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Heavy metal contamination in wastewater poses severe environmental challenges, highlighting 
the urgent need for efficient and cost-effective solutions. While bentonite incorporation in concrete 
mixtures has shown promise in adsorbing heavy metals, its experimental validation—through 
Bentonite Plastic Concrete (BPC)—is hindered by high costs, labor-intensive procedures, and the 
need for specialized equipment. This study overcomes these barriers by introducing hybrid ensemble 
learning models, optimized with Forensic-Based Investigation Optimization (FBIO), to predict BPC’s 
workability and mechanical properties, including slump (S), tensile strength (TS), and elastic modulus 
(E). Using input parameters such as gravel, bentonite, silty clay, curing time, sand, cement, and water, 
models including Random Forest (RF), Adaptive Boosting (ADB), Extreme Gradient Boosting (XGB), 
and Gradient Boosting Regression Tree (GBRT) were developed. Notably, GBRT-FBIO achieved the 
highest accuracy for E predictions, while XGB-FBIO excelled for TS and S. Shapley Additive Explanation 
(SHAP) analysis identified water as the most critical factor influencing slump (+ 0.11) predictions while 
curing time emerged as the key determinant for TS (+ 0.18) and E (+ 0.12) predictions. Additionally, a 
user-friendly online tool was developed to enable the real-time application of these models, reducing 
reliance on costly experimental methods. This work addresses key challenges in experimental BPC 
testing, offering a transformative computational approach for advancing civil engineering materials 
research.
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As a global concern, waste management is one of the key issues that need to be moved across the globe towards 
sustainability1. Heavy metal contamination is created in wastewater from various industrial operations, 
including mining and plating various metals. Heavy metals, including Cr, Hg, Cu, Pb, Cd, Zn, and Ni, are 
ecologically dangerous since they do not dissolve and can gather in organisms2,3. Adsorption is commonly 
regarded as an economical and efficient approach to treatment for wastewater and toxic pollutant removal4. Clay 
minerals have recently gained a lot of interest as adsorbents for several harmful chemicals and heavy metals5. 
Clay minerals as an adsorbent have various advantages over other materials, including fair, easy access, low 
price, non-toxic nature, significant specific surface area, and high efficiency in cationic exchange6. Bentonite is 
mostly made up of the mineral montmorillonite, calcite, feldspar, and quartz. Several scholars have examined 
the use of bentonite for heavy metal adsorption throughout the recent decade7–11. One approach to removing 
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heavy metals is to include bentonite in materials like concrete mixtures. Bentonite plastic concrete (BPC) blends 
bentonite and typical concrete12. When exposed to water, bentonite may absorb it and expand in size. As a 
result of the bentonite’s water absorption potential, plastic concrete has a desirable low permeability level13. 
Abbaslou et al.14 investigated BPC’s capacity to remove dissolved cadmium components from water. Plastic 
concrete physical parameters were improved and modified, resulting in fewer cracks and a longer working life 
for various engineering constructions. Despite these advantages, the effective prediction of BPC’s mechanical 
properties, including slump, tensile strength, and elastic modulus, remains challenging due to experimental 
methods’ laborious and costly nature.

BPC is commonly used to build cut-off walls to decrease dam seepage. Dam water seepage reduces internal 
friction and causes the dam to slide or collapse15. BPC is gaining popularity due to its advantageous attributes, 
including its elastic-plastic features, low permeation, and uniformity16. Plastic concrete should tolerate strain 
between the wall and nearby soil to reduce the risk of excessive wall strain and facilitate displacement without 
separation. BPC should have great workability and homogeneity for easier filling of trenches and deep walls. 
However, the technical challenges of ensuring consistent mix design and predicting mechanical properties 
efficiently have limited its broader application. Addressing these gaps through computational methodologies is 
critical.

Previous studies on computational techniques for predicting BPC properties can be divided into three 
categories. The first group includes studies utilizing single machine learning (ML) models like artificial neural 
networks (ANN), M5 Tree, and Multivariate Adaptive Regression Splines (MARS)17–19. These models are more 
precise and robust than traditional regression methods in predicting green concrete characteristics20. ML 
techniques allow for accurate predictions of material properties, such as compressive strength and fracture 
toughness, without extensive experimentation21–23. Tavana Amlashi et al.19 demonstrated that ANN outperforms 
M5 Tree and MARS in predicting BPC slump, elastic modulus, and compressive strength. Ghanizadeh et al.24 
employed SVM and ANN to forecast BPC compressive strength, identifying cement as the most influential 
factor. Tavana Amlashi et al.25 combined SVM, ANN, and Adaptive Neuro-Fuzzy Inference System (ANFIS) 
with Particle Swarm Optimization (PSO) to predict compressive and splitting tensile strength, with ANN-PSO 
achieving an R² of 0.95, outperforming other methods. In another study, Tavana Amlashi et al.26 used four 
computational techniques—Response Surface Methodology (RSM), Multigene Genetic Programming (MGGP), 
Group Method of Data Handling (GMDH), and SVM—to predict the compressive strength of BPC, based on 
parameters like water, silty clay, sand, gravel, cement, and bentonite.

The second group focuses on ensemble learning (EL) models, like Gradient Boosting Regression Trees (GBRT), 
Random Forests (RF), and Extreme Gradient Boosting (XGB). Alishvandi et al.27 applied six computational 
methods—GBRT, Decision Tree (DT), RF, XGB, k-Nearest Neighbors (KNN), and SVM—for predicting the 
compressive strength of plastic concrete using factors like temperature, bentonite, cement, sand, water, and 
water-to-cement ratio. Model performance was evaluated using R², RMSE, MAE, and MAPE. EL methods 
outperform individual ML algorithms28 in predicting the mechanical properties of various concrete types, 
including high-performance concrete (HPC)29–35, recycled aggregate concrete (RAC)36–39, lightweight foamed 
concrete (LFC)40, geopolymer concrete (GPC)41,42, self-compacting concrete (SCC)43, and concrete with rice 
husk ash (CCRHA)44–47. EL methods are categorized into stacking, boosting, and bagging techniques. Boosting 
models such as Adaptive Boosting (ADB), GBRT, and XGB are widely used29. Li and Song46 demonstrated that 
stacking EL models, with XGB as a base learner and linear regression as the second layer, enhances model 
precision by integrating base learners’ outputs. ADB assigns weights to training samples based on regression 
difficulty, creating a meta-learning model suitable for simple and complex data48. GBRT, a boosting method 
employing an additive model and residual reduction, uses CART to fit negative gradients of loss functions 
during training49,50. Bagging methods, such as RF, have also shown superior performance. Amin et al.45 reported 
that RF outperformed DT and ADB in compressive strength estimation of CCRHA. According to Iftikhar et 
al.47, an improved RF model using EL increased compressive strength prediction accuracy by 1.62% compared 
to standalone RF models.

The third group of models incorporates optimization techniques like Particle Swarm Optimization (PSO) 
and forensic-based investigation optimization (FBIO) to fine-tune hyperparameters in boosting and bagging 
algorithms, thereby improving accuracy and efficiency. Tuning meta-parameters is critical for developing 
ensemble learning (EL) systems51. However, the abundance of meta-parameters complicates the process, 
requiring a thorough understanding of their impacts on model outcomes52. This task is time-intensive and 
computationally demanding. Researchers have introduced various methods to simplify the development of 
EL models, aiming to reduce manual effort while enhancing performance within limited timeframes53–57. This 
research utilizes the FBIO method to optimize global meta-parameters for boosting and bagging algorithms48. 
FBIO ensures optimal performance by automating parameter tuning, alleviating manual selection challenges, 
and expediting EL model improvement58.

In this study, we address the challenges of predicting BPC’s mechanical properties by employing a novel 
approach that combines ensemble learning with FBIO for hyperparameter optimization. Using large laboratory 
datasets, we develop robust models capable of accurately estimating slump, tensile strength, and elastic modulus. 
Furthermore, to overcome the black-box nature of machine learning methods, we design an online, user-friendly 
application to facilitate the implementation of the suggested model by engineers on-field. This study aims to 
bridge the gap between theoretical advancements in ML and practical applications in BPC design, providing 
engineers with reliable tools to improve project efficiency and sustainability.
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Methodology
ADB
Schapire introduced the boosting method in 1990, which involves combining multiple weak learners in a series59. 
Equation 1 illustrates that the entire tree is replaced upon introducing a new tree model to the system, retaining 
only the strongest one. The iterative nature of computations leads to cumulative improvements in the overall 
model performance over time. The ADB approach continuously improves data categorization skills by training 
inside a suboptimal classification framework. This method assigns various weights to the input data to enhance 
classification accuracy60. This model focuses more on improving the classification of the incorrectly categorized 
samples61. Despite being a weak learner, ADB encompasses all machine learning regression techniques. 
Notably, DT regression and ANN are widely used within this framework. Decision Trees are preferred due to 
their extensive application across technical domains and the ease of model training. Various sources provide a 
comprehensive intellectual foundation for Decision Trees62. Figure 1 provides an overview of the ADB model. 
Training results differed because each training data set was unified, and the results were finally merged.

	
Fn(x) = Fn - 1(x) + argminh

n∑
i=1

L(yi), Fn - 1(xi) + h(xi)� (1)

In this context, the comprehensive model is denoted as Fn(x) , where “n” represents the current cycle, and the 
model from the preceding cycle is represented as Fn-1(x). Furthermore, h(xi) refers to the recently added tree, 
and yi signifies the anticipated result of the i-th tree.

GBRT
Breiman et al.63 presented the CART method. CARTs could be applied to classification and regression 
methods64–66. Recursive techniques are employed to construct binary trees, which are the decision trees utilized 
in regression and classification methods. This study primarily focuses on the GBRT model developed by He et 
al.67, which combines the Gradient Boosting and CART methods. The CART is acknowledged for its higher 
forecasting precision than other artificial intelligence methods. The CART method generates regression trees 
serving as weak learners, as the GBRT model transforms these weak learners into more effective ones. The 
algorithm incorporates poor learners to refine previously obtained predictions, aiming to reduce forecasting 
errors and enhance overall reliability.

The associated leaf node region of the mth regression tree in the updated algorithm, denoted as Fm(x), or Rm, j, 
where j = 1, 2,. . ., Jm, is determined by Eq. 2:

	
Fm(x) = Fm - 1(x) +

Jm∑
j=1

cm,jI(x ∈ Rm,j)� (2)
 

I is around 1 if  x ∈ Rm,j   and 0 otherwise68. The leaf node number in the mth regression tree is either denoted 
by Jm. The model is updated accordinglyFig. e 2 provides an overview of the GBRT model.

Fig. 1.  The sequence of steps in the ADB modeling process.
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XGB
Chen and He69 are credited with developing the XGB methodology. XGB effectively addresses both regression 
and classification tasks by constructing boosted trees. This serves as the foundation of the XGB algorithm and is 
analogous to various optimization models. XGB offers a dependable and quick simulation model like the GBRT 
decision tree. The XGB algorithm is defined by (Fig. 3).

The objective function of XGB is reduced to optimize the ensemble tree and minimize errors Eq. 3

Fig. 3.  A flowchart depicting the structure of XGB trees.

 

Fig. 2.  The basic process of GBRT.
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L(t) =

n∑
i=1

l(yi,ŷ
(t−1)
i + ft(xi)) + Ω(ft)� (3)

 

Assuming ŷi is the predicted value, and yi is the observed value, l is a convex function applied to measure the 
discrepancy between observed and predicted outcomes. To minimize errors, iteration numbers (t) are applied, 
and the regularization term for the framework of the regression tree is defined as Eq. 4.

	
Ω(fk) = γT + 1

2λ ∥w∥2� (4)
 

RF
Svetnik introduced the random forest regression model as an enhanced regression approach with classification 
capabilities70,71. The algorithm generates multiple decision trees by randomly sampling data points to construct 
its predictions. These decision trees are trained using distinct combinations of features and data subsets, 
culminating in a diverse ensemble of models. When integrated, this ensemble delivers precise predictions. By 
employing this ensemble learning approach, the algorithm minimizes the risk of overfitting and enhances its 
generalization capabilities. In RF regression, predictions are generated by constructing multiple decision trees, 
and the final output is determined by calculating the mean of the individual tree predictions. Figure 4 presents 
an overview of the RF algorithm’s framework. The regression equation utilized to analyze the RF method is 
summarized below (Eq. 5)72:

	
M(x) = 1

N

n∑
i=1

(yi(x, θn)� (5)
 

FBIO
Machine learning methods have been combined with metaheuristic optimization techniques to predict various 
factors, such as the Whale Optimization Algorithm, genetic algorithm, and particle swarm optimization73,74. The 
FBIO method distinguishes itself from other ways by eliminating the need to set internal factors. Instead, the 
optimization process is executed by adjusting iteration values and population sizes75.

Therefore, the FBIO method can be a new approach to building an accurate model to estimate plastic 
concrete characteristics. It was originally introduced by Chou and Nguyen76 as a mathematical problem-solving 
technique inspired by the simulation of police forces’ forensic investigation activities. In this model, the search 
area represents the extent of the officer’s query, and the term “culprit” denotes an optimal reply. The number 
of cooperating authorities determines the size of the community under examination. The level of complexity 
determines how much can be invested. Soon after the crime evidence is turned over to the FBIO base, the 
optimization process starts and stops when the culprit is taken to arrest. The FBI strategy is split into two phases: 
Stage P shows the track team’s operations with the police. At the same time, Stage I analyzes the event and directs 
the inspection team (Fig. 5).

Fig. 4.  The schematic flowchart of RF.
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The application process 
Specifics of data gathering
The database employed in this study comprises 115, 158, and 119 datasets for tensile strength, elastic module, 
and slump12,14,19,26,70,77–84.

Elwell and Fu85 proposed UNESCO conversion factors to homogenize cylindrical and cubic values. 
As effective variables for BPC properties, this research examined the following variables: contents of gravel, 
bentonite, silty clay, curing time, sand, cement, and water. As shown Fig. 6, the intended graph distribution is 
not uniform, so the developed models apply to a wide range of target data86. A lower correlation is observed 
between negative and positive values in the overall model variables, as shown Fig. 7. In addition, according to 
the correlation heat map analysis, water, gravel, and curing time have a greater positive impact on the S, TS, and 
E of BPC, respectively.

Before modeling, the data were randomly split into testing (30%) and training (70%) parts. Tables 1, 2 and 3 
display the statistical characteristics of the output and input variables for the testing and training data for S–BPC, 
TS–BPC, and E–BPC. A logical and technical range can be developed for each input variable by considering 
the highest value of the minimums and the lowest value of the maximums for each of the four data sets. In 
particular, these ranges are 295 to 875 kg/m3 for gravel, 524 to 1305 kg/m3 for sand, 0 to 260 kg/m3 for silty clay, 
80 to 252 kg/m3 for cement, 18 to 100 kg/m3 for bentonite; 260 to 500 kg/m3 for water; and 7 to 180 days for 
curing time. Tables 1, 2 and 3 allow you to identify extreme data points (maximum and minimum), data centers 
(mean and median), data spread (standard deviation and variance), and distribution shapes (skewness and 
kurtosis)86. Moreover, the diversity among databases and the ability of models developed on them to generalize 
are illustrated by the diverse alterations observed in each of the outputs17.

Model efficiency assessment specifications
Several error metrics were employed to assess the accuracy of the models (Eqs. (6–11)). These variables are R2, 
MAE, RMSE, MAPE, a20-index, and OBJ18. These statistical metrics are summarized as follows:

Fig. 5.  The general process of FBIO.
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R2 =




N∑
i=1

(Yobs − Y obs)(Ypre − Y pre)
√

N∑
i=1

(Yobs − Y obs)2
N∑

i=1
(Ypre − Y pre)2




2

� (6)

 

	
MAE =

∑N

i=1 |Ypre − Yobs|
N

� (7)
 

	
MAP E =

∑N

i=1 |Ypre − Yobs|∑N

i=1 Yobs

× 100� (8)
 

	

RMSE =

√√√√ 1
N

N∑
i=1

(Ypre − Yobs)2� (9)

 

	
OBJ = ( Ntr

Nall
.
RMSEtr + MAEtr

R2
tr + 1 ) + (Ntst

Nall
.
RMSEtst + MAEtst

R2
tst + 1 )� (10)

 

	
a20 − index = m20

N
� (11)

 

When N is the number of records, Ypre and Yobs show the predicted and actual values, and the bar items over 
the parameters indicate the average rate; The variable m20 shows the quantity of the records where the Yobs /Ypre 
ratio ranges from 0.80 to 1.20; the terms “tst” applied for testing and “tr” applied for training data, accordingly.

Fig. 6.  Frequency histogram of output targets.
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Algorithms for hybrid ensemble learners
The FBIO was used in this study to determine the ideal values using the given criteria to set the first random 
values (Table 4). After these statistics were entered into EL approaches and the EL algorithms were trained using 
the training dataset, the objective function was determined to be the average RMSE of both data (test and train). 
Figure 8 provides a summary of the various EL- FBIO approaches. Tables 5, 6 and 7 present the multiple meta-
parameter values optimized for the S-PC, TS-PC, and E-BPC models.

Model prediction accuracy study
Because of a higher R2-value and fewer scattered spots, the GBRT-FBIO approach outperforms conventional 
E-BPC models in both phases of testing and training, as shown in Fig. 9. Furthermore, with just a minor deviation 
from GBRT-FBIO, the given low values of RMSE and MAE in XGB-FBIO model demonstrate the excellent 
accuracy and dependability in the procedures of TS-BPC (Fig. 10). A20-index is a new significant engineering 
parameter that determines how many specimens have expected values at most 20% off from observed values87. 
With an a20-index of 0.916 during the testing step and 1.00 during training, XGB- FBIO is the most accurate 
predictor of S-BPC. Furthermore, with an a20-index of 0.833 and 0.963 throughout the testing and training step, 
the RF- FBIO had the lowest desire to perform well for S-BPC (Fig. 11).

Different statistical indicators were evaluated for training and testing datasets to assess the precision of the 
proposed forecasting models. Table 8 shows the results for different statistical parameters. In the S-BPC training 
phase, ADB is 0.32, 0.02, and 0.76 cm lower than GBRT, XGB, and RF in terms of RMSE, while in the testing 
phase, XGB outperformed ADB, GBRT, and RF by 0.05, 0.07, and 0.53 cm of difference in RMSE, respectively. In 
addition, XGB surpasses other TS-BPC models with MAPE values of 0.3 and 0.12%, respectively, for the training 
and testing stages. A comparison of R2 values for E-BPC models reveals that GBRT (99.9% for train and 97.2% 
for test) and RF (94.1% for train and 87% for test) models exhibit the highest and lowest prediction accuracy, 
respectively.

The OBJ enables the combination of numerous statistical indicators for testing and training data to assess the 
model’s generalizability88. The OBJ high values imply that a method performs badly compared to other ways89. 

Fig. 7.  Pearson correlation Coefficients for S, TS, and E.
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The best efficiency for the GBRT method for E-BPC is presented in Fig. 12, with an OBJ of 0.275 and 0.097%. 
Furthermore, the RF method performs the worst S, TS, E -BPC given the OBJ quantities of 0.912%, 0.058%, and 
0.369%, respectively.

The Nash-Sutcliffe efficiency (NSE) and the scatter index (SI) coefficient were used as supplementary 
validation tests for the models by Eqs. (12)-(13).

	
SI = RMSE

Y obs

� (12)
 

	

NSE = 1 −

N∑
i=1

(Ypre − Yobs)2

N∑
i=1

(Yobs − Y obs)2

� (13)

 

Statistic Gravel Sand Silty clay Cement Bentonite Water Curing time Tensile strength

Training data: 80

Minimum 295 590 0 50 18 152.1 28 0.06

Maximum 875 1305 350 252 320 500 180 1.3

Mean 625.9 851.8 144.5 142.2 69.7 351.5 59.2 0.3

Median 673.5 775 180 130 58 370 28 0.2

Standard deviation 192.5 253.5 109.4 45.2 43.9 78.6 38.6 0.2

Variance 37072.2 64308.6 11973.8 2043.6 1927.8 6191.2 1492.5 0.07

Skewness −0.7 1 −0.3 0.7 2.7 −1 1.1 1.4

Kurtosis −0.7 −0.5 −1.3 0.3 12.5 0.6 1.2 1.7

Testing data: 35

Minimum 295 524 0 72 18 152.1 28 0.08

Maximum 875 1305 380 224 168 481.4 90 1

Mean 670.8 816.9 144 132.9 67.3 328.4 59.8 0.4

Median 710 766 180 120 70 340.4 90 0.3

Standard deviation 184.6 237.8 123 34.6 37 78.3 31.4 0.2

Variance 34082.4 56593.8 15137.9 1201.2 1374.3 6142.7 988.4 0.07

Skewness −1.1 1.2 0.05 1.1 1.2 −0.4 −0.05 0.6

Kurtosis 0.1 0.3 − 0.1.1 1 1.6 −0.3 −2.1 −1

Table 2.  Comprehensive statistics for both testing and training data related to TS-BPC.

 

Statistic Gravel Sand Silty clay Cement Bentonite Water Slump

Training data: 110

Minimum 0 509 0 72 15 152.1 0.8

Maximum 926 1372 260 289 168 520 23

Mean 672.9 826.3 33.9 176.5 46.2 347.1 18.3

Median 770.5 750 0 195 39 340 20

Standard deviation 225.4 212.7 75.6 49.7 27.9 70.7 4.3

Variance 50847.1 45273.8 5723.8 2470.7 780.7 5011.3 19.2

Skewness −1.5 1.55 1.86 −0.08 2.3 −0.2 −2.4

Kurtosis 1.2 1.13 1.67 −0.8 6.6 0.6 6

Testing data: 48

Minimum 0 441 0 90 15 162 1

Maximum 912 1499 225 300 140 500 24

Mean 729.9 775.8 32.8 191.6 42.2 333.6 16.9

Median 774.5 750 0 200 36.4 330 19

Standard deviation 169.6 189.1 74.5 50.1 24.7 62.6 5.7

Variance 28768.3 35759.4 5553 2515.8 610.3 3924.5 33.3

Skewness −2.7 2.4 1.8 0.05 2.1 −0.3 −1.7

Kurtosis 8.2 6.5 1.7 −0.4 5.1 1.16 1.7

Table 1.  Comprehensive statistics for both testing and training data related to S-BPC.
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In which the bar items over the associated digits represent the average of each value, N represents the records 
number, and Yobs refer to the observed and Ypre represent anticipated quantities. A model’s predictive accuracy is 
regarded as excellent if NSE is more than 0.75 or SI is less than 0.1 or good if NSE is between 0.65 and 0.75 or SI is 
between 0.1 and 0.2. However, it is fair if the NSE value is between 0.5 and 0.65 or the SI is between 0.2 and 0.318. 
As seen in Fig. 13, all methods have SI rates less than 0.2, indicating that they are excellent or good predictors of 
plastic concrete. The results also show that all methods had NSE rates greater than 0.75, indicating the EL-FBIO 
models’ “excellent” accuracy in forecasting output values (Fig. 14).

The effectiveness of each design was evaluated using Taylor’s diagram presented in Fig. 15. To compare the 
anticipated outcomes with the actual values, three statistical measures (RMSE, STD, and R2) were used. The 
standard deviation is shown through a circle connecting the plot’s horizontal and vertical axes; the horizontal 
green dots indicate RMSE, and the blue line shows the values of R2. As a result, among all techniques for S, TS, 
and E-BPC, the GBRT-FBIO and XGB methods have the top performance.

ML and EL models can accurately predict BPC strength and workability properties, as reported by several 
studies19,26. According to the R2 comparison, the GBRT method for E and XGB methods for TS and Slump 
outperformed all existing models during the testing and training levels (Table 9). As a result, EL methods are 
more practical and more effective in generalizing BPC characteristics, thus saving time and resources.

Important features using shapley values
SHAP is a game-theoretic approach designed to describe the result of machine-learning methods90. SHAP presents 
the feature’s contribution to the model’s output, offering a more interpretable and transparent understanding 
of the model’s decision-making process. In the ensuing sections, we thoroughly analyze the outcomes in the 
proposed predicting structure, designed to interpret and comprehend the results of the probabilistic predicting 

Parameters Considered range Parameters Considered range

Number of estimators [5,200] Max_samples [0.1,1]

Min_samples_split RF: [1,10] Other methods: [1e-10,1] lu_ns [2,150]

Min_samples _leaf RF: [1,10] Other methods: [1e-10,1] lu_max_d [2,100]

Max_depth [2,500] lu_max_mlf [2,100]

Max_features [1, maximum number of variables] lu_lr [0.0001,1]

Max_ leaf_nodes [2,500] lu_gamma [0,10]

Ccp_alpha [0,1] lu_gamma [0,10]

Min_weight_fraction_leaf [0,0.5] lu_min_cw [0,1]

Learning rate [0.001,3] lu_subsample [0.5,1]

Alpha [0.001,0.99] lu_subsample_bt [0.5,1]

Subsample [1e-6,1] reg_lambda [0.01,2]

Table 4.  Different meta-parameter ranges used in the optimization process.

 

Statistic Gravel Sand Silty clay Cement Bentonite Water Curing time Elastic module

Training data: 83

Minimum 0 509 0 80 14.8 260 7 0.097

Maximum 1547.7 1407 380 300 100 495 180 7.5

Mean 845.5 817.8 96.8 171.9 47.4 362.9 55.3 1.6

Median 755 704.3 0 156 44 360 28 1

Standard deviation 337.1 271.1 123.4 55.9 19.5 48.5 38.3 1.4

Variance 113658.9 73507.9 15246.1 3134.1 383 2354.8 1469.2 2.1

Skewness 1 1.2 0.8 0.5 0.4 0.4 1.3 2.2

Kurtosis 0.3 −0.02 −0.7 −0.8 −0.6 0.1 1.7 5.1

Testing data: 36

Minimum 0 604.5 0 100 16 296 7 0.1

Maximum 1519.6 1499 330 330 100 726 90 7.8

Mean 850.1 921.6 68 170.3 43.6 364.7 50.9 1.7

Median 790 790 0 160 40 338 28 1.1

Standard deviation 425 290.6 108.9 57.4 17.3 77 31.9 1.6

Variance 180630.5 84499.8 11867.5 3296.1 301.7 5934.7 1021.3 2.7

Skewness 0.08 −0.7 1.1 0.9 1.1 3.3 0.3 2.1

Kurtosis −0.1 −1.1 −0.1 0.2 1.8 13.9 −1.7 4.7

Table 3.  Comprehensive statistics for both testing and training data related to E-BPC.
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model. Our initial focus is point forecasts, specifically examining how the developed model utilizes various 
features to make predictions. The SHAP method is employed for explanations, covering S, TS, and E. Figure 16 
illustrates the average contribution of each feature, with each bar plot representing the importance of a specific 
property. Cement and water play significant roles in TS models, contributing more substantially. The primary 
contributors for E are curing time and cement, with mean SHAP values of + 0.18 and + 0.12, respectively. Water 
(+ 0.11) and sand (+ 0.09) make more notable contributions in the slump model. Silt (for E and S) and bentonite 
(for TS) exhibit minimal impact on the output of the models.

Each dot in Fig. 17 represents a distinct forecasting, and its location along the x-axis signifies that attribute’s 
impact on the model’s output. Furthermore, each dot’s color corresponds to a feature value (varies from blue 
to red), emphasizing the relative contributions of different feature values to the final result. The long tails show 
highly significant characteristics. The dots’ vertical distribution suggests more findings with comparable effects. 
These SHAP summary graphs in such a setting include details on the number of reports with those qualities and 
the size and direction of each feature’s effect.

Fig. 8.  An overview of the modeling process in this study.
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A heatmap of SHAP values across all input variables is shown in Fig. 18. Slump, TS, and E were shown on 
top as functions of all variables. The ranges of SHAP values, which show the impact on each model target, are 
depicted in various colors ranging from blue to red. For this heatmap, arbitrary sample pools equal to training 
data sets were chosen. For S-BPC samples below 15, on the left of the heatmap, the highest prediction (highest 
in f(x)) corresponds to an absolute red color for water, indicating that it has contributed most to the slump. 
Considering the intense 77 on the right side of the TS-BPC heatmap, water again appears to be one key input 
parameter. However, curing time and cement with a strong red color on the left side are essential factors when 
predicting E-BPC.

Online application of proposed BPC models
Models developed using EL-FBIO methods differ from classical regression methods as they do not simply relate 
inputs and outputs91. In this regard, implementing an online application makes it possible for researchers and 
practicing engineers, the end users of the proposed BPC models, to easily estimate values of mechanical and 
workability properties. In the past, several researchers have developed software using MATLAB Graphical User 
Interface (GUI) to predict the properties of different types of concrete92,93. There are several advantages to the 
developed online application: (i) results are available more quickly, and it provides a standard for an in-depth 

Parameters

Models

ADB-FBIO GBRT- FBIO XGB- FBIO RF- FBIO

Number of estimators 28 47 185 128

Min_samples_split 0.04 0.05 - 4

Min_samples _leaf 0.01 0.02 - 1

Max_depth 64 131 472 481

Max_features 1 3 - 1

Max_ leaf_nodes 72 8 500 197

Ccp_alpha 1.62 1.14e-05 - 0

Min_weight_fraction_leaf 0.0003 0.005 - 0

Learning rate 0.25 0.36 0.61 -

Alpha - 0.18 - -

Subsample - 0.79 0.91 -

Max_samples - - - 0.95

Gamma - - 4.75 -

Min_child_weight - - 0.37 -

Reg_lambda - - 1.91 -

Colsample_bytree - - 0.79 -

Table 6.  Optimized parameter values for TS-BPC.

 

Parameters

Models

ADB-FBIO GBRT- FBIO XGB- FBIO RF- FBIO

Number of estimators 29 75 64 10

Min_samples_split 0.0031 0.04 - 2

Min_samples _leaf 0.0032 0.02 - 1

Max_depth 268 120 500 446

Max_features 1 3 - 1

Max_ leaf_nodes 363 8 39 154

Ccp_alpha 0 6.74e-05 - 0

Min_weight_fraction_leaf 1e-8 0.02 - 0

Learning rate 0.5 0.35 0.78 -

Alpha - 0.18 - -

Subsample - 0.5 0.5 -

Max_samples - - - 0.89

Gamma - - 1 -

Min_child_weight - - 0.17 -

Reg_lambda - - 1.27 -

Colsample_bytree - - 0.88 -

Table 5.  Optimized parameter values for S-BPC.
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investigation of mix designs; (ii) reducing production costs while ensuring the safety of concrete designs and 
quality concerns as well, it allows to determine if a mix design is reasonable; and (iii) in addition to being easy to 
use, it will reduce human errors in calculations94. Free online access is also provided95. This application enables 
engineers and researchers to obtain a relatively accurate prediction of the strength and workability parameters 
of BPC at their project site in simple steps.

Limitations and future perspectives
The proposed ensemble learning models hybridized with Forensic-Based Investigation Optimization (FBIO) 
demonstrated high predictive accuracy, but certain limitations must be addressed. The relatively small dataset 
sizes of 158, 115, and 119 records for slump, tensile strength, and elastic modulus, respectively, may restrict 
the generalizability of the models to broader scenarios and diverse environmental conditions. Despite the 
application of SHAP analysis to provide insights into feature importance, the complexity of ensemble models 
may hinder their interpretability for non-specialist users. Additionally, the computational costs associated with 
FBIO-enhanced ensemble models for hyperparameter tuning and optimization may limit scalability for real-
time applications or larger datasets. The reliance on datasets compiled from literature introduces potential biases 
that could impact the robustness of the models when applied to new or unseen data. To address these limitations, 
future studies should focus on expanding datasets to include more diverse material properties, environmental 
conditions, and testing protocols to enhance model robustness and generalizability. Simplifying models or 
integrating surrogate modeling techniques could improve interpretability without compromising accuracy. 
Advanced learning techniques such as deep neural networks (DNNs) and transfer learning could improve 
predictive performance and adaptability. Incorporating uncertainty quantification methods would enhance 
understanding of prediction reliability, especially for critical engineering applications. Finally, improving 
computational efficiency through optimization techniques like Bayesian optimization or genetic algorithms 
would facilitate real-time model implementation, enabling practical use in broader applications. Addressing 
these limitations and pursuing these potential improvements will significantly enhance the usability, accuracy, 
and efficiency of predictive models for BPC.

Conclusion
This study significantly advances the understanding and prediction of BPC properties by developing hybridized 
ensemble learning models enhanced with FBIO. Using datasets containing 158, 115, and 119 records for S, TS, 
and E, respectively, the proposed models achieved superior predictive accuracy, reducing the need for labor-
intensive and costly experimental testing. A summary of the findings is provided below:

	1.	� The study successfully introduced hybrid ensemble learning models, specifically GBRT, XGB, ADB, and RF, 
optimized with FBIO, which outperformed traditional approaches in predicting BPC properties.

	2.	� Among the models, GBRT-FBIO achieved an R² value of 97.2% for elastic modulus predictions. XGB-FBIO 
attained an R² value of 97.7% and 96.6% for tensile strength and slump predictions, respectively.

	3.	� GBRT-FBIO significantly reduced RMSE to 0.278 for elastic modulus predictions.
	4.	� The study introduced new performance indicators, such as the a20-index, which revealed that XGB-FBIO 

achieved a20-indices of 91.6% for slump predictions, highlighting its high accuracy and reliability.
	5.	� The models demonstrated scalability for real-world applications. XGB-FBIO and GBRT-FBIO achieved OBJ 

values of 0.012 and 0.097 for tensile strength and elastic modulus predictions, validating their reliability 
across diverse scenarios.

Parameters

Models

ADB-FBIO GBRT- FBIO XGB- FBIO RF- FBIO

Number of estimators 7 44 16 5

Min_samples_split 0.02 1.00e-08 - 2

Min_samples _leaf 0.002 0.003 - 1

Max_depth 227 298 254 499

Max_features 1 2 - 7

Max_ leaf_nodes 309 9 271 168

Ccp_alpha 0.00019 0 - 1.42

Min_weight_fraction_leaf 0.0018 0.02 - 0.0007

Learning rate 0.42 0.59 1.36 -

Alpha - 0.05 - -

Subsample - 0.98 0.85 -

Max_samples - - - 0.97

Gamma - - 0.0003 -

Min_child_weight - - 0.81 -

Reg_lambda - - 1.007 -

Colsample_bytree - - 0.88 -

Table 7.  Optimized parameter values for E-BPC.

 

Scientific Reports |         2025 15:7686 13| https://doi.org/10.1038/s41598-025-92253-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	6.	� SHAP analysis revealed water as the most critical factor for slump, contributing a mean impact of + 0.11, 
while curing time was the primary determinant for tensile strength and elastic modulus, with mean contri-
butions of + 0.18 and + 0.12, respectively.

	7.	� The study developed an online user-friendly platform for predicting BPC properties, which reduces reliance 
on costly experimental tests and enables faster mix design evaluations directly at project sites.

Fig. 9.  Measured versus expected scattering dots in the E-BPC phases.
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Fig. 10.  Measured versus expected scattering dots in the TS-BPC phases.
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Fig. 11.  Measured versus expected scattering dots in the S-BPC phases.
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Fig. 12.  OBJ values of different implemented FBIO models.

 

Models

Training Testing

R2 RMSE MAE MAPE R2 RMSE MAE MAPE

S-BPC

ADB- FBIO 0.999 0.082 0.013 0.0007 0.962 1.126 0.747 0.079

GBRT- 
FBIO 0.991 0.399 0.291 0.029 0.966 1.147 0.835 0.108

XGB- FBIO 0.999 0.099 0.065 0.003 0.966 1.076 0.797 0.094

RF- FBIO 0.968 0.846 0.518 0.061 0.943 1.607 1.149 0.144

TS-BPC

ADB- FBIO 0.983 0.040 0.028 0.116 0.968 0.053 0.043 0.181

GBRT- 
FBIO 0.996 0.016 0.011 0.04 0.974 0.049 0.039 0.146

XGB- FBIO 0.999 0.003 0.0008 0.003 0.977 0.041 0.03 0.115

RF- FBIO 0.964 0.065 0.044 0.164 0.949 0.069 0.052 0.243

E-BPC

ADB- FBIO 0.985 0.177 0.119 0.219 0.914 0.484 0.340 0.495

GBRT- 
FBIO 0.999 0.035 0.022 0.029 0.972 0.278 0.225 0.195

XGB- FBIO 0.999 0.029 0.023 0.028 0.931 0.442 0.276 0.220

RF- FBIO 0.941 0.363 0.212 0.195 0.870 0.605 0.400 0.458

Table 8.  The precision and effectiveness of each EL-FBIO model.
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Fig. 13.  Calculated SI values for FBIO models.
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Fig. 14.  Calculated NSE values for FBIO models.
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Fig. 15.  Taylor graphs of several EL-FBIO models and traditional approaches.
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Model Year Ref Inputs No. No. of Data

R2 RMSE MAE

Train Test Train Test Train Test

Slump (cm)

ANN 2019 Tavana Amlashi et al.20 6 158 0.963 0.935 0.961 1.168 0.668 0.772

MARS 2019 Tavana Amlashi et al.20 6 158 0.832 0.761 2.040 2.381 1.516 1.665

M5Tree 2019 Tavana Amlashi et al.20 6 158 0.893 0.858 1.814 1.803 1.422 1.273

ADB-FBIO 2024 This Study 6 158 0.999 0.962 0.082 1.126 0.013 0.747

GBRT-FBIO 2024 This Study 6 158 0.991 0.966 0.399 1.147 0.291 0.835

XGB-FBIO 2024 This Study 6 158 0.999 0.966 0.099 1.076 0.065 0.797

RF-FBIO 2024 This Study 6 158 0.968 0.943 0.846 1.607 0.518 1.149

TS (MPa)

SVM 2020 Tavana Amlashi et al.27 8 107 0.999 0.968 0.003 0.048 - -

ANN 2020 Tavana Amlashi et al.27 8 107 0.999 0.936 0.003 0.052 - -

ANFIS 2020 Tavana Amlashi et al.27 8 107 0.959 0.932 0.033 0.057 - -

ADB-FBIO 2024 This Study 7 115 0.983 0.968 0.040 0.053 0.028 0.043

GBRT-FBIO 2024 This Study 7 115 0.996 0.974 0.016 0.049 0.011 0.039

XGB-FBIO 2024 This Study 7 115 0.999 0.977 0.003 0.041 0.0008 0.03

RF-FBIO 2024 This Study 7 115 0.964 0.949 0.065 0.069 0.044 0.052

E (GPa)

ANN 2019 Tavana Amlashi et al.20 7 119 0.964 0.918 0.280 0.472 0.229 0.293

MARS 2019 Tavana Amlashi et al.20 7 119 0.755 0.629 0.735 0.998 0.487 0.677

M5Tree 2019 Tavana Amlashi et al.20 7 119 0.753 0.803 0.769 0.765 0.486 0.510

ADB-FBIO 2024 This Study 7 119 0.985 0.914 0.177 0.484 0.119 0.340

GBRT-FBIO 2024 This Study 7 119 0.999 0.972 0.035 0.278 0.022 0.225

XGB-FBIO 2024 This Study 7 119 0.999 0.931 0.029 0.442 0.023 0.276

RF-FBIO 2024 This Study 7 119 0.941 0.870 0.363 0.605 0.212 0.400

Table 9.  Comparing proposed EL models to those in the literature.
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Fig. 17.  Summary plot of the point predicting model.

 

Fig. 16.  Feature significance of the input variables.
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