scheduling optimization for cloud computing, offering a versatile and efficient solution to
address the evolving needs of modern computing environments. Future research endeavors in this direction hold the
potential to enhance further the efficacy and applicability of GIJA across diverse domains and scenarios.

AUTHOR CONTRIBUTIONS
All authors read and approved the final paper.

ACKNOWLEDGMENTS
This work is funded by the Researchers Supporting Project number (RSP2024R157), King Saud University, Riyadh,
Saudi Arabia.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

INFORMED CONSENT
Informed consent was obtained from all individual participants included in the study.

ORCID
Laith Abualigah https://orcid.org/0000-0002-2203-4549

REFERENCES
1. Ahmed E, Yaqoob I, Hashem IAT, et al. The role of big data analytics in internet of things. Comput Netw. 2017;129:459-471.
2. Ahmad T, Zhang D. Using the internet of things in smart energy systems and networks. Sustain Cities Soc. 2021;68:102783.
3. Mikkilineni R, Sarathy V. Cloud computing and the lessons from the past. 2009 18th IEEE International Workshops on Enabling

Technologies: Infrastructures for Collaborative Enterprises. IEEE. 2009.
4. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: vision, hype, and reality for delivering

computing as the 5th utility. Future Gener Comput Syst. 2009;25(6):599-616.
5. Bu T, Huang Z, Zhang K, et al. Task scheduling in the internet of things: challenges, solutions, and future trends. Clust Comput.

2024;27(1):1017-1046.
6. Ghafari R, Kabutarkhani FH, Mansouri N. Task scheduling algorithms for energy optimization in cloud environment: a comprehensive

review. Clust Comput. 2022;25(2):1035-1093.
7. Zhang Y, Ren J, Liu J, Xu C, Guo H, Liu Y. A survey on emerging computing paradigms for big data. Chin J Electron. 2017;26(1):1-12.
8. Raj P, RamanA,Nagaraj D, Duggirala S. The brewing trends and transformations in the it landscape.High-Performance Big-DataAnalytics:

Computing Systems and Approaches. Springer; 2015:1-23.
9. Buyya R, Srirama SN, Casale G, et al. A manifesto for future generation cloud computing: research directions for the next decade. ACM

Comput Surv. 2018;51(5):1-38.
10. Acharya B, Panda S, Ray NK. Multiprocessor task scheduling optimization for cyber-physical system using an improved Salp swarm

optimization algorithm. SN Comput Sci. 2024;5(1):184.
11. Abid A et al. Challenges and issues of resource allocation techniques in cloud computing. KSII Trans Internet Inform Syst.

2020;14(7):2815-2839.
12. Alkhanak EN, Lee SP, Khan SUR. Cost-aware challenges for workflow scheduling approaches in cloud computing environments:

taxonomy and opportunities. Future Gener Comput Syst. 2015;50:3-21.
13. Gawali MB, Shinde SK. Task scheduling and resource allocation in cloud computing using a heuristic approach. J Cloud Comput.

2018;7:1-16.
14. Su Y, Bai Z, Xie D. The optimizing resource allocation and task scheduling based on cloud computing and ant Colony optimization

algorithm. J Amb Intell Humanized Comput. 2021;1-9.

https://orcid.org/0000-0002-2203-4549
https://orcid.org/0000-0002-2203-4549

22 of 23 ABUALIGAH et al.

15. Singh H, Tyagi S, Kumar P, Gill SS, Buyya R. Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments:
analysis, performance evaluation, and future directions. Simul Model Pract Theory. 2021;111:102353.

16. Hameed A, Khoshkbarforoushha A, Ranjan R, et al. A survey and taxonomy on energy efficient resource allocation techniques for cloud
computing systems. Comput Secur. 2016;98:751-774.

17. Lee YC, Zomaya AY. Energy efficient utilization of resources in cloud computing systems. J Supercomput. 2012;60:268-280.
18. Shahid MA, Islam N, Alam MM, Su’ud MM, Musa S. A comprehensive study of load balancing approaches in the cloud computing

environment and a novel fault tolerance approach. IEEE Access. 2020;8:130500-130526.
19. Ma T, Chu Y, Zhao L, Ankhbayar O. Resource allocation and scheduling in cloud computing: policy and algorithm. IETE Tech Rev.

2014;31(1):4-16.
20. Rao TR, Mitra P, Bhatt R, Goswami A. The big data system, components, tools, and technologies: a survey. Knowl Inform Syst.

2019;60:1165-1245.
21. Chen CP, Zhang C-Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inform Sci.

2014;275:314-347.
22. Landset S, Khoshgoftaar TM, Richter AN, Hasanin T. A survey of open source tools for machine learning with big data in the Hadoop

ecosystem. J Big Data. 2015;2:1-36.
23. Kwok Y-K, Ahmad I. Benchmarking and comparison of the task graph scheduling algorithms. J Parallel Distrib Comput.

1999;59(3):381-422.
24. Floudas CA, Lin X. Mixed integer linear programming in process scheduling: modeling, algorithms, and applications. Ann Oper Res.

2005;139:131-162.
25. Qiu T, Chi J, Zhou X, Ning Z, Atiquzzaman M, Wu DO. Edge computing in industrial internet of things: architecture, advances and

challenges. IEEE Commun Surv Tutor. 2020;22(4):2462-2488.
26. Yu W, Liang F, He X, et al. A survey on the edge computing for the internet of things. IEEE Access. 2017;6:6900-6919.
27. Dogani J, Namvar R, Khunjush F. Auto-scaling techniques in container-based cloud and edge/fog computing: taxonomy and survey.

Comput Commun. 2023;209:120-150.
28. Pandya SB, Kalita K, Čep R, Jangir P, Chohan JS, Abualigah L. Multi-objective snow ablation optimization algorithm: an elementary

vision for security-constrained optimal power flow problem incorporating wind energy source with FACTS devices. Int J Comput Intell
Syst. 2024;17(1):1-30.

29. Kalita K, Naga Ramesh JV, Čep R, Pandya SB, Jangir P, Abualigah L. Multi-objective liver cancer algorithm: a novel algorithm for solving
engineering design problems. Heliyon. 2024;10:e26665.

30. Xiao J, Pan X, Liu J, Wang J, Zhang P, Abualigah L. Load balancing strategy for SDN multi-controller clusters based on load prediction.
J Supercomput. 2024;80(4):5136-5162.

31. Ullah A, Aznaoui H, Sebai D, Abualigah L, Alam T, Chakir A. Internet of things and cloud convergence for eHealth systems: concepts,
opportunities, and challenges.Wirel Pers Commun. 2024;133:1-51.

32. El-Shorbagy MA, Bouaouda A, Nabwey HA, Abualigah L, Hashim FA. Advances in Henry gas solubility optimization: a physics-inspired
metaheuristic algorithm with its variants and applications. IEEE Access. 2024;12:26062-26095.

33. Khaledian N, Khamforoosh K, Akraminejad R, Abualigah L, Javaheri D. An energy-efficient and deadline-aware workflow scheduling
algorithm in the fog and cloud environment. Comput Secur. 2024;106(1):109-137.

34. Khiat A, Haddadi M, Bahnes N. Genetic-based algorithm for task scheduling in fog–cloud environment. J Network Syst Manage.
2024;32(1):3.

35. Behera I, Sobhanayak S. Task scheduling optimization in heterogeneous cloud computing environments: a hybrid GA-GWO approach.
J Parallel Distrib Comput. 2024;183:104766.

36. Gupta S, Singh RS. User-defined weight based multi objective task scheduling in cloud using whale optimisation algorithm. Simul Model
Pract Theory. 2024;133:102915.

37. QasimM, SajidM. An efficient IoT task scheduling algorithm in cloud environment usingmodified Firefly algorithm. Int J InformTechnol.
2024;1-10.

38. SandhuR, FaizM, KaurH, Srivastava A, NarayanV. Enhancement in performance of cloud computing task scheduling using optimization
strategies. Clust Comput. 2024;1-24.

39. Alsubaei FS, Hamed AY, Hassan MR, Mohery M, Elnahary MK. Machine learning approach to optimal task scheduling in cloud
communication. Alex Eng J. 2024;89:1-30.

40. Thilak KD, Devi KL, Shanmuganathan C, Kalaiselvi K. Meta-heuristic algorithms to optimize two-stage task scheduling in the cloud. SN
Comput Sci. 2024;5(1):1-16.

41. Abu-Hashem MA, Shehab M, Shambour MKY, Daoud MS, Abualigah L. Improved black widow optimization: an investigation into
enhancing cloud task scheduling efficiency. Sustainable Comput Inform Syst. 2024;41:100949.

42. Ghasemi M, Zare M, Zahedi A, Akbari MA, Mirjalili S, Abualigah L. Geyser inspired algorithm: a new geological-inspired meta-heuristic
for real-parameter and constrained engineering optimization. J Bionic Eng. 2024;21(1):374-408.

43. Rao RV, Saroj A. An elitism-based self-adaptive multi-population Jaya algorithm and its applications. Soft Comput. 2019;23:4383-4406.
44. Rao R. Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng

Comput. 2016;7(1):19-34.
45. Reynolds AM, Rhodes CJ. The Lévy flight paradigm: random search patterns and mechanisms. Ecology. 2009;90(4):877-887.

ABUALIGAH et al. 23 of 23

46. Ekinci S, Izci D, Abu Zitar R, Alsoud AR, Abualigah L. Development of Lévy flight-based reptile search algorithmwith local search ability
for power systems engineering design problems. Neural Comput Appl. 2022;34(22):20263-20283.

47. Omara FA, Arafa MM. Genetic algorithms for task scheduling problem. J Parallel Distrib Comput. 2010;70(1):13-22.
48. Ahmadabadi JZ, Mood SE, Souri A. Star-quake: a new operator in multi-objective gravitational search algorithm for task scheduling in

IoT based cloud-fog computing system. IEEE Trans Consum Electron. 2023;70:907-915.
49. Zavieh H, Javadpour A, Sangaiah AK. Efficient task scheduling in cloud networks using ANN for green computing. Int J Commun Syst.

2024.
50. Gorbenko A, Popov V. Task-resource scheduling problem. Int J Autom Comput. 2012;9:429-441.
51. Chen J, Lee CY. General multiprocessor task scheduling. Naval Res Logist. 1999;46(1):57-74.
52. Krishnamoorthy M, Ernst AT, Baatar D. Algorithms for large scale shift minimisation personnel task scheduling problems. Eur J Oper

Res. 2012;219(1):34-48.
53. Alboaneen D, Tianfield H, Zhang Y, Pranggono B. A metaheuristic method for joint task scheduling and virtual machine placement in

cloud data centers. Future Gener Comput Syst. 2021;115:201-212.
54. Otair M, Alhmoud A, Jia H, Altalhi M, Hussein AMA, Abualigah L. Optimized task scheduling in cloud computing using improved

multi-verse optimizer. Clust Comput. 2022;25(6):4221-4232.
55. Alam M, Haidri RA, Yadav DK. Efficient task scheduling on virtual machine in cloud computing environment. Int J Pervasive Comput

Commun. 2021;17(3):271-287.
56. Abualigah L, Diabat A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing

environments. Clust Comput. 2021;24(1):205-223.
57. Agushaka JO, Ezugwu AE, Abualigah L. Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Eng. 2022;391:114570.
58. Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH. Prairie dog optimization algorithm. Neural Comput Appl.

2022;34(22):20017-20065.
59. Zhao W, Wang L, Zhang Z, et al. Electric eel foraging optimization: a new bio-inspired optimizer for engineering applications. Expert Syst

Appl. 2024;238:122200.
60. Bai J, Li Y, Zheng M, et al. A sinh cosh optimizer. Knowl-Based Syst. 2023;282:111081.
61. El-kenawy E-SM, Khodadadi N, Mirjalili S, Abdelhamid AA, Eid MM, Ibrahim A. Greylag goose optimization: nature-inspired optimiza-

tion algorithm. Expert Syst Appl. 2024;238:122147.
62. Zhao W, Wang L, Zhang Z, Mirjalili S, Khodadadi N, Ge Q. Quadratic interpolation optimization (QIO): a new optimization algorithm

based on generalized quadratic interpolation and its applications to real-world engineering problems. Comput Methods Appl Mech Eng.
2023;417:116446.

63. Taheri A, RahimiZadeh K, Beheshti A, et al. Partial reinforcement optimizer: an evolutionary optimization algorithm. Expert Syst Appl.
2024;238:122070.

How to cite this article: Abualigah L, Hussein AMA, Almomani MH, et al. GIJA:Enhanced geyser-inspired
Jaya algorithm for task scheduling optimization in cloud computing. Trans Emerging Tel Tech. 2024;35(7):e5019.
doi: 10.1002/ett.5019

	GIJA:Enhanced geyser-inspired Jaya algorithm for task scheduling optimization in cloud computing
	1 INTRODUCTION
	2 RELATED WORKS
	3 THE PROPOSED GIJA METHOD
	3.1 Procedure of Geyser-inspired algorithm
	3.1.1 Search for channels
	3.1.2 Roulette wheel selection

	3.2 Procedure of Jaya algorithm
	3.3 Procedure of Levy flight mechanism
	3.4 Procedure of the proposed GIJA
	3.5 Task scheduling problem in cloud computing
	3.6 Problem formulation

	4 RESULTS AND SETTINGS
	4.1 Parameter setting
	4.2 Synthetic dataset analysis
	4.3 Real dataset analysis
	4.4 Benchmark problems
	4.4.1 Performance measures

	5 CONCLUSION AND FUTURE WORKS

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	INFORMED CONSENT
	ORCID
	REFERENCES

