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The theory of rough sets produces a potent framework for administrating uncertainty and 
ambiguity in data, which is crucial for effective decision-making. However, the reliance on 
equivalence relations within this framework has led to the exploration of various generalizations 
and extensions. In this paper, we introduce eight new types of initial neighborhoods, expanding on 
the idea of initial neighborhoods, and examine the relationships and properties of twelve distinct 
types of neighborhoods derived from binary relations. We define initial-minimal and initial-
maximal neighborhoods and develop eight types of rough approximations (𝕀𝚥-approximations) 
that generalize Pawlak’s theory. These new approximations significantly improve upon previous 
methods, achieving accuracy rates of up to 100%. Furthermore, we implement Generalized 
Nano-topological frameworks in conjunction with our novel methodologies to address clinical 
applications, particularly focusing on advancing diagnostic strategies for Covid-19. By employing a 
universal binary relation, we clarify the effectiveness for our methodology per enhancing decision-
making processes and pinpointing significant risk factors associated with Covid-19. Additionally, 
we introduce two algorithms for decision-making problems in information systems, emphasizing 
the broader applicability and significance of our approach across various fields.

1. Introduction

Literature review

The theory of rough sets offers a powerful framework for managing uncertainty and vagueness in data, alongside facilitating 
knowledge analysis and extraction. Initially proposed by Pawlak [1] in 1982, this theory has established itself as a cornerstone in 
addressing decision-making challenges. However, its reliance on equivalence relations has presented certain limitations, prompting 
researchers to develop generalizations and extensions to expand its applicability. Examples of these efforts include using general 
binary relations [2,3] and neighborhood-based rough sets [4–6].

In 1996, Yao [7] significantly broadened rough set theory by introducing binary relation-based neighborhoods into inductive set 
theory without imposing specific conditions on the relations. This approach led to the development of neighborhood systems defining 
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distinct right-neighborhoods and left-neighborhoods, which align with after-sets and fore-sets [8]. Nevertheless, Yao noted that these 
neighborhood-based approximations do not fully satisfy Pawlak’s axioms, indicating the need for additional conditions on relations 
to ensure compatibility with Pawlak’s properties. Following Yao’s foundation, several researchers have introduced extensions using 
various kinds of the binary relations, including a relation of (tolerance [9], similarity [10,11], quasi-order [12]), and general binary 
relations [13–15]. Numerous researchers [16–19] have proposed several generalizations of rough sets in various directions, such as 
those presented in [20,21].

Allam et al. [22,23] furthered this line of research by defining minimal-right and minimal-left neighborhoods, which are derived 
from right-neighborhoods (resp. left-neighborhoods), providing new methods within rough set theory. Building on the right and left 
neighborhood concepts, Abo Khadra et al. [24] introduced a topological perspective in 2007. They developed a novel method for 
generating topology directly from binary relations, eliminating the need for a base or sub base. This broadened rough set appli-
cations within a topological context, especially for non-specialists. This framework inspired El-Bably’s Master’s Thesis [25], where 
he introduced and analyzed near-open concepts in rough set theory, further enriching the topological tools available for rough set 
applications. This approach defines a topology  on a universe  as:

 = { ⊆ ∶ 𝑛(𝑥) ⊆, ∀𝑥 ∈}, (1)

where 𝑛(𝑥) denotes the neighborhood for each element 𝑥 in  . This technique has been used in various papers to extend topological 
frameworks within the domain of rough set theory; see, for example, [26,27]. In 2014, Abd El-Monsef et al. [28] built upon the frame-
work established by Abo Khadra et al. by proposing the notion of a 𝚥-neighborhood space (denoted by 𝚥-NS), thereby broadening the 
scope of neighborhood-based rough set theory. They introduced novel neighborhood categories constructed through the intersection 
and union of right and left neighborhoods, as initially conceptualized by Yao, alongside the minimal neighborhoods pioneered by 
Allam et al. This structure yielded eight distinct neighborhood types, enabling a versatile approach to generalizing Pawlak’s model 
without restrictions on the relations. The concepts of intersection and union neighborhoods from [28] have been widely adapted, 
resulting in additional neighborhood types, such as generalized covering approximation spaces by ideal 𝐺𝑛-𝐶𝐴𝑆 [29], topologies 
generated via extended 𝚥-neighborhoods [30], and graphs generated by 𝚥-neighborhoods [31]. These advancements extend Pawlak’s 
rough set model using different topologies derived from 𝚥-NS.

The idea of ‘initial neighborhoods,’ derived from right neighborhoods, was introduced for the first time in 2021 by El-Sayed et 
al. [32] and formulated as:

𝑛i(𝑥) = {𝑦 ∈ ∶ 𝑛𝑟(𝑥) ⊆ 𝑛𝑟(𝑦)}. (2)

Here 𝑛𝑟(𝑥) refers to the right neighborhood for 𝑥. Applied within rough set theory and Covid-19 studies, these initial neighborhoods 
expanded rough set capabilities within generalized nano-topology. Building on this, Al-Shami and Ciucci [33] introduced “subset 
neighborhoods,” creating additional neighborhood types within 𝚥-NS.

Motivation

The motivation behind this study stems from the limitations of traditional rough set theory and the need for advanced generaliza-
tions to enhance decision-making processes, particularly in complex applications like medical diagnostics. Several key factors drive 
this research:

• Addressing the limitations of traditional rough set theory by introducing generalizations based on El-Sayed et al. [32].
• Defining and analyzing eight new types of initial neighborhoods, exploring their properties through examples, counterexamples, 

and theorems.
• Introducing eight types of rough approximations that generalize existing rough set methods and their extensions [34–40].
• Enhancing decision-making processes in complex scenarios, particularly in medical applications such as Covid-19 [41], by intro-

ducing a topological reduction technique for identifying critical risk factors.
• Contributing new theoretical insights and practical applications, broadening the applicability of rough set methods in various 

fields.

Objective

This paper aims to extend the notion of initial neighborhoods by developing new generalizations using “minimal” and “maximal” 
neighborhoods. The specific objectives of this study include:

• Introducing eight new types of initial neighborhoods, classifying them into initial-minimal and initial-maximal types, and ana-
lyzing their relationships with existing neighborhood types.

• Defining eight types of rough approximations (termed initial 𝚥-approximations for each 𝚥 ∈  ).
• Examining the features of these approximations and their connections with existing methods through theoretical results and 

illustrative examples.
• Applying these new generalizations to medical diagnostics, specifically in developing a precise diagnostic framework for Covid-

19.
• Expanding the theoretical and practical foundations of nano-topology [42] within the framework of generalized rough sets to 

establish novel analytical constructs.
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Paper organization

The organization of this manuscript proceeds systematically as follows:

• Section 2 presents the fundamental concepts used in this research.
• Section 3 examines the theoretical underpinnings of rough set theory and their extensions.
• Section 4 introduces new initial neighborhoods and rough approximations.
• Section 5 conducts a rigorous comparative evaluation of the proposed methodology, benchmarking against existing approaches.
• Section 6 explores the concept of Generalized Nano-Topology in relation to rough sets. Furthermore, it proposes two distinct 

medical applications along with two algorithms.
• Section 7 presents a summary and future research directions.

2. 𝒋-neighborhood space and different neighborhoods induced from a binary relation

This section is dedicated to discussing the fundamental concepts and key findings from previous studies that are essential for this 
paper. Additionally, we introduce three new neighborhoods derived from maximal neighborhoods [11], thoroughly examining their 
properties and relationships through proven results and counterexamples.

Definition 2.1. Consider a binary relation  defined over an arbitrary non-empty universe  . For any member 𝑥 from  , the after 
set (also called the right neighborhood) and the fore set (also called the left neighborhood) are given by

𝑥 = {𝑦 ∈ ∶ 𝑥𝑦} and 𝑥 = {𝑦 ∈ ∶ 𝑦𝑥},

respectively.

Definition 2.2. A binary relation  on  is named as:

1. Inverse serial: For each element 𝑥 in  , there exists a member 𝑦 from  s.t. 𝑦𝑥.
2. Reflexive: For each member 𝑦 from  , the relation gratifies 𝑥𝑥.
3. Symmetric: For all 𝑥, 𝑦 ∈ , if 𝑥𝑦, then 𝑦𝑥.
4. Transitive: For all 𝑥, 𝑦, 𝑧 ∈ , if 𝑥𝑦 and 𝑦𝑧, then 𝑥𝑧.
5. Similarity:  characterized by concurrent reflexivity and symmetry over the universe  .
6. Preorder:  characterized by concurrent reflexivity and transitivity.
7. Equivalence: A relation that satisfies reflexivity, symmetry, and transitivity.

Note that: Let  be an equivalence relation defined on a non-empty universe  . The partition induced by , denoted as  ∕, 
is formally characterized by:

 ∕ =
{
[𝑥] ∶ [𝑥] = 𝑥, ∀𝑥 ∈

}
,

where [𝑥] represents the equivalence class containing an arbitrary element 𝑥 ∈ .

Definition 2.3. Let  be a binary relation defined on a non-empty universe  . For an element 𝑥 ∈ , the fundamental 𝚥-neighborhood 
(where 𝚥 ∈ 𝐽 = {𝑟,𝓁,∧,⋎, ⟨𝑟⟩, ⟨𝓁⟩, ⟨∧⟩, ⟨⋎⟩}) are formally defined as:

∙ 𝚥-neighborhoods:

1. 𝑟-neighborhood [7,8]: 𝑛𝑟 (𝑥) = 𝑥.
2. 𝓁-neighborhood [7,8]: 𝑛𝓁 (𝑥) =𝑥.
3. ∧-neighborhood [28]: 𝑛∧ (𝑥) = 𝑛𝑟 (𝑥) ∩ 𝑛𝓁 (𝑥).
4. ⋎-neighborhood [28]: 𝑛⋎ (𝑥) = 𝑛𝑟 (𝑥) ∪ 𝑛𝓁 (𝑥).

∙ Minimal 𝚥-neighborhoods:

1. ⟨𝑟⟩-neighborhood [22,23]: 𝑛⟨𝑟⟩ (𝑥) = ∩
{
𝑛𝑟 (𝑦) ∶ 𝑥∈ 𝑛𝑟 (𝑦)

}
.

2. ⟨𝓁⟩-neighborhood [22,23]:𝑛⟨𝓁⟩ (𝑥) = ∩
{
𝑛𝓁 (𝑦) ∶ 𝑥 ∈ 𝑛𝓁 (𝑦)

}
.

3. ⟨∧⟩-neighborhood [28]: 𝑛⟨∧⟩ (𝑥) = 𝑛⟨𝑟⟩ (𝑥) ∩ 𝑛⟨𝓁⟩ (𝑥).
4. ⟨⋎⟩-neighborhood [28]: 𝑛⟨⋎⟩ (𝑥) = 𝑛⟨𝑟⟩ (𝑥) ∪ 𝑛⟨𝓁⟩ (𝑥).

Definition 2.4. [28] Let  be a binary relation defined on a non-empty universe  . For every selector 𝚥 ∈ {𝑟,𝓁,∧,⋎, ⟨𝑟⟩, ⟨𝓁⟩, ⟨∧⟩, ⟨⋎⟩}, 
we construct a set-valued function 𝜉𝚥 ∶ ⟶℘( ) that associates each element 𝑥 of  with its corresponding 𝚥-neighborhood in 
℘( ), the set of all subsets of  . The structure 

(
 ,, 𝜉𝚥

)
is termed a 𝚥-Neighborhood-Space (𝚥-NS).

Now, we define new sorts of neighborhoods based on the above neighborhoods as follows:
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Definition 2.5. Consider 
(
 ,, 𝜉𝚥

)
being a 𝚥-NS. For every 𝑥 in  , we constitute the following neighborhoods:

∙ Maximal 𝚥-neighborhoods:

1. (𝑟)-neighborhood [11]: 𝑛(𝑟) (𝑥) = ∪
{
𝑛𝑟 (𝑦) ∶ 𝑥∈ 𝑛𝑟 (𝑦)

}
.

2. (𝓁)-neighborhood∶ 𝑛(𝓁) (𝑥) = ∪
{
𝑛𝓁 (𝑦) ∶ 𝑥 ∈ 𝑛𝓁 (𝑦)

}
.

3. (∧)-neighborhood: 𝑛(∧) (𝑥) = 𝑛(𝑟) (𝑥) ∩ 𝑛(𝓁) (𝑥).
4. (⋎)-neighborhood: 𝑛(⋎) (𝑥) = 𝑛(𝑟) (𝑥) ∪ 𝑛(𝓁) (𝑥).

∙ Initial 𝚥-neighborhoods:

1. initial 𝑟-neighborhood [32]: 𝑛i𝑟 (𝑥) =
{
𝑦 ∈ ∶ 𝑛𝑟 (𝑥) ⊆ 𝑛𝑟 (𝑦)

}
.

2. initial 𝓁-neighborhood [43]: 𝑛i𝓁 (𝑥) =
{
𝑦 ∈ ∶ 𝑛𝓁 (𝑥) ⊆ 𝑛𝓁 (𝑦)

}
.

3. initial ∧-neighborhood [43]: 𝑛i∧ (𝑥) = 𝑛
i
𝑟 (𝑥) ∩ 𝑛

i

𝓁 (𝑥).
4. initial ⋎-neighborhood [43]: 𝑛i⋎ (𝑥) = 𝑛

i
𝑟 (𝑥) ∪ 𝑛

i

𝓁 (𝑥).

Remark 2.1. For each 𝑥 in  , it should be noted that:

1. 𝑛⟨𝑟⟩ (𝑥) =
{ ⋂

𝑥∈𝑛𝑟(𝑦) 𝑛𝑟 (𝑦) , 𝑖𝑓 ∃𝑦 ∈ 𝑤ℎ𝑒𝑟𝑒 𝑥∈ 𝑛𝑟 (𝑦) .
𝜑, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

2. 𝑛⟨𝓁⟩ (𝑥) =
{ ⋂

𝑥∈𝑛𝓁 (𝑦) 𝑛𝓁 (𝑦) , 𝑖𝑓 ∃𝑦 ∈ 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑛𝓁 (𝑦) .
𝜑, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

3. 𝑛(𝑟) (𝑥) =
{ ⋃

𝑥∈𝑛𝑟(𝑦) 𝑛𝑟 (𝑦) , 𝑖𝑓 ∃𝑦 ∈ 𝑤ℎ𝑒𝑟𝑒 𝑥∈ 𝑛𝑟 (𝑦) .
𝜑, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

4. 𝑛(𝓁) (𝑥) =
{⋃

𝑥∈𝑛𝓁 (𝑦) 𝑛𝓁 (𝑦) , 𝑖𝑓 ∃𝑦 ∈ 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑛𝓁 (𝑦) .
𝜑, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

The subsequent discussions illustrate the properties and relationships of the above neighborhoods with proved results and counter-
examples.

Lemma 2.1. Consider 
(
 ,, 𝜉𝚥

)
as a 𝚥-NS. Hence, for any 𝑥∈ and 𝚥 ∈ {𝑟,𝓁,∧,⋎}, the inclusion 𝑛⟨𝚥⟩ (𝑥) ⊆ 𝑛(𝚥) (𝑥) holds.

Proof. Obvious. □

Lemma 2.2. Presume that 
(
 ,, 𝜉𝚥

)
represents a 𝚥-NS. For every 𝑥∈ and 𝚥 ∈ {𝑟,𝓁,∧,⋎}, the following statements hold:

1. 𝑥∈ 𝑛𝚥 (𝑥) if  is reflexive.

2. 𝑥∈ 𝑛⟨𝚥⟩ (𝑥) if  is inverse serial.

3. 𝑥∈ 𝑛(𝚥) (𝑥) if  is inverse serial.

Proof. By applying Remark 2.1 and the results established in [44], the outcome follows immediately. □

According to Allam et al. in [22,23], the following lemma is proved for the issues ⟨𝑟⟩ or ⟨𝓁⟩. Thus, the proof is deleted.

Lemma 2.3. Consider a 𝚥-NS denoted by 
(
 ,, 𝜉𝚥

)
. For any 𝑥∈ 𝑛𝚥(𝑦), it follows that 𝑛𝚥(𝑥) ⊆ 𝑛𝚥(𝑦) is valid for every 𝚥∈ {⟨𝑟⟩ , ⟨𝓁⟩ , ⟨∧⟩}.

Remark 2.2. Lemma 2.3 need not be true for 𝚥 ∈ {𝑟,𝓁,∧,⋎, ⟨⋎⟩ , (𝑟) , (𝓁) , (∧) , (⋎)}, as illustrated in Example 2.1 and Tables 1, 2, 3.

Theorem 2.1. Let 
(
 ,, 𝜉𝚥

)
denote a 𝚥-NS, where  is a reflexive relation defined on  . For every 𝚥 ∈ {𝑟,𝓁,∧,⋎}, the subsequent 

characteristics are satisfied:

1. 𝑛⟨𝚥⟩ (𝑥) ⊆ 𝑛𝚥 (𝑥) ⊆ 𝑛(𝚥) (𝑥).
2. 𝑛i𝚥 (𝑥) ⊆ 𝑛(𝚥) (𝑥).

Proof. We provide the proof for the issue 𝚥 = 𝑟, noting that the argument extends analogously to the remaining cases.

1. Assume 𝑦 ∈ 𝑛⟨𝑟⟩(𝑥). By definition, 𝑦 is contained in every 𝑟-neighborhood that includes 𝑥. Given that  is reflexive, it follows 
that 𝑥 ∈ 𝑛𝑟(𝑥), which implies 𝑦 ∈ 𝑛𝑟(𝑥). Thus, we deduce that 𝑛⟨𝑟⟩(𝑥) ⊆ 𝑛𝑟(𝑥).
Now, let 𝑧 ∈ 𝑛𝑟(𝑥). Since  is reflexive, we again have 𝑥 ∈ 𝑛𝑟(𝑥). By definition, this ensures that 𝑧 ∈

⋃
𝑥∈𝑛𝑟(𝑦) 𝑛𝑟(𝑦) = 𝑛(𝑟)(𝑥). This 

confirms the inclusion 𝑛𝑟(𝑥) ⊆ 𝑛(𝑟)(𝑥).
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Table 1
𝚥-neighborhoods.

⋆ 𝑛𝑟 (⋆) 𝑛𝓁 (⋆) 𝑛∧ (⋆) 𝑛⋎ (⋆)

ġ {ġ,ḣ} {ġ} {ġ} {ġ,ḣ} 
ḣ {ḣ,k̇} {ġ,ḣ} {ḣ} {ġ,ḣ,k̇} 
k̇ {k̇} {ḣ,k̇,ṡ} {k̇} {ḣ,k̇,ṡ} 
ṡ {k̇,ṡ} {ṡ} {ṡ} {k̇,ṡ} 

Table 2
Minimal 𝚥-neighborhoods.

⋆ 𝑛⟨𝑟⟩ (⋆) 𝑛⟨𝓁⟩ (⋆) 𝑛⟨∧⟩ (⋆) 𝑛⟨⋎⟩ (⋆)
ġ {ġ,ḣ} {ġ} {ġ} {ġ,ḣ} 
ḣ {ḣ} {ḣ} {ḣ} {ḣ} 
k̇ {k̇} {ḣ,k̇,ṡ} {k̇} {ḣ,k̇,ṡ} 
ṡ {k̇,ṡ} {ṡ} {ṡ} {k̇,ṡ} 

Table 3
Maximal 𝚥-neighborhoods.

⋆ 𝑛(𝑟) (⋆) 𝑛(𝓁) (⋆) 𝑛(∧) (⋆) 𝑛(⋎) (⋆)

ġ {ġ,ḣ} {ġ,ḣ} {ġ,ḣ} {ġ,ḣ} 
ḣ {ġ,ḣ,k̇}  {ġ,ḣ,k̇} 

k̇ {ḣ,k̇,ṡ} {ḣ,k̇,ṡ} {ḣ,k̇,ṡ} {ḣ,k̇,ṡ} 
ṡ {k̇,ṡ} {ḣ,k̇,ṡ} {k̇,ṡ} {ḣ,k̇,ṡ} 

Table 4
Initial 𝚥-neighborhoods.

⋆ 𝑛i
𝑟
(⋆) 𝑛i𝓁 (⋆) 𝑛i∧ (⋆) 𝑛i⋎ (⋆)

ġ {ġ} {ġ,ḣ} {ġ} {ġ,ḣ} 
ḣ {ḣ} {ḣ} {ḣ} {ḣ} 
k̇ {ḣ,k̇,ṡ} {k̇} {k̇} {ḣ,k̇,ṡ} 
ṡ {ṡ} {k̇,ṡ} {ṡ} {k̇,ṡ} 

2. Suppose 𝑦 ∈ 𝑛i𝑟(𝑥). By definition, this means 𝑛𝑟(𝑥) ⊆ 𝑛𝑟(𝑦). Due to the reflexivity of , we have 𝑥 ∈ 𝑛𝑟(𝑥), and consequently, 
𝑥 ∈ 𝑛𝑟(𝑦). It follows that 𝑛𝑟(𝑦) ⊆

⋃
𝑥∈𝑛𝑟(𝑧) 𝑛𝑟(𝑧) = 𝑛(𝑟)(𝑥). Therefore, by the reflexivity of , we conclude that 𝑦 ∈ 𝑛(𝑟)(𝑥), which 

implies 𝑛i𝑟(𝑥) ⊆ 𝑛(𝑟)(𝑥). □

Remark 2.3. For each 𝑥 in  , it should be noted that the opposite of Theorem 2.1. (item (2)) does not generally hold, as demonstrated 
by Examples 2.1 and 2.2.

Example 2.1. Assume that  = {ġ,ḣ,k̇,ṡ} with the reflexive relation  = {(ġ,ġ), (ġ,ḣ), (ḣ,ḣ), (ḣ,k̇), (k̇,k̇), (ṡ,k̇), (ṡ,ṡ)}. The correspond-
ing 𝚥-neighborhoods, minimal 𝚥-neighborhoods, maximal 𝚥-neighborhoods, and initial 𝚥-neighborhoods are detailed in Tables 1, 2, 3, 
and 4, respectively. In these tables, the symbol ⋆ represents an arbitrary element in  .

Example 2.2. Given that  = {ġ, ḣ,k̇,ṡ} with the reflexive relation  = {(ġ,ġ), (ġ,ḣ), (ġ,k̇), (ḣ,ġ), (ḣ,ḣ), (k̇,k̇), (k̇,ṡ), (ṡ,k̇), (ṡ,ṡ)}. The 
resulting neighborhoods are as follows:

1. ∧-neighborhoods:
• 𝑛∧(ġ) = 𝑛∧(ḣ) = {ġ, ḣ},
• 𝑛∧(k̇) = 𝑛∧(ṡ) = {k̇, ṡ}.

2. ⟨∧⟩-neighborhoods:
• 𝑛⟨∧⟩(ġ) = {ġ},

• 𝑛⟨∧⟩(ḣ) = {ġ, ḣ},

• 𝑛⟨∧⟩(k̇) = {k̇},

• 𝑛⟨∧⟩(ṡ) = {k̇, ṡ}.
3. (∧)-neighborhoods:

• 𝑛(∧)(ġ) = {ġ, ḣ, k̇},

• 𝑛(∧)(ḣ) = {ġ, ḣ},
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Table 5
Comparison of different neighbor-
hoods.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛i
𝑟
(⋆)

ġ {ġ} {ġ} {ġ} 
ḣ 𝜑 𝜑 

k̇ {ṡ} {k̇} {k̇} 
ṡ {k̇} {ṡ} {ṡ} 

• 𝑛(∧)(k̇) = {ġ, k̇, ṡ},

• 𝑛(∧)(ṡ) = {k̇, ṡ}.
4. Initial ∧-neighborhoods:

• 𝑛i∧(ġ) = {ġ},

• 𝑛i∧(ḣ) = {ġ, ḣ},

• 𝑛i∧(k̇) = {k̇},

• 𝑛i∧(ṡ) = {k̇, ṡ}.

Theorem 2.2. Let 
(
 ,, 𝜉𝚥

)
represent a 𝚥-NS, and  is a symmetric relation defined on  . Then, for every 𝑥∈ , the upcoming charac-

teristics are satisfied:

1. 𝑦 ∈ 𝑛𝑟(𝑥)⇔ 𝑥 ∈ 𝑛𝑟(𝑦).
2. 𝑛𝑟(𝑥) = 𝑛𝓁(𝑥) = 𝑛∧(𝑥) = 𝑛⋎(𝑥).
3. 𝑛⟨𝑟⟩(𝑥) = 𝑛⟨𝓁⟩(𝑥) = 𝑛⟨∧⟩(𝑥) = 𝑛⟨⋎⟩(𝑥).
4. 𝑛(𝑟)(𝑥) = 𝑛(𝓁)(𝑥) = 𝑛(∧)(𝑥) = 𝑛(⋎)(𝑥).
5. 𝑛i𝑟(𝑥) = 𝑛

i

𝓁(𝑥) = 𝑛
i
∧(𝑥) = 𝑛

i
⋎(𝑥).

Proof. 1. Given 𝑦 ∈ 𝑛𝑟 (𝑥), so 𝑥𝑦. By symmetry of , 𝑦𝑥. Thus, 𝑥∈ 𝑛𝑟 (𝑦). By a similar way, the reverse implication.
2. The proof of items 3, 4, and 5 essentially depends on item 2. Therefore, we will prove the second item as follows:

Presume that  is a relation that is symmetric established on  . Then, 𝑥𝑦 iff 𝑦𝑥. Consequently, 𝑦∈ 𝑛𝑟 (𝑥) iff 𝑦 ∈ 𝑛𝓁 (𝑥), which 
implies 𝑛𝑟 (𝑥) = 𝑛𝓁 (𝑥). 
Therefore, 𝑛∧ (𝑥) = 𝑛𝑟 (𝑥) ∩ 𝑛𝓁 (𝑥) = 𝑛𝑟 (𝑥) = 𝑛𝓁 (𝑥). Similarly, 𝑛⋎ (𝑥) = 𝑛𝑟 (𝑥) = 𝑛𝓁 (𝑥). □

Theorem 2.3. Suppose that ( ,, 𝜉𝚥) constitutes a 𝚥-NS and that the relation  on  is symmetric. Then, for every 𝑥 ∈ and for each 
𝚥 ∈ {𝑟,𝓁,∧,⋎}, we have

𝑛⟨𝚥⟩(𝑥) ⊆ 𝑛i𝚥 (𝑥).
Proof. We will provide a proof of this theorem when the issue 𝚥 = 𝑟, while the other issues can be handled in a similar manner as 
follows: 
Let 𝑧 ∈ 𝑛⟨𝑟⟩(𝑥). By definition, 𝑧 is an element of every 𝑛𝑟(𝑤) containing 𝑥. Hence, for each 𝑤 ∈ , we have

𝑥 ∈ 𝑛𝑟(𝑤)⇔ 𝑧 ∈ 𝑛𝑟(𝑤). (3)

Next, we show that 𝑧 ∈ 𝑛i𝑟(𝑥), which means proving the inclusion 𝑛𝑟(𝑥) ⊆ 𝑛𝑟(𝑧). 
In view of  represents a symmetric relation on  , so for each 𝑡 ∈ , the condition 𝑡 ∈ 𝑛𝑟(𝑢) is met if and only if 𝑢 ∈ 𝑛𝑟(𝑡). Accordingly, 
if 𝑦 ∈ 𝑛𝑟(𝑥), then we also have 𝑥 ∈ 𝑛𝑟(𝑦). Using equation (3), we obtain 𝑧∈ 𝑛𝑟(𝑦). Consequently, 𝑦∈ 𝑛𝑟(𝑧), which implies 𝑛𝑟(𝑥) ⊆ 𝑛𝑟(𝑧). 
Therefore, we conclude that 𝑧 ∈ 𝑛i𝑟(𝑥). □

The next example shows that the inclusion sign of Theorem 2.3 cannot be replaced by an equal sign in general.

Example 2.3. Assume that the relation  = {(ġ,ġ), (k̇,ṡ), (ṡ,k̇)} is symmetric on  = {ġ,ḣ,k̇,ṡ}. When 𝚥 = 𝑟, Table 5 clearly indicates 
that

𝑛i𝑟(𝑥) ⊈ 𝑛⟨𝑟⟩(𝑥).
Remark 2.4. Assume that ( ,, 𝜉𝚥) is a 𝚥-NS in which the relation  is symmetric. For each 𝑥 ∈ and 𝚥 ∈ {𝑟,𝓁,∧,⋎}, the subsequent 
observations hold:

1. The neighborhoods 𝑛𝚥 (𝑥) and 𝑛⟨𝚥⟩ (𝑥) are generally not comparable.

2. The neighborhoods 𝑛𝚥 (𝑥) and 𝑛i𝚥 (𝑥) are generally not comparable.
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Table 6
Comparison of different neighborhoods.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛(𝑟) (⋆) 𝑛i
𝑟
(⋆)

ġ {ġ,ḣ,ṡ} {ġ}  {ġ} 
ḣ {ġ} {ġ,ḣ,ṡ} {ġ,ḣ,ṡ} {ġ,ḣ,ṡ} 
k̇ {ṡ} {ġ,k̇} {ġ,k̇} {ġ,k̇} 
ṡ {ġ,k̇} {ṡ} {ġ,ḣ,ṡ} {ṡ} 

Table 7
Comparison of different neighbor-
hoods.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛i
𝑟
(⋆)

ġ   {ġ,ḣ} 
ḣ   {ġ,ḣ} 
k̇ {ṡ}  

ṡ {ṡ} {ṡ} 

3. The neighborhoods 𝑛𝚥 (𝑥), 𝑛(𝚥) (𝑥), and 𝑛i𝚥 (𝑥) are generally not comparable.

Example 2.4 illustrates this remark.

Example 2.4. Let  be the relation {(ġ,ġ), (ġ,ḣ), (ġ,ṡ), (ḣ,ġ), (k̇,ṡ), (ṡ,ġ), (ṡ,k̇)}, which is symmetric on  = {ġ,ḣ,k̇,ṡ}. To illustrate 
Remark 2.4, we present the case 𝚥 = 𝑟 in Table 6, with the other cases following similarly. 

Theorem 2.4. Let ( ,, 𝜉𝚥) represent a 𝚥-NS, where  constitutes a transitive relation on  . For all 𝑥∈ and 𝚥∈ {𝑟,𝓁,∧,⋎}, if 𝑥 ∈ 𝑛𝚥(𝑦), 
then 𝑛𝚥(𝑥) ⊆ 𝑛𝚥(𝑦).

Proof. We will offer a proof of this theorem when the issue 𝚥 = 𝑟, while the remaining issues are derived in a similar manner. 
First, suppose that 𝑥 ∈ 𝑛𝑟(𝑦). By definition, we have:

𝑦𝑥. (4)

Next, we establish that 𝑛𝑟(𝑥) ⊆ 𝑛𝑟(𝑦). Given 𝑧 ∈ 𝑛𝑟(𝑥). Then, by definition:

𝑥𝑧. (5)

By the transitivity of  and using (4) and (5), it follows that 𝑦𝑧, which implies 𝑧 ∈ 𝑛𝑟(𝑦). Accordingly, we conclude that:

𝑛𝑟(𝑥) ⊆ 𝑛𝑟(𝑦). □

Remark 2.5. Given 
(
 ,, 𝜉𝚥

)
is a 𝚥-NS, where  is a transitive relation on  , for each 𝑥 ∈ and 𝚥 ∈ {𝑟,𝓁,∧,⋎}, it should be noted 

that:

1. The neighborhoods 𝑛𝚥 (𝑥), 𝑛⟨𝚥⟩ (𝑥), and 𝑛i𝚥 (𝑥) are not comparable in general.

2. The neighborhoods 𝑛𝚥 (𝑥), 𝑛(𝚥) (𝑥), and 𝑛i𝚥 (𝑥) are not comparable in general.

Examples 2.5 and 2.6 exemplify the Remark 2.5, further demonstrating that the inclusion sign of Theorem 2.4 cannot be replaced 
by an equal sign in general.

Example 2.5. Given  is the relation {(ġ,ġ), (ġ,ḣ), (ḣ,ḣ), (ġ,k̇), (ġ,ṡ), (ḣ,ġ), (ḣ,k̇), (ḣ,ṡ), (k̇,ṡ), (ṡ,ṡ)}, which is transitive on  =
{ġ,ḣ,k̇,ṡ}. To illustrate item (1) of Remark 2.5, we present the case 𝚥 = 𝑟 in Table 7, with the other cases following similarly. 

Example 2.6. Suppose that  is the relation {(ġ,ḣ), (ġ,k̇), (ḣ,ḣ), (ḣ,k̇), (ṡ,ṡ)} defined on  = {ġ,ḣ,k̇,ṡ)}. Note that  is transitive. To 
establish the validity of item (2) in Remark 2.5, we provide a detailed proof for the case where 𝚥 = 𝑟, as exemplified in Table 8. The 
proofs for the remaining cases follow a similar pattern. 

As the proof of this lemma is provided in [32], we do not include it here to avoid redundancy.

Lemma 2.4. [32] Assume that ( ,, 𝜉𝚥) is a 𝚥-NS with  being a similarity relation on  . Hence, for every 𝑥 ∈  , the subsequent 
characteristics are satisfied:
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Table 8
Comparison of different neighbor-
hoods.

⋆ 𝑛𝑟 (⋆) 𝑛(𝑟) (⋆) 𝑛i
𝑟
(⋆)

ġ {ḣ,k̇} 𝜑 {ġ,ḣ} 
ḣ {ḣ,k̇} {ḣ,k̇} {ġ,ḣ} 
k̇ 𝜑 {ḣ,k̇} 

ṡ {ṡ} {ṡ} {ṡ} 

Table 9
Comparison of different neighbor-
hoods.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛i
𝑟
(⋆)

ġ {ġ,ḣ} {ġ,ḣ} {ġ,ḣ} 
ḣ {ġ,ḣ,k̇} {ḣ} {ḣ} 
k̇ {ḣ,k̇,ṡ} {k̇} {k̇} 
ṡ {k̇,ṡ} {k̇,ṡ} {k̇,ṡ} 

1. 𝑛⟨𝑟⟩(𝑥) = 𝑛i𝑟(𝑥).
2. 𝑛i𝑟(𝑥) ⊆ 𝑛𝑟(𝑥).

Theorem 2.5. Assume that ( ,, 𝜉𝚥) constitutes a 𝚥-NS with  being a similarity relation on  . Then, for every 𝑥 ∈  and for each 
𝚥 ∈ {𝑟,𝓁,∧,⋎}, the upcoming properties are satisfied:

1. 𝑛⟨𝚥⟩ (𝑥) = 𝑛i𝚥 (𝑥).
2. 𝑛i𝚥 (𝑥) ⊆ 𝑛𝚥 (𝑥).

Proof. The proof follows a method analogous to that used in Lemma 2.4 □

Remark 2.6. It is important to note that the converse of statement (2) in Theorem 2.5 does not hold in general, as illustrated by 
Example 2.7.

Example 2.7. Assume that  = {(ġ,ġ), (ġ,ḣ), (ḣ,ġ), (ḣ,ḣ), (ḣ,k̇), (k̇,ḣ), (k̇,k̇), (k̇,ṡ), (ṡ,k̇), (ṡ,ṡ)}. It is demonstrable that  is a similarity 
relation on  ={ġ,ḣ,k̇,ṡ}. We now verify Remark 2.6 for 𝚥 = 𝑟, as shown in Table 9. The proofs for the other cases proceed similarly. 

Theorem 2.6. Given ( ,, 𝜉𝚥) is a 𝚥-NS, with  constitutes a preorder relation defined on  . Thus, for every element 𝑥 ∈ and for all 
𝚥 ∈ {𝑟,𝓁,∧,⋎}, the following equality holds:

𝑛⟨𝚥⟩(𝑥) = 𝑛𝚥(𝑥).
Proof. We will demonstrate the theorem for a case 𝚥 = 𝑟, as the proof for the remaining cases follows analogously.

Necessity condition:

First, by using Theorem 2.1, we have

𝑛⟨𝑟⟩(𝑥) ⊆ 𝑛𝑟(𝑥)
since  is reflexive.

Sufficiency condition:

Now, let

𝑧 ∈ 𝑛𝑟(𝑥). (6)

Thus, we have

𝑥𝑧.

It is required to demonstrate that 𝑧 ∈ 𝑛⟨𝑟⟩(𝑥) (i.e., 𝑧 lies in every right neighborhood that contains 𝑥).

Presume that there exists

𝑤 ∈ in such a manner that 𝑥 ∈ 𝑛𝑟(𝑤), (7)
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which implies that

𝑤𝑥.

Since  is transitive, from (6) and (7), we obtain

𝑤𝑧,

which implies that

𝑧 ∈ 𝑛𝑟(𝑤) such that 𝑥 ∈ 𝑛𝑟(𝑤).

Consequently, we conclude that

𝑧 ∈ 𝑛⟨𝑟⟩(𝑥). □

As a direct consequence of Theorems 2.5 and 2.6, we obtain the subsequent result, and since the proof is straightforward, it is 
omitted for brevity.

Corollary 2.1. If 
(
 ,, 𝜉𝚥

)
is a 𝚥-NS, where  is an equivalence relation on  , then for each 𝑥 ∈  and 𝚥 ∈ {𝑟,𝓁, ∧, ⋎}: 𝑛𝚥 (𝑥) =

𝑛⟨𝚥⟩ (𝑥) = 𝑛(𝚥) (𝑥) = 𝑛i𝚥 (𝑥) = [𝑥], where [𝑥] is an equivalence class.

Proof. We establish the result for 𝚥 = 𝑟; the remaining cases for 𝚥 can be demonstrated analogously.
Given that  is an equivalence relation, it follows from Pawlak [1] that the collection {𝑛𝑟(𝑥) ∶ 𝑥 ∈ } forms a partition of 

and coincides with {[𝑥] ∶ 𝑥 ∈  }. As a result, the sets {𝑛⟨𝑟⟩(𝑥) ∶ 𝑥 ∈  }, {𝑛(𝑟)(𝑥) ∶ 𝑥 ∈  }, and {𝑛i𝑟(𝑥) ∶ 𝑥 ∈  } also constitute 
partitions of  and are equivalent to {𝑛𝑟(𝑥) ∶ 𝑥 ∈ }. Therefore, we deduce that:

𝑛𝑟(𝑥) = 𝑛⟨𝑟⟩(𝑥) = 𝑛(𝑟)(𝑥) = 𝑛i𝑟(𝑥) = [𝑥]. □

3. Rough set theory: Pawlak’s framework and its generalizations

In this section, we outline key concepts from previous studies on rough sets [1], particular emphasis on the contributions of Yao 
[7], Allam et al. [22,23], Abd El-Monsef et al. [28], Dai et al. [11], and Abu-Gdairi [43]. Additionally, we present new findings and 
explore relationships, using examples to illustrate that the approximation approaches of Abd El-Monsef et al. and Yao (as well as 
those of Allam et al.) are equivalent in certain special cases of the binary relation.

3.1. Pawlak’s rough sets approach (1982)

Definition 3.1. [1] Given a finite set  , referred to as the “universe,” with an equivalence relation  defined on it. In the framework 
of Pawlak approximation spaces, the pair ( ,) is introduced. Pawlak made a significant contribution through the introduction of 
the notions of lower and upper approximations, for any subset 𝔸 ⊆ by:

1. Lower Approximation (𝑨𝒑𝒓 (𝔸)): 𝐴𝑝𝑟 (𝔸) comprises of all elements 𝑥 ∈  for which the equivalence class [𝑥] is entirely 
contained within 𝔸.

2. Upper Approximation 𝑨𝒑𝒓 (𝔸)): 𝐴𝑝𝑟 (𝔸) includes all elements 𝑥 ∈ for which the intersection of the equivalence class [𝑥]
with 𝔸 is non-empty.

3. Boundary (𝑩𝑵𝑫 (𝔸)): The boundary of 𝔸, symbolized as 𝐵𝑁𝐷 (𝔸), is identified as the set of elements in the upper approx-

imation 𝐴𝑝𝑟 (𝔸) that are not in the lower approximation 𝐴𝑝𝑟 (𝔸).
4. Positive Region (𝑷𝑶𝑺 (𝔸)): The positive region of 𝔸, symbolized as 𝑃𝑂𝑆 (𝔸), consists of all elements in the lower approx-

imation 𝐴𝑝𝑟 (𝔸).
5. Negative Region (𝑵𝑬𝑮 (𝔸)): The negative region of 𝔸, symbolized as 𝑁𝐸𝐺 (𝔸), includes all elements in the universe 

that are not in the upper approximation 𝐴𝑝𝑟 (𝔸).
6. Accuracy (𝝁 (𝔸)): The accuracy of the approximation of 𝔸, symbolized as 𝜇 (𝔸), is defined as the cardinality of 𝐴𝑝𝑟 (𝔸)

divided by the cardinality of 𝐴𝑝𝑟 (𝔸), provided 𝐴𝑝𝑟 (𝔸) is non-empty.

Remark 3.1. 

1. It’s important to note that, in accordance with Pawlak’s definition, a set 𝔸 is referred to as an ‘exact set’ if and only if 𝐴𝑝𝑟 (𝔸) is 
equal to 𝐴𝑝𝑟 (𝔸), which implies that the boundary 𝐵𝑁𝐷 (𝔸) is an empty set, and the accuracy 𝜇 (𝔸) equals 1. Conversely, if 
𝐴𝑝𝑟 (𝔸) is not equal to 𝐴𝑝𝑟 (𝔸), then 𝔸 is termed a ‘rough set’.
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2. In alignment with the principles of Pawlak’s theory, as outlined in [1], the empty set 𝜑 is classified as a definable (or exact) set 
if its lower and upper approximations are identical, both being 𝜑. Consequently, 𝝁 (𝜑) = 1. Conversely, if this condition is not 
satisfied, 𝜑 is regarded as an undefinable (rough) set, and its accuracy measure differs from 1. Furthermore, in the definition 
of the accuracy measure, a condition is imposed to ensure that the upper approximation is not equal to 𝜑, thereby preventing 
division by zero. If, however 𝐴𝑝𝑟 (𝜑) is 𝜑, the accuracy measure is considered an indefinite quantity.

Proposition 3.1. [1] Assume that  is an equivalence relation on  , and 𝔸𝑐 represent the complement of 𝔸 in  . For all subsets 𝔸,𝔹 ⊆ , 
the following features are satisfied:

(L1) 𝐴𝑝𝑟 (𝔸) ⊆𝔸. 
(L2) 𝐴𝑝𝑟 (𝜑) = 𝜑. 
(L3) 𝐴𝑝𝑟 ( ) = . 
(L4) If 𝔸 ⊆ 𝔹, then 𝐴𝑝𝑟 (𝔸) ⊆𝐴𝑝𝑟 (𝔹). 
(L5) 𝐴𝑝𝑟

(
𝔸
⋂

𝔹
)
=𝐴𝑝𝑟 (𝔸)

⋂
𝐴𝑝𝑟 (𝔹). 

(L6) 𝐴𝑝𝑟 (𝔸)
⋃
𝐴𝑝𝑟 (𝔹) ⊆𝐴𝑝𝑟

(
𝔸
⋃

𝔹
)
. 

(L7) 𝐴𝑝𝑟 (𝔸𝑐) = (𝐴𝑝𝑟 (𝔸))
𝑐
. 

(L8) 𝐴𝑝𝑟
(
𝐴𝑝𝑟(𝔸)

)
=𝐴𝑝𝑟(𝔸). 

(L9) 𝐴𝑝𝑟
(
𝐴𝑝𝑟 (𝔸)

)
=𝐴𝑝𝑟 (𝔸). 

(L10) If 𝕂 ∈ ∕, then 𝐴𝑝𝑟 (𝕂) =𝕂.

(U1) 𝔸 ⊆𝐴𝑝𝑟 (𝔸). 
(U2) 𝐴𝑝𝑟 (𝜑) = 𝜑. 
(U3) 𝐴𝑝𝑟 ( ) = . 
(U4) If 𝔸 ⊆ 𝔹, then 𝐴𝑝𝑟 (𝔸) ⊆𝐴𝑝𝑟 (𝔹). 
(U5) 𝐴𝑝𝑟

(
𝔸
⋃

𝔹
)
=𝐴𝑝𝑟 (𝔸)

⋃
𝐴𝑝𝑟 (𝔹). 

(U6) 𝐴𝑝𝑟 (𝔸)
⋂
𝐴𝑝𝑟 (𝔹) ⊇𝐴𝑝𝑟

(
𝔸
⋂

𝔹
)
. 

(U7) 𝐴𝑝𝑟 (𝔸𝑐) = (𝐴𝑝𝑟 (𝔸))𝑐 . 

(U8) 𝐴𝑝𝑟
(
𝐴𝑝𝑟(𝔸)

)
=𝐴𝑝𝑟(𝔸). 

(U9) 𝐴𝑝𝑟
(
𝐴𝑝𝑟(𝔸)

)
=𝐴𝑝𝑟(𝔸). 

(U10) If 𝕂 ∈ ∕, then 𝐴𝑝𝑟 (𝕂) =𝕂.

3.2. Yao approaches (1996)

Definition 3.2. [7] Let  be a binary relation on  . For any subset 𝕏 ⊆ , the Yao-lower and Yao-upper approximations of 𝕏 are 
given as follows:

(𝕏) = {𝚜 ∈ ∶ 𝚜 ⊆𝕏},

(𝕏) = {𝚜 ∈ ∶ 𝚜 ∩𝕏 ≠∅}.

Here, 𝚜 denotes the right neighborhood (after set) of 𝚜.
Additionally, Yao-boundary area and Yao-accuracy degree are presented as follows:

B(𝕏) =(𝕏) −(𝕏),

𝜇(𝕏) =
|(𝕏)|
|(𝕏)| , with|(𝕏)| ≠ 0.

It is evident that if 𝜇(𝕏) = 1, then 𝕏 is classified as Yao-exact; otherwise, 𝕏 is classified as Yao-rough.

3.3. Allam et al. Approaches (2005)

Definition 3.3. [22,23] Presume that  constitutes a binary relation on  . For any subset 𝕏⊆ , the Allam-lower and Allam-upper 
approximations of 𝕏 are constructed as follows:

⟨𝑟⟩(𝕏) = {𝚜 ∈ ∶ 𝑛⟨𝑟⟩(𝚜) ⊆𝕏},

⟨𝑟⟩(𝕏) = {𝚜 ∈ ∶ 𝑛⟨𝑟⟩(𝚜) ∩𝕏 ≠∅}.

Here, 𝚜 represents the right neighborhood (after set) of 𝚜.
Furthermore, the Allam-boundary area and Allam-accuracy degree are defined assumed as:

B⟨𝑟⟩ (𝕏) =⟨𝑟⟩(𝕏) −⟨𝑟⟩(𝕏),

𝜇⟨𝑟⟩ (𝕏) =
|⟨𝑟⟩(𝕏)|
|⟨𝑟⟩(𝕏)| , where |⟨𝑟⟩(𝕏)| ≠ 0.

Evidently, 0 ≤ 𝜇⟨𝑟⟩ (𝕏) ≤ 1. Moreover, if 𝜇⟨𝑟⟩(𝕏) = 1, so 𝕏 is considered Allam-exact; or else, it is classified as Allam-rough.

3.4. Abd El-Monsef et al. models (2014)

Definition 3.4. [28] Consider the structure 
(
 ,, 𝜉𝚥

)
as a 𝚥-NS, where 𝚥 belongs to the set {𝑟,𝓁,∧,⋎, ⟨𝑟⟩, ⟨𝓁⟩, ⟨∧⟩, ⟨⋎⟩}. The 𝚥-lower 

and 𝚥-upper approximations of any subset 𝕏 ⊆ are expressed as follows:



Information Sciences 708 (2025) 122044

11

M.K. El-Bably, R.A. Hosny and M.A. El-Gayar 


𝚥
(𝕏) =

⋃{
 ∈ 𝚥 ∶ ⊆𝕏

}
= 𝒊𝒏𝒕𝚥(𝕏),

𝚥(𝕏) =
⋂{

 ∈ 𝚥 ∶𝕏 ⊆
}
= 𝒄𝒍𝚥(𝕏),

where 𝒊𝒏𝒕𝚥(𝕏) and 𝒄𝒍𝚥(𝕏) represent the 𝚥-interior and 𝚥-closure operators of 𝕏, respectively, under the topology:

𝚥 =
{
𝕏 ⊆ ∶ ∀ 𝚜 ∈𝕏, 𝑛𝚥(𝚜) ⊆𝕏

}
,

𝚥 =
{
𝕐 ⊆ ∶ 𝕐 𝑐 ∈ 𝚥

}
.

Moreover, the 𝚥-boundary, 𝚥-positive, and 𝚥-negative areas associated with 𝕏 are specified as:

B𝚥(𝕏) =𝚥(𝕏) −
𝚥
(𝕏),

 𝚥(𝕏) =
𝚥
(𝕏),

𝚥(𝕏) = −𝚥(𝕏).

The 𝚥-accuracy measure corresponding to the approximations of 𝕏 ⊆ is given by:

𝜇𝚥(𝕏) =
|||𝚥

(𝕏)||||||𝚥(𝕏)|||
, where |||𝚥(𝕏)||| ≠ 0.

Clearly, 0 ≤ 𝜇𝚥(𝕏) ≤ 1. Moreover, if 𝜇𝚥(𝕏) = 1, hence 𝕏 is a 𝚥-exact set; otherwise, it is 𝚥-rough.

Remark 3.2. It is worth emphasizing that 𝚥-approximations, particularly when 𝚥 = 𝑟, generally do not coincide with Yao approxima-
tions. More precisely, for any subset 𝕏, the following inequalities hold:


𝑟
(𝕏) ≠ {𝚜 ∈ ∶ 𝑛𝑟(𝚜) ⊆𝕏} =(𝕏),

𝑟(𝕏) ≠ {𝚜 ∈ ∶ 𝑛𝑟(𝚜) ∩𝕏 ≠∅} =(𝕏).

This distinction is further illustrated in Examples 3.1 and 3.2.

The subsequent theorem provides the equality condition for Yao-approximations [7] with Abd El-Monsef et al. [28] for cases 
𝚥 = {𝑟, 𝓁}, and the equality condition for Allam et al. [22,23] approaches with Abd El-Monsef et al. for cases 𝚥 = {⟨𝑟⟩ , ⟨𝓁⟩}.

Theorem 3.1. Given that the structure 
(
 ,, 𝜉𝚥

)
represents a 𝚥-NS. When  satisfies the properties of a preorder relation, the subsequent 

statements hold for every 𝕏⊆ :

1.  (𝕏) =
{
𝚜 ∈ ∶ 𝑛𝚥 (𝚜) ⊆𝕏

}
= ∪{𝐺 ∈ 𝚥 ∶𝐺 ⊆𝕏} =

𝚥
(𝕏), 𝚥 = {𝑟,𝓁}.

2.  (𝕏) =
{
𝚜 ∈ ∶ 𝑛𝚥 (𝚜) ∩𝕏 ≠ 𝜑

}
= ∩{𝐻 ∈ 𝚥 ∶𝕏 ⊆𝐻} =𝚥 (𝕏), 𝚥 = {𝑟,𝓁}.

3. 
𝑗
(𝕏) = {𝚜 ∈ ∶ 𝑛𝚥 (𝚜) ⊆𝕏} = ∪{𝐺 ∈ 𝚥 ∶𝐺 ⊆𝕏} =

𝚥
(𝕏), 𝚥 = {⟨𝑟⟩ , ⟨𝓁⟩}.

4. 𝑗 (𝕏) =
{
𝚜 ∈ ∶ 𝑛𝚥 (𝚜) ∩𝕏 ≠ 𝜑

}
= ∩{𝐻 ∈ 𝚥 ∶𝕏 ⊆𝐻} =𝚥 (𝕏), 𝚥 = {⟨𝑟⟩ , ⟨𝓁⟩}.

Proof. We will provide a detailed proof for the first item (where 𝚥 = 𝑟). The proofs for the remaining items will follow a similar 
pattern and are therefore omitted for brevity.

Necessity condition:

Let

𝚜 ∈(𝕏), (8)

then we have

𝑛𝑟(𝚜) ⊆𝕏.

By the reflexivity of , we obtain

𝚜 ∈ 𝑛𝑟(𝚜). (9)

As a consequence of the transitivity of , we deduce that

∀𝑧 ∈ 𝑛𝑟(𝚜), 𝑛𝑟(𝑧) ⊆ 𝑛𝑟(𝚜). (10)

From (8), (9), and (10), we conclude that 𝑛𝑟(𝚜) represents an right-open set included in 𝕏, with 𝚜 ∈ 𝑛𝑟(𝚜). This implies that

𝚜 ∈
𝑟
(𝕏).
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Sufficiency condition:

Suppose that

𝚜 ∈
𝑟
(𝕏),

then there exists

𝐺 ∈ 𝑟 such that 𝚜 ∈𝐺 ⊆𝕏.

Therefore, for all

𝑧 ∈𝐺, 𝑛𝑟(𝑧) ⊆𝐺,

which implies that

𝑛𝑟(𝚜) ⊆𝕏.

Hence, we conclude that

𝚜 ∈(𝕏). □

The situations of reflexivity and transitivity for the relation are essential and cannot be overlooked as illustrated Examples 3.1
and 3.2.

Example 3.1. Suppose that  is the relation {(ġ,ġ), (ġ,ḣ), (ḣ,ḣ), (ḣ,k̇), (k̇,k̇), (ṡ,ṡ)} defined over  = {ġ,ḣ,k̇,ṡ}, where  is reflexive. 
As a result, the right neighborhoods of the elements in  are determined as follows:

𝑛𝑟(ġ) = {ġ,ḣ}, 𝑛𝑟(ḣ) = {ḣ,k̇}, 𝑛𝑟(k̇) = {k̇}, and 𝑛𝑟(ṡ) = {ṡ}.

Thus, the topology 𝑟 induced by  is:

𝑟 = { , 𝜑, {k̇},{ṡ},{ḣ,k̇},{k̇,ṡ},{ġ,ḣ,k̇},{ḣ,k̇,ṡ}}.

Similarly, the family of closed sets 𝑟 is given by:

𝑟 = { , 𝜑, {ġ},{ṡ},{ġ,ḣ},{ġ,ṡ},{ġ,ḣ,k̇},{ġ,ḣ,ṡ}}.

Let  = {ġ,ḣ} and  = {k̇,ṡ}. Thereby, the 𝑟-lower and 𝑟-upper approximations are as follows: 
𝑟
() = 𝜑,𝑟( ) = . However, 

the classical lower and upper approximations yield: () ={ġ} and ( ) = {ḣ,k̇,ṡ}.

Example 3.2. Suppose that  = {ġ,ḣ,k̇,ṡ} with the transitive relation  = {(ġ,ġ), (ġ,ḣ), (ġ,k̇), (ḣ,k̇), (k̇,k̇)}. The corresponding right 
neighborhoods are as follows:

𝑛𝑟(ġ) = {ġ, ḣ, k̇}, 𝑛𝑟(ḣ) = 𝑛𝑟(k̇) = {k̇}, and 𝑛𝑟(ṡ) = 𝜑.

Consequently, the topology 𝑟 and its corresponding family of closed sets 𝑟 are given by: 𝑟 = { , 𝜑,{k̇}, {ṡ}, {ḣ,k̇}, {k̇,ṡ}, {ġ,ḣ,k̇}, 
{ḣ,k̇,ṡ}}, and 𝑟 = { , 𝜑, {ġ}, {ṡ}, {ġ,ḣ}, {ġ,ṡ}, {ġ,ḣ,k̇}, {ġ,ḣ,ṡ}}. 
For the subset  = {k̇,ṡ}, we obtain 

𝑟
() = {k̇,ṡ}, and 𝑟 () = . 

Although, the Yao approximations yield:  () ={ḣ,k̇,ṡ},  () ={ġ,ḣ,k̇}. 
Furthermore, for the entire universe and the empty set, we have:

 ( ) = ,  ( ) = {ġ,ḣ,k̇},  (𝜑) ={ṡ}, and  (𝜑) = 𝜑.

In contrast, the 𝚥-approximations provide:


𝑟
( ) = 𝑟 ( ) = , and 

𝑟
(𝜑) = 𝑟 (𝜑) = 𝜑.

3.5. Method of Dai et al. (2018)

Definition 3.5. [11] Let  be a binary relation defined on  . The maximal approximations, namely the (𝑟)-lower and (𝑟)-upper 
approximations of a subset 𝕏 ⊆ , are respectively established as:

(𝑟)(𝕏) = {𝑤 ∈ ∶ 𝑛(𝑟)(𝑤) ⊆𝕏}
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and

(𝑟)(𝕏) = {𝑤 ∈ ∶ 𝑛(𝑟)(𝑤) ∩𝕏 ≠ ∅}.

Furthermore, the (𝑟)-positive, (𝑟)-negative, and (𝑟)-boundary areas, along with the (𝑟)-accuracy measure for the (𝑟)-approximations 
of a subset 𝕏 ⊆ , can be formally constructed in the following manner:

 (𝑟)(𝕏) =(𝑟)(𝕏),

(𝑟)(𝕏) = ⧵(𝑟)(𝕏),

B(𝑟)(𝕏) =(𝑟)(𝕏) ⧵(𝑟)(𝕏),

and

𝜇(𝑟)(𝕏) =
|||(𝑟)(𝕏)||||||(𝑟)(𝕏)|||

, where |||(𝑟)(𝕏)||| ≠ 0.

Furthermore, if 𝜇(𝑟)(𝕏) = 1, then 𝕏 is named (𝑟)-exact. Otherwise, 𝕏 is considered (𝑟)-rough.

3.6. Techniques of Abu-Gdairi (2023)

The subsection presents a discussion for the methodologies introduced by [43], which serve as significant extensions to the method-
ology developed by [32]. The primary focus of this section is to generalize the notion of “initial-neighborhood” and, consequently, 
derive four distinct topologies based on these neighborhoods.

Definition 3.6. [43] Consider 
(
 ,, 𝜉𝚥

)
as a 𝚥-NS, where 𝚥 ∈ {𝑟,𝓁,∧,⋎}. For any subset 𝕏 ⊆ , we define:

1. The initial 𝚥-lower and initial 𝚥-upper approximations of 𝕏 as:

i

𝚥
(𝕏) =

⋃{
 ∈  i

𝚥 ∶  ⊆𝕏
}
,


i

𝚥 (𝕏) =
⋂{

 ∈  i

𝚥 ∶𝕏 ⊆
}
.

These correspond to the interior and closure, denoted respectively as 𝒊𝒏𝒕i𝚥 (𝕏) and 𝒄𝒍i𝚥 (𝕏), within the topological structures:

 i

𝚥 = { ⊆ ∶ ∀𝑚 ∈, 𝑛i𝚥 (𝑚) ⊆}

and

 i

𝚥 = { ⊆ ∶𝑐 ∈  i

𝚥 }.

2. The initial 𝚥-boundary, initial 𝚥-positive region, and initial 𝚥-negative region of 𝕏 are presented by:

B
i

𝚥 (𝕏) =
i

𝚥 (𝕏) −i

𝚥
(𝕏) ,

 i

𝚥 (𝕏) =i

𝚥
(𝕏) , 𝑎𝑛𝑑


i

𝚥 (𝕏) = −
i

𝚥 (𝕏) .

3. The initial 𝚥-accuracy associated with the approximations of 𝕏 ⊆ is determined as:

𝜇i𝚥 (𝕏) =
|||i

𝚥
(𝕏)|||||||

i

𝚥 (𝕏)
||||
, where

||||
i

𝚥 (𝕏)
|||| ≠ 0.

Clearly, the accuracy measure satisfies:

0 ≤ 𝜇i𝚥 (𝕏) ≤ 1.

If 𝜇i𝚥 (𝕏) = 1, the subset 𝕏 is termed an initial 𝚥-exact (or 𝚥-definable) set. If not, it is categorized as initial 𝚥-rough. 
It is important to observe that when 𝚥 = 𝑟, the initial 𝚥-approximations align with the framework proposed by [32].

In [45], Abu-Gdairi and El-Bably formulated and demonstrated the following significant result, which reinterprets the concept of 
initial 𝚥-approximations (Definition 3.6) independently of any topological constructs, as follows.
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Theorem 3.2. [45] Consider 
(
 , , 𝜉𝚥

)
being a 𝚥-NS. If 𝕏 ⊆  , then for each 𝚥 ∈ {𝑟, 𝓁, ∧, ⋎}: i

𝚥
(𝕏) = {𝑥 ∈  ∶ 𝑛i𝚥 (𝑥) ⊆ 𝕏} and 


i

𝚥 (𝕏) = {𝑥 ∈ ∶ 𝑛i𝚥 (𝑥) ∩𝕏 ≠ 𝜑}.

4. Novel sorts to initial-approximations

Considering the minimal 𝚥-neighborhoods and maximal 𝚥-neighborhoods, we construct new sorts of initial neighborhoods (so-called 
𝕀𝚥- approximations, for each 𝚥 ∈  , where  = {𝑟,𝓁,∧,⋎, ⟨𝑟⟩ , ⟨𝓁⟩ , ⟨∧⟩, ⟨⋎⟩ , (𝑟) , (𝓁) , (∧) , (⋎)}). This section is accordingly divided into 
two subsections: the first introduces these different kinds of neighborhoods, discussing their properties and relationships. The second 
subsection develops novel forms of rough approximations based on these neighborhoods, exploring their properties and interrelations. 
Several examples and counterexamples are provided as illustrations of the results established in the current part.

4.1. New kinds of initial-neighborhoods

Definition 4.1. Given that 
(
 ,, 𝜉𝚥

)
constitutes a 𝚥-NS. For any element 𝑥 ∈ , the below neighborhood structures are defined:

∙ Initial-Minimal 𝚥-Neighborhoods:

1. Initial-⟨𝑟⟩-Neighborhood: 𝑛i⟨𝑟⟩ (𝑥) =
{
𝑦 ∈ ∶ 𝑛⟨𝑟⟩ (𝑥) ⊆ 𝑛⟨𝑟⟩ (𝑦)}.

2. Initial-⟨𝓁⟩-Neighborhood: 𝑛i⟨𝓁⟩ (𝑥) =
{
𝑦 ∈ ∶ 𝑛⟨𝓁⟩ (𝑥) ⊆ 𝑛⟨𝓁⟩ (𝑦)}.

3. Initial-⟨∧⟩-Neighborhood: 𝑛i⟨∧⟩ (𝑥) = 𝑛i⟨𝑟⟩ (𝑥) ∩ 𝑛i⟨𝓁⟩ (𝑥).
4. Initial-⟨⋎⟩-Neighborhood: 𝑛i⟨⋎⟩ (𝑥) = 𝑛i⟨𝑟⟩ (𝑥) ∪ 𝑛i⟨𝓁⟩ (𝑥).

∙ Initial-Maximal 𝚥-Neighborhoods:

1. Initial-(𝑟)-Neighborhood: 𝑛i(𝑟) (𝑥) =
{
𝑦 ∈ ∶ 𝑛(𝑟) (𝑥) ⊆ 𝑛(𝑟) (𝑦)

}
.

2. Initial-(𝓁)-Neighborhood: 𝑛i(𝓁) (𝑥) =
{
𝑦 ∈ ∶ 𝑛(𝓁) (𝑥) ⊆ 𝑛(𝓁) (𝑦)

}
.

3. Initial-(∧)-Neighborhood: 𝑛i(∧) (𝑥) = 𝑛
i

(𝑟) (𝑥) ∩ 𝑛
i

(𝓁) (𝑥).
4. Initial-(⋎)-Neighborhood: 𝑛i(⋎) (𝑥) = 𝑛

i

(𝑟) (𝑥) ∪ 𝑛
i

(𝓁) (𝑥).

For simplicity, we will denote all initial neighborhoods by 𝑛i𝚥 (𝑥), for each 𝚥 ∈  , where the set  = {𝑟,𝓁, ∧, ⋎, ⟨𝑟⟩ , ⟨𝓁⟩ , ⟨∧⟩ , ⟨⋎⟩ , (𝑟) , 
(𝓁) , (∧) , (⋎)}, except where otherwise stated.

The relationships among the above neighborhoods are shown in the following results.

Lemma 4.1. Given that 
(
 ,, 𝜉𝚥

)
is a 𝚥-NS. So, for each 𝑥∈ , the upcoming inclusions hold:

1. 𝑛i⟨∧⟩ (𝑥) ⊆ 𝑛i⟨𝑟⟩ (𝑥) ⊆ 𝑛i⟨⋎⟩ (𝑥).
2. 𝑛i⟨∧⟩ (𝑥) ⊆ 𝑛i⟨𝓁⟩ (𝑥) ⊆ 𝑛i⟨⋎⟩ (𝑥).
3. 𝑛i(∧) (𝑥) ⊆ 𝑛

i

(𝑟) (𝑥) ⊆ 𝑛
i

(⋎) (𝑥).
4. 𝑛i(∧) (𝑥) ⊆ 𝑛

i

(𝓁) (𝑥) ⊆ 𝑛
i

(⋎) (𝑥).

Proof. Using Definition 4.1, the proof is straightforward. □

Lemma 4.2. Consider 
(
 ,, 𝜉𝚥

)
being a 𝚥-NS. For each 𝑥, 𝑦∈ and 𝚥 ∈  , if 𝑦 ∈ 𝑛i𝚥 (𝑥), then 𝑛i𝚥 (𝑦) ⊆ 𝑛

i
𝚥 (𝑥).

Proof. By applying Lemma 3.1 of [32], the outcome follows immediately. □

Remark 4.1. The subsequent examples illustrate that the initial 𝚥-neighborhoods, initial-minimal 𝚥-neighborhoods, and initial-
maximal 𝚥-neighborhoods are generally not comparable in the context of a binary relation (as demonstrated in Example 4.1), nor in 
specific cases of binary relations (as shown in Examples 4.2, 4.3, 4.4, and 4.5). This observation is made for the case where 𝚥 = 𝑟; 
however, the same logic extends to the other cases.

Example 4.1. Assume that  is a binary relation on  represented by  = {(ġ,ġ), (ġ,ḣ), (ḣ,ḣ), (ḣ,k̇), (ṡ,k̇), (ṡ,ṡ)}, where  = {ġ,ḣ,k̇,ṡ}. 
Based on this relation, we determine the 𝚥-neighborhoods and the initial 𝚥-neighborhoods, which are concisely presented in Tables 10
and 11. From Table 11, it is evident that 𝑛i𝑟 (𝑥) and 𝑛i⟨𝑟⟩ (𝑥) as well as 𝑛i𝑟 (𝑥) and 𝑛i(𝑟) (𝑥) are not comparable. Additionally, 𝑛i⟨𝑟⟩ (𝑥) and 
𝑛i(𝑟) (𝑥) are also not comparable. 

Example 4.2. Consider  ={(ġ,ġ), (ġ,ḣ), (ḣ,ḣ), (ḣ,k̇), (k̇,k̇), (ṡ,k̇), (ṡ,ṡ)} being a reflexive relation on  = {ġ,ḣ,k̇,ṡ}. Based on this 
relation, we obtain the 𝚥-neighborhoods and initial 𝚥-neighborhoods, as displayed in Tables 12 and 13. From Table 13, it is evident 
that 𝑛i𝑟 (𝑥) and 𝑛i⟨𝑟⟩ (𝑥) as well as 𝑛i𝑟 (𝑥) and 𝑛i(𝑟) (𝑥) are not comparable. Additionally, 𝑛i⟨𝑟⟩ (𝑥) and 𝑛i(𝑟) (𝑥) are also not comparable. 
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Table 10

𝚥-neighborhoods, 𝚥∈ {𝑟, ⟨𝑟⟩, (𝑟)}.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛(𝑟) (⋆)

ġ {ġ,ḣ} {ġ,ḣ} {ġ,ḣ} 
ḣ {ḣ,k̇} {ḣ} {ġ,ḣ,k̇} 
k̇ 𝜑 {k̇} {ḣ,k̇,ṡ} 
ṡ {k̇,ṡ} {k̇,ṡ} {k̇,ṡ} 

Table 11

Initial 𝚥-neighborhoods, 𝚥 ∈
{𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛i
𝑟
(⋆) 𝑛i⟨𝑟⟩ (⋆) 𝑛i(𝑟) (⋆)

ġ {ġ} {ġ} {ġ,ḣ} 
ḣ {ḣ} {ġ,ḣ} {ḣ} 
k̇  {k̇,ṡ} {k̇} 
ṡ {ṡ} {ṡ} {k̇,ṡ} 

Table 12

𝚥-neighborhoods, 𝚥∈ {𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛(𝑟) (⋆)

ġ {ġ,ḣ} {ġ,ḣ} {ġ,ḣ} 
ḣ {ḣ,k̇} {ḣ} {ġ,ḣ,k̇} 
k̇ {k̇} {k̇} {ḣ,k̇,ṡ} 
ṡ {k̇,ṡ} {k̇,ṡ} {k̇,ṡ} 

Table 13

Initial 𝚥-neighborhoods, 𝚥∈ {𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛i
𝑟
(⋆) 𝑛i⟨𝑟⟩ (⋆) 𝑛i(𝑟) (⋆)

ġ {ġ} {ġ} {ġ,ḣ} 
ḣ {ḣ} {ġ,ḣ} {ḣ} 
k̇ {ḣ,k̇,ṡ} {k̇,ṡ} {k̇} 
ṡ {ṡ} {ṡ} {k̇,ṡ} 

Table 14

𝚥-neighborhoods, 𝚥∈ {𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛(𝑟) (⋆)

ġ {ġ,ḣ,k̇} {ġ} 

ḣ {ġ,k̇,ṡ} {ḣ} {ġ,ḣ,k̇} 
k̇ {ġ,ḣ} {ġ,k̇} 

ṡ {ḣ} {ġ,k̇,ṡ} {ġ,k̇,ṡ} 

Example 4.3. Consider  ={(ġ,ġ), (ġ,ḣ), (ḣ,ġ), (ḣ,k̇), (k̇,ḣ), (ġ,k̇), (k̇,ġ), (ḣ,ṡ), (ṡ,ḣ),} being a symmetric relation on  = {ġ,ḣ,k̇,ṡ}. 
Based on this relation, we obtain the 𝚥-neighborhoods and initial 𝚥-neighborhoods, as displayed in Tables 14 and 15. From Table 15, 
it is evident that 𝑛i𝑟 (𝑥) and 𝑛i⟨𝑟⟩ (𝑥) beside 𝑛i⟨𝑟⟩ (𝑥) and 𝑛i(𝑟) (𝑥) are not comparable.

Example 4.4. Consider  ={(ġ,ġ), (ḣ,ġ) (ḣ,ḣ), (ḣ,k̇), (ṡ,k̇), (ġ,k̇)} being a transitive relation on  ={ġ,ḣ,k̇,ṡ}. Based on this relation, 
we obtain the 𝚥-neighborhoods and initial 𝚥-neighborhoods, as displayed in Tables 16 and 17. From Table 17, it is evident that 𝑛i𝑟 (𝑥)
and 𝑛i⟨𝑟⟩ (𝑥) as well as 𝑛i𝑟 (𝑥) and 𝑛i(𝑟) (𝑥) are not comparable.

Example 4.5. Consider  ={(ġ,ġ), (ġ,ḣ), (ḣ,ġ), (ḣ,ḣ), (ḣ,k̇), (k̇,ḣ), (k̇,k̇), (k̇,ṡ), (ṡ,k̇), (ṡ,ṡ)} being a similarity relation on  ={ġ,ḣ,k̇,ṡ}. 
Based on this relation, we obtain the 𝚥-neighborhoods and initial 𝚥-neighborhoods, as displayed in Tables 18 and 19. From Table 19, 
it is evident that 𝑛i𝑟 (𝑥) and 𝑛i⟨𝑟⟩ (𝑥) beside 𝑛i⟨𝑟⟩ (𝑥) and 𝑛i(𝑟) (𝑥) are not comparable.

Theorem 4.1. Assume that  is relation on  , which is symmetric. If 
(
 ,, 𝜉𝚥

)
forms a 𝚥-NS, then for each 𝑥∈ :

1. 𝑛i⟨𝑟⟩ (𝑥) = 𝑛i⟨𝓁⟩ (𝑥) = 𝑛i⟨∧⟩ (𝑥) = 𝑛i⟨⋎⟩ (𝑥).
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Table 15

Initial 𝚥-neighborhoods, 𝚥 ∈ {𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛i
𝑟
(⋆) 𝑛i⟨𝑟⟩ (⋆) 𝑛i(𝑟) (⋆)

ġ {ġ} {ġ,k̇,ṡ} {ġ,k̇} 
ḣ {ḣ} {ḣ} {ġ,ḣ,k̇} 
k̇ {ġ,k̇} {k̇,ṡ} {ġ,k̇} 
ṡ {ġ,k̇,ṡ} {ṡ} {ġ,k̇,ṡ} 

Table 16

𝚥-neighborhoods, 𝚥∈ {𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛(𝑟) (⋆)

ġ {ġ,k̇} {ġ,k̇} {ġ,ḣ,k̇} 
ḣ {ġ,ḣ,k̇} {ġ,ḣ,k̇} {ġ,ḣ,k̇} 
k̇ 𝜑 {k̇} {ġ,ḣ,k̇} 
ṡ {k̇} 𝜑 𝜑

Table 17

Initial 𝚥-neighborhoods, 𝚥 ∈ {𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛i
𝑟
(⋆) 𝑛i⟨𝑟⟩ (⋆) 𝑛i(𝑟) (⋆)

ġ {ġ,ḣ} {ġ,ḣ} {ġ,ḣ,k̇} 
ḣ {ḣ} {ḣ} {ġ,ḣ,k̇} 
k̇  {ġ,ḣ,k̇} {ġ,ḣ,k̇} 
ṡ {ġ,ḣ,ṡ}  

Table 18

𝚥-neighborhoods, 𝚥∈ {𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛(𝑟) (⋆)

ġ {ġ,ḣ} {ġ,ḣ} {ġ,ḣ,k̇} 
ḣ {ġ,ḣ,k̇} {ḣ} 

k̇ {ḣ,k̇,ṡ} {k̇} 

ṡ {k̇,ṡ} {k̇,ṡ} {ḣ,k̇,ṡ} 

Table 19

Initial 𝚥-neighborhoods, 𝚥 ∈
{𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛i
𝑟
(⋆) 𝑛i⟨𝑟⟩ (⋆) 𝑛i(𝑟) (⋆)

ġ {ġ,ḣ} {ġ} {ġ,ḣ,k̇} 
ḣ {ḣ} {ġ,ḣ} {ḣ,k̇} 
k̇ {k̇} {k̇,ṡ} {ḣ,k̇} 
ṡ {k̇,ṡ} {ṡ} {ḣ,k̇,ṡ} 

2. 𝑛i(𝑟) (𝑥) = 𝑛
i

(𝓁) (𝑥) = 𝑛
i

(∧) (𝑥) = 𝑛
i

(⋎) (𝑥).

Proof. The consequence follows immediately according to Theorem 2.2. □

Theorem 4.2. Given ( ,, 𝜉𝚥) is a 𝚥-NS, where  is a similarity relation defined over the universe  . For every element 𝑥∈ and each 
𝚥 ∈ {𝑟,𝓁,∧,⋎}, the subsequent features hold:

Proof. The proof for the issue 𝚥 = 𝑟 is provided, and the proofs for the other cases follow similarly.

Let 𝑤 ∈ 𝑛i(𝑟) (𝑥) then 𝑛(𝑟) (𝑥) ⊆ 𝑛(𝑟) (𝑤) . Thus, 𝑑 ∈ 𝑛(𝑟) (𝑤) , for every 𝑑 ∈ 𝑛(𝑟) (𝑥) (11)

Since  is reflexive, by Lemma 2.2 and Theorem 2.1, 𝑥 ∈ 𝑛𝑟 (𝑥) and 𝑛𝑟 (𝑥) ⊆ 𝑛(𝑟) (𝑥).

Thus, by (11), 𝑥 ∈ 𝑛(𝑟) (𝑤) , implying ∃𝑔 ∈ such that 𝑤 ∈ 𝑛𝑟 (𝑔) and 𝑥 ∈ 𝑛𝑟 (𝑔) (12)

Since  is symmetric, by (12), 𝑔 ∈ 𝑛𝑟 (𝑤) and 𝑔 ∈ 𝑛𝑟 (𝑥) which implies 𝑛𝑟 (𝑤) ⊆ 𝑛𝑟 (𝑥). Therefore, 𝑤 ∈ 𝑛𝑟 (𝑥) that contains 𝑥. 
Accordingly, 𝑤 ∈ 𝑛(𝑟) (𝑥). □
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Table 20

𝚥-neighborhoods, 𝚥∈ {𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛𝑟 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛(𝑟) (⋆)

ġ {ġ,ḣ,k̇} {ġ,ḣ,k̇} {ġ,ḣ,k̇} 
ḣ {ġ,ḣ,k̇} {ġ,ḣ,k̇} {ġ,ḣ,k̇} 
k̇ {k̇} {k̇} 

ṡ {k̇,ṡ} {k̇,ṡ} {k̇,ṡ} 

Table 21

Initial 𝚥-neighborhoods, 𝚥 ∈
{𝑟, ⟨𝑟⟩ , (𝑟)}.

⋆ 𝑛i
𝑟
(⋆) 𝑛i⟨𝑟⟩ (⋆) 𝑛i(𝑟) (⋆)

ġ {ġ,ḣ} {ġ,ḣ} {ġ,ḣ,k̇} 
ḣ {ġ,ḣ} {ġ,ḣ} {ġ,ḣ,k̇} 
k̇   {k̇} 
ṡ {ṡ} {ṡ} {k̇,ṡ} 

Remark 4.2. In Theorem 4.2, it cannot be replaced the inclusion sign by an equal sign in general, as verified by Example 4.5.

Theorem 4.3. Assume that 
(
 ,, 𝜉𝚥

)
forms a 𝚥-NS, with  being a preorder relation on  . Then, for each 𝑥 ∈  and for every 𝚥 ∈

{𝑟,𝓁,∧,⋎}, the following equality holds:

𝑛i⟨𝚥⟩ (𝑥) = 𝑛i𝚥 (𝑥) .
Proof. By applying Theorem 2.6, the outcome follows immediately. □

Remark 4.3. Example 4.6 exemplify that:

1. For each 𝚥 ∈ {𝑟,𝓁,∧,⋎}, the initial 𝚥-neighborhoods and initial-maximal 𝚥-neighborhoods are not comparable in the case of 
preorder relations.

2. For each 𝚥 ∈ {𝑟,𝓁,∧,⋎}, the initial-minimal 𝚥-neighborhoods and initial-maximal 𝚥-neighborhoods are not comparable in the case 
of preorder relations.

Example 4.6. Consider the relation  = {(ġ,ġ), (ġ,ḣ), (ġ,k̇), (ḣ,ġ), (ḣ,ḣ), (ḣ,k̇), (k̇,k̇), (ṡ,k̇), (ṡ,ṡ)}, which is a preorder on the set  =
{ġ,ḣ,k̇,ṡ}. Consequently, the 𝚥-neighborhoods and the initial 𝚥-neighborhoods are obtained as presented in Tables 20 and 21. 

4.2. New kinds of initial-rough sets

Now, we use the above neighborhoods to define new sorts for initial-approximations.

Definition 4.2. Assume ( ,, 𝜉𝚥), which constitutes a 𝚥-NS, and let 𝚥 ∈  . For any subset 𝕊⊆ , we define the following:

1. The initial 𝚥-lower approximation (abbreviated as 𝕀𝚥-lower) and the initial 𝚥-upper approximation (abbreviated as 𝕀𝚥-upper) of 𝕊 are 
given by

𝕃𝚘i
𝚥
(𝕊) = {𝑥 ∈ ∶ 𝑛i𝚥 (𝑥) ⊆ 𝕊},

and

𝕌𝚙
i

𝚥 (𝕊) = {𝑥 ∈ ∶ 𝑛i𝚥 (𝑥) ∩ 𝕊 ≠∅}.

2. The initial 𝚥-positive region (or 𝕀𝚥-positive region) of 𝕊 is defined as

ℙ𝚘i𝚥 (𝕊) = 𝕃𝚘i
𝚥
(𝕊) ,

while the initial 𝚥-negative region (or 𝕀𝚥-negative region) is given by

ℕ𝚎i𝚥 (𝕊) = ⧵𝕌𝚙
i

𝚥 (𝕊) .

The initial 𝚥-boundary region (or 𝕀𝚥-boundary) of 𝕊 is determined as the difference between the initial upper and lower approxi-
mations:
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𝔹ℕi

𝚥 (𝕊) = 𝕌𝚙
i

𝚥 (𝕊) ⧵ 𝕃𝚘
i

𝚥
(𝕊) .

3. The initial 𝚥-accuracy (or 𝕀𝚥-accuracy) of the approximations of 𝕊 is provided by the ratio

𝔸𝚌i𝚥 (𝕊) =
|||𝕃𝚘i𝚥 (𝕊)|||||||𝕌𝚙

i

𝚥 (𝕊)
||||
,

provided that 
||||𝕌𝚙

i

𝚥 (𝕊)
|||| ≠ 0.

Note that 0 ≤𝔸𝚌i𝚥 (𝕊) ≤ 1. When 𝔸𝚌i𝚥 (𝕊) = 1, the set 𝕊 is termed 𝕀𝚥-definable (or 𝕀𝚥-exact); otherwise, it is considered 𝕀𝚥-rough.

Note:

1. When 𝚥 = 𝑟, this definition is equivalent to the one given by El-Sayed et al. [32].
2. When 𝚥 ∈ {𝓁,∧,⋎}, this definition corresponds to the one provided by Abu-Gdairi [43].

The following proposition establishes key characteristics of the 𝚥-initial approximations.

Proposition 4.1. Consider the 𝚥-NS ( ,, 𝜉𝚥). For any subsets 𝔸,𝔹⊆ and for each 𝚥∈  :

(L1) 𝕃𝚘i
𝚥
(𝔸) ⊆𝔸. (U1) 𝔸 ⊆ 𝕌𝚙

i

𝚥 (𝔸).

(L2) 𝕃𝚘i
𝚥
(𝜑) = 𝜑. (U2) 𝕌𝚙

i

𝚥 (𝜑) = 𝜑.

(L3) 𝕃𝚘i
𝚥
( ) = . (U3) 𝕌𝚙

i

𝚥 ( ) = .

(L4) If 𝔸 ⊆ 𝔹, then 𝕃𝚘i
𝚥
(𝔸) ⊆ 𝕃𝚘i

𝚥
(𝔹). (U4) If 𝔸 ⊆ 𝔹, then 𝕌𝚙

i

𝚥 (𝔸) ⊆𝕌𝚙
i

𝚥 (𝔹).

(L5) 𝕃𝚘i
𝚥

(
𝔸
⋂

𝔹
)
= 𝕃𝚘i

𝚥
(𝔸)

⋂
𝕃𝚘i

𝚥
(𝔹). (U5) 𝕌𝚙

i

𝚥

(
𝔸
⋃

𝔹
)
=𝕌𝚙

i

𝚥 (𝔸)
⋃

𝕌𝚙
i

𝚥 (𝔹).

(L6) 𝕃𝚘i
𝚥
(𝔸)

⋃
𝕃𝚘i

𝚥
(𝔹) ⊆ 𝕃𝚘i

𝚥

(
𝔸
⋃

𝔹
)
. (U6) 𝕌𝚙

i

𝚥 (𝔸)
⋂

𝕌𝚙
i

𝚥 (𝔹) ⊇𝕌𝚙
i

𝚥

(
𝔸
⋂

𝔹
)
.

(L7) 𝕃𝚘i
𝚥
(𝔸𝑐) = (𝕌𝚙

i

𝚥 (𝔸))
𝑐

. (U7) 𝕌𝚙
i

𝚥 (𝔸
𝑐) = (𝕃𝚘i

𝚥
(𝔸))𝑐 .

(L8) 𝕃𝚘i
𝚥

(
𝕃𝚘i

𝚥
(𝔸)

)
= 𝕃𝚘i

𝚥
(𝔸). (U8) 𝕌𝚙

i

𝚥

(
𝕌𝚙

i

𝚥 (𝔸)
)
=𝕌𝚙

i

𝚥 (𝔸).

(L9) 𝕃𝚘i
𝚥

(
𝕌𝚙

i

𝚥 (𝔸)
)
⊆𝕌𝚙

i

𝚥 (𝔸). (U9) 𝕌𝚙
i

𝚥

(
𝕃𝚘i

𝚥
(𝔸)

)
⊇ 𝕃𝚘i

𝚥
(𝔸).

Proof. We begin by noting that when 𝚥 = 𝑟, the stated properties are established in [32] and [43]. Consequently, these properties 
hold for 𝚥 ∈ {𝑟,𝓁,∧,⋎}. It remains to prove the proposition for the other cases.

For clarity, we provide the proof for the case 𝚥 = ⟨𝑟⟩; analogous arguments apply to the remaining cases.
Properties (L1)–(L3) and (U1)–(U3) follow directly from Definition 4.1.

(L4) Assume 𝔸 ⊆ 𝔹 and let 𝑤 ∈ 𝕃𝚘i⟨𝑟⟩(𝔸). By definition,

𝑛i⟨𝑟⟩(𝑤) ⊆𝔸.

Since 𝔸 ⊆ 𝔹, we have 𝑛i⟨𝑟⟩(𝑤) ⊆ 𝔹, which implies 𝑤 ∈ 𝕃𝚘i⟨𝑟⟩(𝔹). Hence,

𝕃𝚘i⟨𝑟⟩(𝔸) ⊆ 𝕃𝚘i⟨𝑟⟩(𝔹).
Similarly, we deduce that

𝕌𝚙
i⟨𝑟⟩(𝔸) ⊆𝕌𝚙

i⟨𝑟⟩(𝔹).
(L5) First, note that 𝔸 ∩𝔹 ⊆𝔸 and 𝔸 ∩𝔹 ⊆ 𝔹. By (L4), it follows that

𝕃𝚘i⟨𝑟⟩(𝔸 ∩𝔹) ⊆ 𝕃𝚘i⟨𝑟⟩(𝔸) and 𝕃𝚘i⟨𝑟⟩(𝔸 ∩𝔹) ⊆ 𝕃𝚘i⟨𝑟⟩(𝔹).
Thus,

𝕃𝚘i⟨𝑟⟩(𝔸 ∩𝔹) ⊆ 𝕃𝚘i⟨𝑟⟩(𝔸) ∩ 𝕃𝚘i⟨𝑟⟩(𝔹).
Conversely, let 𝑤 ∈ 𝕃𝚘i⟨𝑟⟩(𝔸) ∩ 𝕃𝚘i⟨𝑟⟩(𝔹). Therefore,

𝑛i⟨𝑟⟩(𝑤) ⊆𝔸 and 𝑛i⟨𝑟⟩(𝑤) ⊆ 𝔹,
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so that

𝑛i⟨𝑟⟩(𝑤) ⊆𝔸 ∩𝔹,

implying 𝑤 ∈ 𝕃𝚘i⟨𝑟⟩(𝔸 ∩𝔹). Hence,

𝕃𝚘i⟨𝑟⟩(𝔸 ∩𝔹) = 𝕃𝚘i⟨𝑟⟩(𝔸) ∩ 𝕃𝚘i⟨𝑟⟩(𝔹).
Using a similar argument, one may also show that

𝕌𝚙
i⟨𝑟⟩(𝔸 ∪𝔹) = 𝕌𝚙

i⟨𝑟⟩(𝔸) ∪𝕌𝚙
i⟨𝑟⟩(𝔹).

(L6) By applying properties (L4) and (U4), the statements in (L6) and (U6) follow straightforwardly.

(L7) Observe that[
𝕌𝚙

i⟨𝑟⟩(𝔸)
]𝑐

=
{
𝑥 ∈ ∶ 𝑛i⟨𝑟⟩(𝑥) ∩𝔸 =∅

}
=
{
𝑥 ∈ ∶ 𝑛i⟨𝑟⟩(𝑥) ⊆𝔸𝑐

}
,

which is exactly 𝕃𝚘i⟨𝑟⟩(𝔸𝑐). Similarly, one can show that[
𝕃𝚘i⟨𝑟⟩(𝔸)

]𝑐
=𝕌𝚙

i⟨𝑟⟩(𝔸𝑐).
(L8) First, by (L1) and (L4), we have

𝕃𝚘i⟨𝑟⟩
(
𝕃𝚘i⟨𝑟⟩(𝔸)

)
⊆ 𝕃𝚘i⟨𝑟⟩(𝔸).

Now, let

assume 𝑤 ∈ 𝕃𝚘i⟨𝑟⟩(𝔸). Then 𝑛i⟨𝑟⟩(𝑤) ⊆𝔸. (13)

To demonstrate that 𝑤 ∈ 𝕃𝚘i⟨𝑟⟩
(
𝕃𝚘i⟨𝑟⟩(𝔸)

)
, we must show that

𝑛i⟨𝑟⟩(𝑤) ⊆ 𝕃𝚘i⟨𝑟⟩(𝔸).
Let 𝑧 ∈ 𝑛i⟨𝑟⟩(𝑤). Then, by Lemma 4.2,

𝑛i⟨𝑟⟩(𝑧) ⊆ 𝑛i⟨𝑟⟩(𝑤).
Using (13), it follows that

𝑛i⟨𝑟⟩(𝑧) ⊆𝔸,

so that 𝑧 ∈ 𝕃𝚘i⟨𝑟⟩(𝔸). Hence,

𝑛i⟨𝑟⟩(𝑤) ⊆ 𝕃𝚘i⟨𝑟⟩(𝔸),
implying 𝑤 ∈ 𝕃𝚘i⟨𝑟⟩

(
𝕃𝚘i⟨𝑟⟩(𝔸)

)
. So,

𝕃𝚘i⟨𝑟⟩(𝔸) ⊆ 𝕃𝚘i⟨𝑟⟩
(
𝕃𝚘i⟨𝑟⟩(𝔸)

)
.

By an analogous argument, one can verify that

𝕌𝚙
i⟨𝑟⟩
(
𝕌𝚙

i⟨𝑟⟩(𝔸)
)
= 𝕌𝚙

i⟨𝑟⟩(𝔸).
(L9) This property follows directly from (L1), and similarly, (U9) is a direct consequence of (U1). □

Remark 4.4. 

1. According Proposition 4.1, 𝕃𝚘i
𝚥
(𝜑) = 𝕃𝚘i

𝚥
(𝜑) = 𝜑. Therefore, 𝜑 is 𝕀𝑗 -definable and hence 𝔸𝚌i𝑗 (𝜑) = 1.

2. The following example (Example 4.7) illustrates that the converse of properties (L6), (U6), (L9), and (U9) does not generally 
hold.

Example 4.7. (Continuation of Example 4.1.) Let 𝔸={ġ,ḣ,k̇} and 𝔹={ġ,ḣ,ṡ}, implying 𝔸 ∪𝔹 = . We then obtain 𝕃𝚘i⟨𝑟⟩ (𝔸) ={ġ,ḣ} 

and 𝕃𝚘i⟨𝑟⟩ (𝔹) ={ġ,ḣ,ṡ}. It is evident that 𝕃𝚘i⟨𝑟⟩ (𝔸)∪𝕃𝚘i⟨𝑟⟩ (𝔹)={ġ,ḣ,ṡ}, even though 𝕃𝚘i⟨𝑟⟩ (𝔸 ∪𝔹) = . Correspondingly, 𝕌𝚙
i⟨𝑟⟩ (𝔸)={ġ, 
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Table 22

Initial-minimal 𝚥-neighborhoods.

⋆ 𝑛i⟨𝑟⟩ (⋆) 𝑛i⟨𝓁⟩ (⋆) 𝑛i⟨∧⟩ (⋆) 𝑛i⟨⋎⟩ (⋆)
ġ {ġ} {ġ} {ġ} {ġ} 
ḣ {ġ,ḣ} {ḣ,k̇,ṡ} {ḣ} 

k̇ {k̇} {k̇,ṡ} {k̇} {k̇,ṡ} 
ṡ  {k̇,ṡ} {k̇,ṡ} 

Table 23

Initial-maximal 𝚥-neighborhoods.

⋆ 𝑛i(𝑟) (⋆) 𝑛i(𝓁) (⋆) 𝑛i(∧) (⋆) 𝑛i(⋎) (⋆)

ġ {ġ,ḣ} {ġ,ḣ} {ġ,ḣ} {ġ,ḣ} 
ḣ {ḣ} {ḣ} {ḣ} {ḣ} 
k̇ {ḣ,k̇} {ḣ,k̇,ṡ} {ḣ,k̇} {ḣ,k̇,ṡ} 
ṡ  {ḣ,k̇,ṡ} {ḣ,k̇,ṡ} 

ḣ,k̇} and 𝕌𝚙
i⟨𝑟⟩ (𝔹) = , which implies 𝕌𝚙

i⟨𝑟⟩ (𝔸) ∩𝕌𝚙
i⟨𝑟⟩ (𝔹)={ġ,ḣ,k̇}. However, 𝔸∩𝔹={ġ,ḣ}, implying 𝕌𝚙

i⟨𝑟⟩ (𝔸 ∩𝔹)={ġ,ḣ}, which 

means that 𝕌𝚙
i⟨𝑟⟩ (𝔸 ∩𝔹) ≠𝕌𝚙

i⟨𝑟⟩ (𝔸) ∩𝕌𝚙
i⟨𝑟⟩ (𝔹). Similarly, we can illustrate Remark 4.5 for other cases.

The results below clarify the relationships among the various forms of 𝕀𝚥-approximations for each 𝚥 ∈ {⟨𝑟⟩, ⟨𝓁⟩, ⟨∧⟩, ⟨⋎⟩, (𝑟), (𝓁), (∧), 
(⋎)}.

Proposition 4.2. Consider 
(
 ,, 𝜉𝚥

)
as a 𝚥-NS. Then, for every 𝔸⊆ , the next results are valid:

1. 𝕃𝚘i⟨⋎⟩ (𝔸) ⊆ 𝕃𝚘i⟨𝑟⟩ (𝔸) ⊆ 𝕃𝚘i⟨∧⟩ (𝔸). 5. 𝕌𝚙
i⟨∧⟩ (𝔸) ⊆𝕌𝚙

i⟨𝑟⟩ (𝔸) ⊆𝕌𝚙
i⟨⋎⟩ (𝔸).

2. 𝕃𝚘i⟨⋎⟩ (𝔸) ⊆ 𝕃𝚘i⟨𝓁⟩ (𝔸) ⊆ 𝕃𝚘i⟨∧⟩ (𝔸) 6. 𝕌𝚙
i⟨∧⟩ (𝔸) ⊆𝕌𝚙

i⟨𝓁⟩ (𝔸) ⊆ 𝕌𝚙
i⟨⋎⟩ (𝔸).

3. 𝕃𝚘i(⋎) (𝔸) ⊆ 𝕃𝚘i(𝑟) (𝔸) ⊆ 𝕃𝚘i(∧) (𝔸). 7. 𝕌𝚙
i

(∧) (𝔸) ⊆ 𝕌𝚙
i

(𝑟) (𝔸) ⊆𝕌𝚙
i

(⋎) (𝔸).

4. 𝕃𝚘i(⋎) (𝔸) ⊆ 𝕃𝚘i(𝓁) (𝔸) ⊆ 𝕃𝚘i(∧) (𝔸). 8. 𝕌𝚙
i

(∧) (𝔸) ⊆ 𝕌𝚙
i

(𝓁) (𝔸) ⊆𝕌𝚙
i

(⋎) (𝔸).

Proof. Using Lemma 4.1, the proof is understandable. □

Corollary 4.1. Consider 
(
 ,, 𝜉𝚥

)
being a 𝚥-NS. Then, for every 𝔸⊆ , the subsequent properties are verified:

1. 𝔹ℕi⟨∧⟩ (𝔸) ⊆ 𝔹ℕi⟨𝑟⟩ (𝔸) ⊆ 𝔹ℕi⟨⋎⟩ (𝔸). 5. 𝔸𝚌i⟨⋎⟩ (𝔸) ≤𝔸𝚌i⟨𝑟⟩ (𝔸) ≤𝔸𝚌i⟨∧⟩ (𝔸).
2. 𝔹ℕi⟨∧⟩ (𝔸) ⊆ 𝔹ℕi⟨𝓁⟩ (𝔸) ⊆ 𝔹ℕi⟨⋎⟩ (𝔸). 6. 𝔸𝚌i⟨⋎⟩ (𝔸) ≤𝔸𝚌i⟨𝓁⟩ (𝔸) ≤𝔸𝚌i⟨∧⟩ (𝔸).
3. 𝔹ℕi

(∧) (𝔸) ⊆ 𝔹ℕi

(𝑟) (𝔸) ⊆ 𝔹ℕi

(⋎) (𝔸). 7. 𝔸𝚌i(⋎) (𝔸) ≤𝔸𝚌i(𝑟) (𝔸) ≤𝔸𝚌i(∧) (𝔸).
4. 𝔹ℕi

(∧) (𝔸) ⊆ 𝔹ℕi

(𝓁) (𝔸) ⊆ 𝔹ℕi

(⋎) (𝔸). 8. 𝔸𝚌i(⋎) (𝔸) ≤𝔸𝚌i(𝓁) (𝔸) ≤𝔸𝚌i(∧) (𝔸)

Corollary 4.2. Consider 
(
 ,, 𝜉𝚥

)
being a 𝚥-NS. Then, for every 𝔸⊆ , the following hold:

1. 𝔸 is 𝕀⟨⋎⟩-definable ⇒ it is 𝕀⟨𝑟⟩-definable ⇒ it is 𝕀⟨∧⟩-definable.

2. 𝔸 is 𝕀⟨⋎⟩-definable ⇒ it is 𝕀⟨𝓁⟩-definable ⇒ it is 𝕀⟨∧⟩-definable.

3. 𝔸 is 𝕀(⋎)-definable ⇒ it is 𝕀(𝑟)-definable ⇒ it is 𝕀(∧)-definable.

4. 𝔸 is 𝕀(⋎)-definable ⇒ it is 𝕀(𝓁)-definable ⇒ it is 𝕀(∧)-definable.

Remark 4.5. The converse of the foregoing outcomes is not universally valid, as depicted in the subsequent example.

Example 4.8. Suppose that  = {ġ,ḣ,k̇,ṡ} and  ={(ġ,ġ,), (ġ,ḣ), (ḣ,ḣ), (ḣ,k̇), (ṡ,k̇), (k̇,k̇)}. Using this relation, the initial-minimal 
𝚥-neighborhoods and the initial-maximal 𝚥-neighborhoods are obtained, as detailed in Tables 22 and 23.
Now, let 𝔸 ={ġ,k̇,ṡ}, then we compute initial-minimal approximations of them as follows: 
𝕃𝚘i⟨𝑟⟩ (𝔸) ={ġ,k̇}, 𝕌𝚙

i⟨𝑟⟩ (𝔸) = , 𝔹ℕi⟨𝑟⟩ (𝔸) ={ḣ,ṡ} and 𝔸𝚌i⟨𝑟⟩ (𝔸) = 1
2 . 

𝕃𝚘i⟨𝓁⟩ (𝔸) =𝔸, 𝕌𝚙
i⟨𝓁⟩ (𝔸) = , 𝔹ℕi⟨𝓁⟩ (𝔸) ={ḣ}, and 𝔸𝚌i⟨𝓁⟩ (𝔸) = 3

4 . 

𝕃𝚘i⟨∧⟩ (𝔸) =𝔸, 𝕌𝚙
i⟨∧⟩ (𝔸) =𝔸, 𝔹ℕi⟨∧⟩ (𝔸) = 𝜑, and 𝔸𝚌i⟨∧⟩ (𝔸) =1. 

𝕃𝚘i⟨⋎⟩ (𝔸) ={ġ,k̇}, 𝕌𝚙
i⟨⋎⟩ (𝔸) = , 𝔹ℕi⟨⋎⟩ (𝔸) ={ḣ,ṡ}, and 𝔸𝚌i⟨⋎⟩ (𝔸) = 1

2 .

In a similar way, one can compute initial-maximal approximations for other subsets.
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Remark 4.6. According to Example 4.8, initial-minimal 𝚥-approximations and initial-maximal 𝚥-approximations are generally inde-
pendent.

Theorem 4.4. Assume that 
(
 ,, 𝜉𝚥

)
constitutes a 𝚥-NS, with  being a symmetric relation on  . For 𝔸 ⊆ , the subsequent properties 

are realized: 
1. 𝕃𝚘i⟨𝑟⟩ (𝔸) = 𝕃𝚘i⟨𝓁⟩ (𝔸) = 𝕃𝚘i⟨⋎⟩ (𝔸) = 𝕃𝚘i⟨∧⟩ (𝔸). 
2. 𝕃𝚘i(𝑟) (𝔸) = 𝕃𝚘i(𝓁) (𝔸) = 𝕃𝚘i(⋎) (𝔸) = 𝕃𝚘i(∧) (𝔸). 

3. 𝕌𝚙
i⟨𝑟⟩ (𝔸) =𝕌𝚙

i⟨𝓁⟩ (𝔸) =𝕌𝚙
i⟨⋎⟩ (𝔸) = 𝕌𝚙

i⟨∧⟩ (𝔸). 
4. 𝕌𝚙

i

(𝑟) (𝔸) =𝕌𝚙
i

(𝓁) (𝔸) = 𝕌𝚙
i

(⋎) (𝔸) =𝕌𝚙
i

(∧) (𝔸).

Proof. By applying Theorem 4.1, the result follows immediately. □

Corollary 4.3. Assume that 
(
 ,, 𝜉𝚥

)
constitutes a 𝚥-NS, where  is a symmetric relation on  . Then, for any subset 𝔸 ⊆ , the subsequent 

properties are realized: 
1. 𝔹ℕi⟨𝑟⟩ (𝔸) = 𝔹ℕi⟨𝓁⟩ (𝔸) = 𝔹ℕi⟨⋎⟩ (𝔸) = 𝔹ℕi⟨∧⟩ (𝔸). 
2. 𝔹ℕi

(𝑟) (𝔸) = 𝔹ℕi

(𝓁) (𝔸) = 𝔹ℕi

(⋎) (𝔸) = 𝔹ℕi

(∧) (𝔸). 
3. 𝔸𝚌i⟨𝑟⟩ (𝔸) =𝔸𝚌i⟨𝓁⟩ (𝔸) =𝔸𝚌i⟨⋎⟩ (𝔸) =𝔸𝚌i⟨∧⟩ (𝔸). 
4. 𝔸𝚌i(𝑟) (𝔸) =𝔸𝚌i(𝓁) (𝔸) =𝔸𝚌i(⋎) (𝔸) =𝔸𝚌i(∧) (𝔸).

Theorem 4.5. Consider ( ,, 𝜉𝚥) as a 𝚥-NS with  being a preorder relation on  . For 𝔸 ⊆  and 𝚥 ∈ {𝑟,𝓁,∧,⋎}, the subsequent 
statements are realized:

1. 𝕃𝚘i⟨𝚥⟩ (𝔸) = 𝕃𝚘i
𝚥
(𝔸).

2. 𝕌𝚙
i⟨𝚥⟩ (𝔸) =𝕌𝚙

i

𝚥 (𝔸).

Proof. By applying Theorem 4.3., the result follows immediately. □

Corollary 4.4. Consider 
(
 ,, 𝜉𝚥

)
is a 𝚥-NS with  being a preorder relation on  . For 𝔸 ⊆  and 𝚥 ∈ {𝑟,𝓁,∧,⋎}, the subsequent 

statements are realized:

1. 𝔹ℕi⟨𝚥⟩ (𝔸) = 𝔹ℕi

𝚥 (𝔸).
2. 𝔸𝚌i⟨𝚥⟩ (𝔸) =𝔸𝚌i𝚥 (𝔸).

Remark 4.7. Theorem 4.5 and Corollary 4.4 demonstrate that initial-minimal 𝚥-approximations align with the methods suggested by 
[32,43], specifically when a preorder relation is present, as illustrated in Example 4.6.

5. Comparative analysis of the proposed methods and prior studies

This part provides a comparative analysis of the suggested methods in relation to prior studies, specifically those by Yao [7], 
Allam et al. [22,23], and Dai et al. [11] The discussion highlights the effectiveness of the provided techniques in enhancing rough set 
approximation, emphasizing their improvements over earlier methods and demonstrating their contributions to the field. Notably, 
we establish that the proposed methods serve as generalizations of previous approaches and show that the accuracy measures of the 
proposed methods are more precise than those of earlier methods.

5.1. Comparative analysis in the case of general binary relations

We begin by comparing the proposed method with previous approaches in the framework of binary relations to determine the 
most effective approach for real-life applications. This comparison highlights how our method enhances and modifies these earlier 
techniques, particularly within this framework. We will examine where previous studies did not fully satisfy Pawlak’s axioms and 
demonstrate how our approach successfully addresses these limitations.

Example 5.1. Presume  = {(ġ,ġ), (ġ,ḣ), (ḣ,ḣ), (ḣ,k̇), (ṡ,k̇)} be a relation defined on  = {ġ,ḣ,k̇,ṡ}. Accordingly, the 𝚥-neighborhoods 
and the initial 𝚥-neighborhoods are presented in Tables 24 and 25, respectively. 

Consequently, we compute the approximations for every subset of  utilizing the approaches of Yao, Allam et al., Dai et al., and 
the methods introduced in this work. These results are outlined in Table 26. 
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Table 24

𝚥-neighborhoods, 𝚥∈ {𝑟,𝓁, ⟨𝑟⟩ , ⟨𝓁⟩ , (𝑟)}.

⋆ 𝑛𝑟 (⋆) 𝑛𝓁 (⋆) 𝑛⟨𝑟⟩ (⋆) 𝑛⟨𝓁⟩ (⋆) 𝑛(𝑟) (⋆)

ġ {ġ,ḣ} {ġ} {ġ,ḣ} {ġ} {ġ,ḣ} 
ḣ {ḣ,k̇} {ġ,ḣ} {ḣ} {ḣ} {ġ,ḣ,k̇} 
k̇ 𝜑 {ḣ,ṡ} {k̇} 𝜑 {ḣ,k̇} 
ṡ {k̇} 𝜑 𝜑 {ḣ,ṡ} 𝜑

Table 25

Initial 𝚥-neighborhoods, 𝚥 ∈
{⟨𝑟⟩ , ⟨𝓁⟩ , ⟨∧⟩}.

⋆ 𝑛i⟨𝑟⟩ (⋆) 𝑛i⟨𝓁⟩ (⋆) 𝑛i⟨∧⟩ (⋆)
ġ {ġ} {ġ} {ġ} 
ḣ {ġ,ḣ} {ḣ,ṡ} {ḣ} 
k̇ {k̇}  {k̇} 
ṡ  {ṡ} {ṡ} 

Table 26

A comparative analysis of the approaches by Yao, Allam et al., and Dai et al. in the scope of binary relations 
versus the suggested technique.

𝔸 Yao’s approach Allam’s approach Dai’s technique Current technique 

 (𝔸)  (𝔸) ⟨𝑟⟩ (𝔸) ⟨𝑟⟩ (𝔸) (𝑟) (𝔸) (𝑟) (𝔸) 𝕃𝚘i⟨𝑟⟩ (𝔸) 𝕌𝚙
i

⟨𝑟⟩ (𝔸)
{ġ} {k̇} {ġ} {ṡ} {ġ} {ṡ} {ġ,ḣ} {ġ} {ġ,ḣ,ṡ} 
{ḣ} {k̇} {ġ,ḣ} {ḣ,ṡ} {ġ,ḣ} {ṡ} {ġ,ḣ,k̇} 𝜑 {ḣ,ṡ} 
{k̇} {k̇,ṡ} {ḣ,ṡ} {k̇,ṡ} {k̇} {ṡ} {ḣ,k̇} {k̇} {k̇,ṡ} 
{ṡ} {k̇} 𝜑 {ṡ} 𝜑 {ṡ} 𝜑 𝜑 {ṡ} 
{ġ,ḣ} {ġ,k̇} {ġ,ḣ} {ġ,ḣ,ṡ} {ġ,ḣ} {ġ,ṡ} {ġ,ḣ,k̇} {ġ,ḣ} {ġ,ḣ,ṡ} 
{ġ,k̇} {k̇,ṡ} {ġ,ḣ,ṡ} {k̇,ṡ} {ġ,k̇} {ṡ} {ġ,ḣ,k̇} {ġ,k̇} 

{ġ,ṡ} {k̇} {ġ} {ṡ} {ġ} {ṡ} {ġ,ḣ} {ġ} {ġ,ḣ,ṡ} 
{ḣ,k̇} {ḣ,k̇,ṡ} {ġ,ḣ,ṡ} {ḣ,k̇,ṡ} {ġ,ḣ,k̇} {k̇,ṡ} {ġ,ḣ,k̇} {k̇} {ḣ,k̇,ṡ} 
{ḣ,ṡ} {k̇} {ġ,ḣ} {ḣ,ṡ} {ġ,ḣ} {ṡ} {ġ,ḣ,k̇} 𝜑 {ḣ,ṡ} 
{k̇,ṡ} {k̇,ṡ} {ḣ,ṡ} {k̇,ṡ} {k̇} {ṡ} {ḣ,k̇} {k̇} {k̇,ṡ} 
{ġ,ḣ,k̇}  {ġ,ḣ,ṡ}  {ġ,ḣ,k̇}  {ġ,ḣ,k̇} {ġ,ḣ,k̇} 

{ġ,ḣ,ṡ} {ġ,k̇} {ġ,ḣ} {ġ,ḣ,ṡ} {ġ,ḣ} {ġ,ṡ} {ġ,ḣ,k̇} {ġ,ḣ} {ġ,ḣ,ṡ} 
{ġ,k̇,ṡ} {k̇,ṡ} {ġ,ḣ,ṡ} {k̇,ṡ} {ġ,k̇} {ṡ} {ġ,ḣ,k̇} {ġ,k̇} 

{ḣ,k̇,ṡ} {ḣ,k̇,ṡ} {ġ,ḣ,ṡ} {ḣ,k̇,ṡ} {ġ,ḣ,k̇} {k̇,ṡ} {ġ,ḣ,k̇} {k̇} {ḣ,k̇,ṡ} 
  {ġ,ḣ,ṡ}  {ġ,ḣ,k̇}  {ġ,ḣ,k̇}  

𝜑 {k̇} 𝜑 {ṡ} 𝜑 {ṡ} 𝜑 𝜑 𝜑

Remark 5.1. Table 26 reveals the following observations:

1. The methods proposed by earlier approaches (Yao, Allam et al., and Dai et al.) are not suitable for approximating rough sets in 
general cases. These methods cannot be universally applied because the fundamental properties of the approximations are not 
satisfied, which restricts the practical applications of rough set theory. For instance:
∙ The lower approximation of any subset did not equal the set or its upper approximation using any preceding approaches, as 

illustrated by the highlighted cells in Table 26.
∙ The lower approximation of  (resp. 𝜑) did not equal  (resp. 𝜑) or its upper approximation using any earlier techniques, 

as illustrated by the highlighted cells in Table 26.
2. Refer to the highlighted cells in Table 26 for specific instances. These methods, therefore, contradict rough set theory and render 

all subsets rough, introducing vagueness into the data.
3. Conversely, the methodologies introduced in this paper are the most effective for approximating sets in general scenarios. The 

initial approximations proposed in this work fulfill all the fundamental properties of Pawlak’s rough sets without imposing any 
additional constraints or conditions. Furthermore, our approaches accurately identify exact subsets, which aids in detecting and 
addressing vagueness within the data.

4. Table 26 presents one of our proposed methods, specifically the (𝕀⟨𝑟⟩-approximations) method, in comparison with previous stud-
ies that rely solely on right neighborhoods. This choice illustrates how our methods address limitations in existing approaches. 
While we focused on one of the eight methods introduced, each proposed method in this paper offers a distinct tool for rough set 
approximation, effectively managing issues of roughness and exactness. For instance, using the (𝕀⟨ ∧⟩-approximations) method, 
we can achieve 100% accuracy in approximating all subsets of  . For example, consider the set 𝔸 = {𝑡, 𝑢, 𝑣}; which remains un-

defined (a rough set) in all previous methods. However, with 𝕃𝚘i⟨∧⟩ (𝔸)=𝕌𝚙i⟨∧⟩ (𝔸) =𝔸, implying 𝔹ℕi⟨∧⟩ (𝔸)=𝜑 and 𝔸𝚌i⟨∧⟩ (𝔸)= 𝟷, 
this set is precisely defined with 100% accuracy.
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Table 27

(𝑟)-neighborhoods and Initial (𝑟)-
neighborhoods.

⋆ 𝑛𝑟 (⋆) 𝑛(𝑟) (⋆) 𝑛i(𝑟) (⋆)

ġ {ġ,ḣ} {ġ,ḣ,k̇} {ġ,ḣ,k̇} 
ḣ {ġ,ḣ,k̇}  {ḣ,k̇} 
k̇ {ḣ,k̇,ṡ}  {ḣ,k̇} 
ṡ {k̇,ṡ} {ḣ,k̇,ṡ} {ḣ,k̇,ṡ} 

Table 28

Comparison of the Dai et al. methodology with the suggested method in the general case.

𝔸 Approach of Dai et al. Current method 

(𝑟) (𝔸) (𝑟) (𝔸) B(𝑟) (𝔸) 𝜇(𝑟) (𝔸) 𝕃𝚘i(𝑟) (𝔸) 𝕌𝚙
i

(𝑟) (𝔸) 𝔹ℕi

(𝑟) (𝔸) 𝔸𝚌i(𝑟) (𝔸)

{ġ} 𝜑 {ġ,ḣ,k̇} {ġ,ḣ,k̇} 0 𝜑 {ġ} {ġ} 0
{ḣ} 𝜑   0 𝜑   0
{k̇} 𝜑   0 𝜑   0
{ṡ} 𝜑 {ḣ,k̇,ṡ} {ḣ,k̇,ṡ} 0 𝜑 {ṡ} {ṡ} 0
{ġ,ḣ} 𝜑   0 𝜑   0
{ġ,k̇} 𝜑   0 𝜑   0
{ġ,ṡ} 𝜑   0 𝜑 {ġ,ṡ} {ġ,ṡ} 0
{ḣ,k̇} 𝜑   0 {ḣ,k̇}  {ġ,ṡ} 1∕2
{ḣ,ṡ} 𝜑   0 𝜑   0
{k̇,ṡ} 𝜑   0 𝜑   0
{ġ,ḣ,k̇} {ġ}  {ḣ,k̇,ṡ} 1∕4 {ġ,ḣ,k̇}  {ṡ} 3∕4
{ġ,ḣ,ṡ} 𝜑   0 𝜑   0
{ġ,k̇,ṡ} 𝜑   0 𝜑   0
{ḣ,k̇,ṡ} {ṡ}  {ġ,ḣ,k̇} 1∕4 {ḣ,k̇,ṡ}  {ġ} 3∕4
   𝜑 1   𝜑 1
𝜑 𝜑 𝜑 𝜑 1 𝜑 𝜑 𝜑 1

5.2. Comparative analysis for select cases of binary relations

Here, we compare our proposed method with the approach introduced by Dai et al. This comparative analysis demonstrates the 
practical advantages of our techniques in approximating rough sets, showcasing improvements over previous methods. Similar com-
parisons with other studies can also be conducted using our method to identify the most effective approach for real-world applications. 
This analysis highlights the importance of our techniques in enhancing approximation accuracy and effectiveness, reinforcing their 
relevance in diverse practical contexts.

Theorem 5.1. Let ( ,, 𝜉𝚥) be a 𝚥-NS in which  is a similarity relation on  , and let 𝔸 ⊆  . Hence, for every 𝚥 ∈ {𝑟,𝓁,∧,⋎}, the 
following statements hold:

1. (𝚥)(𝔸) ⊆ 𝕃𝚘i(𝚥)(𝔸).

2. 𝕌𝚙
i

(𝚥)(𝔸) ⊆(𝚥)(𝔸).
3. 𝔹ℕi

(𝚥)(𝔸) ⊆B(𝚥)(𝔸).
4. 𝜇(𝚥) (𝔸) ≤𝔸𝚌i(𝚥) (𝔸).

Proof. The proof is an immediate consequence of Theorem 4.2. □

Remark 5.2. The converse of Theorem 5.1 is generally incorrect, as demonstrated in Example 5.2.

Example 5.2. Continued of Example 4.6, where the relation  is a similarity relation. Thus, we get (𝑟)-neighborhoods and initial 
(𝑟)-neighborhoods as showed in Table 27:

Accordingly, we compute the approximations for every subset of  using both the methodologies proposed by Dai et al. and the 
techniques presented in this paper, as summarized in Table 28.

6. Generalized nano-topology and its practical implications

In the current part, we investigate a practical medical application that illustrates the efficacy of the methodologies and techniques 
proposed in this paper. Specifically, we highlight how these methods contribute to enhancing decision-making processes in the 
clinical diagnosis of Covid-19’s variants. By applying these techniques to a medical dataset with pre-determined medical decisions, 
we demonstrate that the accuracy of our methods surpasses previous approaches, with some achieving accuracy rates as high as 
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100%. For specific categories within one of the methods, the accuracy metric reaches 100%, while for others, it is slightly less but 
still outperforms existing methods by revealing hidden patterns in the data more effectively.

Another key direction explored in this research involves expanding the concept of nano-topology [42] within the framework of 
general approximation sets. El-Bably and Abo-Tabl [44] previously developed a nano-topology based on approximations of general 
approximation sets, outlining the necessary conditions for their formation. Building upon their work, we present the details of con-
structing a generalized nano-topology using the approximation techniques proposed by Yao [7], Allam et al. [22,23], Dai et al. [11], 
El-Sayed et al. [32], and Abu-Gdairi [43]. Using these insights, we aim to define new general nano-topologies and explore their 
practical applications in real-world scenarios.

To further illustrate the effectiveness of these techniques, we present a practical medical application focused on evaluating impact 
factors in Covid-19 infections [41]. Additionally, we provide detailed explanations of the foundational models, decision-making 
processes, and algorithmic implementation of this innovative approach within the medical context.

6.1. Extensions of generalized nano-topology

Definition 6.1. [44] Let  be a universe. Assume that (𝔸) and U(𝔸) represent the lower and upper approximations of a subset 
𝔸 ⊆ , respectively. Consider the collection

 = { , 𝜑, (𝔸), U(𝔸), 𝑛𝑑(𝔸)},

where 𝑛𝑑(𝔸) denotes the boundary area of 𝔸. This collection constitutes a topology on  if the approximations (𝔸) and U(𝔸)
uphold to the characteristics of Pawlak’s theory (L1–L8) and (U1–U8), respectively. As a result, this topology is termed a generalized 
nano-topology or, alternatively, a  -topology, as it is derived from the generalized rough approximations of 𝔸 ⊆ .

Note: The previous definition specifies the conditions required for constructing a nano-topology using generalized rough sets. The 
ensuing results describe the procedure for generating a  -topology based on the methodologies introduced by [7,11,22,23] along 
with the proposed approximations.

Theorem 6.1. [44] Let  be a binary relation on  , and let 𝔸⊆ . The family of sets given by:

 = { , 𝜑, (𝔸), U(𝔸), 𝑛𝑑(𝔸)}

constitutes a  -topology on  if and only if the following conditions hold:

1. For the technique of Yao:  must be a preorder.

2. For the technique of Dai et al.:  must be a similarity relation.

3. For the technique of Allam et al.:  must be a reflexive relation.

Theorem 6.2. Given 
(
 ,, 𝜉𝚥

)
is a 𝚥-NS, where  is a binary relation on  . For any subset 𝔸⊆ , the collection:

 = { , ∅, 𝕃𝚘i
𝚥
(𝔸) , 𝕌𝚙

i

𝚥 (𝔸) , 𝔹ℕ
i

𝚥 (𝔸)}

constitutes a  -topology on  for each 𝚥 ∈  .

Proof. By applying Proposition 4.1, the outcome follows immediately □

6.2. Data set of medical diagnosis of Covid-19 variants

In this section, we generate and analyze rules to identify Covid-19 patients infected with specific variants. The data was collected 
from several patients diagnosed with the Alpha, Delta, or Omicron variants. By analyzing common symptoms across ten patients, we 
applied a rough set approach to classify each variant based on its characteristic symptoms. 
The symptomatic manifestations corresponding to each variant are enumerated below:

• Variant of Alpha: (𝐇𝐄)=Headache, (𝐒𝐁)=Shortness of Breath, (𝐃𝐂)=Dry Cough, (𝐒𝐓)=Sore Throat, (𝐁𝐏)=Body Pain, 
(𝐅𝐄)=Fever, (𝐂𝐏)=Chest Pain.

• Variant of Delta: (𝐂𝐎)=Cough, (𝐁𝐏)=Body Pain, (𝐅𝐀)=Fatigue, (𝐒𝐁)=Shortness of Breath, (𝐂𝐏)=Chest Pain, (𝐒𝐓)=Sore 
Throat, (𝐇𝐄)=Headache, (𝐅𝐄)=Fever, (𝐋𝐨𝐓)=Loss of Taste, (𝐌𝐘)=Myalgias, (𝐋𝐨𝐒)=Loss of Smell, (𝐑𝐇)=Rhinorrhea.

• Variant of Omicron: (𝐖𝐄)=Weakness, (𝐋𝐁𝐏)=Lower Back Pain, (𝐅𝐀)=Fatigue, (𝐇𝐄)= Headache, (𝐅𝐄)=Fever, (𝐁𝐀)=Body 
Ache, (𝐂𝐎)=Cough, (𝐂𝐋)=Cold, (𝐋𝐨𝐀)=Loss of Appetite, (𝐍𝐒)=Night Sweats, (𝐒𝐍)=Sneezing.

Data for ten patients has been meticulously organized into a table (adapted from [41]), with each row representing an individual 
patient and each column denoting a specific symptom. Table 29 presents comprehensive details on patients diagnosed with the Alpha 
variant of Covid-19.
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Table 29

[41] Dataset framework characterizing persons afflicted with diverse Covid-19 variants.

Person
Frequent Clinical Indications Expanded Clinical Manifestations 

Covid-19 Diagnosis
FE LoT/S FA BA LBP NS SN Lo/A 

𝚙1 High ◦ ∙ ∙ ◦ ∙ ◦ ∙ Alpha 
𝚙2 High ◦ ∙ ∙ ∙ ∙ ◦ ∙ Omicron 
𝚙3 High ◦ ◦ ∙ ◦ ◦ ◦ ◦ Not infected 
𝚙4 Normal ◦ ◦ ◦ ◦ ◦ ∙ ◦ Not infected 
𝚙5 Normal ∙ ◦ ∙ ◦ ∙ ◦ ∙ Delta 
𝚙6 High ∙ ◦ ∙ ◦ ◦ ◦ ◦ Delta 
𝚙7 High ∙ ∙ ∙ ◦ ◦ ◦ ◦ Delta 
𝚙8 Normal ◦ ◦ ∙ ◦ ◦ ◦ ◦ Not infected 
𝚙9 High ◦ ∙ ∙ ∙ ∙ ◦ ∙ Omicron 
𝚙10 High ∙ ∙ ∙ ◦ ◦ ◦ ◦ Delta 

Table 30

Patient Information System for Different Covid-19 Variants.

Person
Clinical Manifestations

Covid-19 Diagnosis
𝔸1 𝔸2 𝔸3 𝔸4 𝔸5 𝔸6 𝔸7 𝔸8

𝚙1 ℍ ◦ ∙ ∙ ◦ ∙ ◦ ∙ Alpha 
𝚙2 ℍ ◦ ∙ ∙ ∙ ∙ ◦ ∙ Omicron 
𝚙3 ℍ ◦ ◦ ∙ ◦ ◦ ◦ ◦ Not infected 
𝚙4 ℕ ◦ ◦ ◦ ◦ ◦ ∙ ◦ Not infected 
𝚙5 ℕ ∙ ◦ ∙ ◦ ∙ ◦ ∙ Delta 
𝚙6 ℍ ∙ ◦ ∙ ◦ ◦ ◦ ◦ Delta 
𝚙7 ℍ ∙ ∙ ∙ ◦ ◦ ◦ ◦ Delta 
𝚙8 ℕ ◦ ◦ ∙ ◦ ◦ ◦ ◦ Not infected 

Table 31

𝚥-neighborhoods, 𝚥∈ {⟨𝑟⟩ , ⟨𝓁⟩ , (𝑟) , (𝓁)}.

⋆ 𝑛⟨𝑟⟩ (⋆) 𝑛⟨𝓁⟩ (⋆) 𝑛(𝑟) (⋆) 𝑛(𝓁) (⋆)

𝚙1
{
𝚙1,𝚙2

} {
𝚙1,𝚙3 ,𝚙8

}
ℙ−

{
𝚙4
} {

𝚙1,𝚙2 ,𝚙3,𝚙8
}

𝚙2
{
𝚙2
} {

𝚙1,𝚙2 ,𝚙3,𝚙8
}

ℙ−
{
𝚙4
} {

𝚙1,𝚙2 ,𝚙3,𝚙8
}

𝚙3
{
𝚙1,𝚙2,𝚙3 ,𝚙6,𝚙7

} {
𝚙3,𝚙8

}
ℙ−

{
𝚙4
} {

𝚙1,𝚙2 ,𝚙3,𝚙6,𝚙7,𝚙8
}

𝚙4
{
𝚙4
} {

𝚙4
} {

𝚙4
} {

𝚙4
}

𝚙5
{
𝚙5
} {

𝚙5,𝚙8
}

ℙ−
{
𝚙4
} {

𝚙5,𝚙8
}

𝚙6
{
𝚙6,𝚙7

} {
𝚙3,𝚙6 ,𝚙8

}
ℙ−

{
𝚙4
} {

𝚙3,𝚙6 ,𝚙7,𝚙8
}

𝚙7
{
𝚙7
} {

𝚙3,𝚙6 ,𝚙7,𝚙8
}

ℙ−
{
𝚙4
} {

𝚙3,𝚙6 ,𝚙7,𝚙8
}

𝚙8 ℙ−
{
𝚙4
} {

𝚙8
}

ℙ−
{
𝚙4
}

ℙ−
{
𝚙4
}

Note that in Tables 29 and 30, ∙ indicates that a person has the symptom, and ◦ indicates that a person does not have it. 
In Table 29, we observe that the patients 𝚙2 and 𝚙9 (resp. 𝚙7 and 𝚙10) are indiscernible. Therefore, we exclude them and derive the 
updated information system as shown in Table 30. 

In this table, the first column (𝔸1) uses ℍ to indicate “High” and ℕ to indicate “Normal”. 
Thus, the set of all patients is ℙ = {𝚙𝑘 ∶ 𝑘 = 1,2,3, … ,8} and the set of all attributes is 𝔸𝕋 = {𝔸𝑘 ∶ 𝑘 = 1,2,3, … ,8}. Now, we 
proceed to identify the symptoms for each patient as follows:


(
𝚙1
)
=
{
𝔸1, 𝔸3,𝔸4,𝔸6,𝔸8

}
, 

(
𝚙2
)
=
{
𝔸1, 𝔸3,𝔸4,𝔸5,𝔸6,𝔸8

}
, 

(
𝚙3
)
=
{
𝔸1, 𝔸4

}
, 

(
𝚙4
)
=
{
𝔸7

}
, 

(
𝚙5
)
=
{
𝔸2, 𝔸4,𝔸6,𝔸8

}
, 


(
𝚙6
)
=
{
𝔸1, 𝔸2,𝔸4

}
, 

(
𝚙7
)
=
{
𝔸1, 𝔸2,𝔸3,𝔸4

}
, and 

(
𝚙8
)
=
{
𝔸4

}
. 

Now, we construct the right neighborhoods using the following relation, which is related to the nature of the studied problem: 𝚙𝑖 𝚙𝑗 ⟺
(𝚙𝑖) ⊆ (𝚙𝑗 ), where 𝑖, 𝑗 ∈ {1,2,3, … ,8}. 
Note: The relationship in each case is defined based on the expert’s specifications. Consequently, the relation for all attributes is 
established as follows:

 = Δ
⋃
{
(
𝚙1,𝚙2

)
, 
(
𝚙3,𝚙1

)
,
(
𝚙3,𝚙2

)
,
(
𝚙3,𝚙6

)
,
(
𝚙3,𝚙7

)
, 
(
𝚙6,𝚙7

)
, 
(
𝚙8,𝚙1

)
,
(
𝚙8,𝚙2

)
,
(
𝚙8,𝚙3

)
, 
(
𝚙8,𝚙5

)
,
(
𝚙8,𝚙6

)
,
(
𝚙8,𝚙7

)
}, where 

Δ is an identity relation. 
Therefore, we obtain the following neighborhoods as illustrated in Tables 31 and 32:

Note: Since  is a preorder relation, then by Theorem 2.6, the 𝚥- neighborhoods and minimal 𝚥- neighborhoods are equal. So, 
𝑛𝑟 (𝑥) = 𝑛⟨𝑟⟩ (𝑥) and 𝑛𝓁 (𝑥) = 𝑛⟨𝓁⟩ (𝑥), for every element in ℙ. Thus, we construct Table 32, which contains 𝕀𝚥- neighborhoods for every 
element in ℙ.

6.3. First application: decision-making using 𝕀𝚥-approximations to identify exactness and roughness

According to the medical decision table (Table 30), the group of patients infected with Covid-19 is represented as  ={
𝚙1,𝚙2,𝚙5,𝚙6,𝚙7

}
while the group of patients who are not infected is  =

{
𝚙3,𝚙4,𝚙8

}
. The infected group is further divided into 

the following subsets:
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Table 32

𝕀𝚥-neighborhoods, 𝚥∈ {⟨𝑟⟩ , ⟨𝓁⟩ , ⟨∧⟩ , (∧)}.

⋆ 𝑛i⟨𝑟⟩ (⋆) 𝑛i⟨𝓁⟩ (⋆) 𝑛i⟨∧⟩ (⋆) 𝑛i(∧) (⋆)

𝚙1
{
𝚙1,𝚙3,𝚙8

} {
𝚙1,𝚙2

} {
𝚙1
} {

𝚙1,𝚙2,𝚙3,𝚙8
}

𝚙2
{
𝚙1,𝚙2,𝚙3 ,𝚙8

} {
𝚙2
} {

𝚙2
} {

𝚙1,𝚙2,𝚙3,𝚙8
}

𝚙3
{
𝚙3,𝚙8

} {
𝚙1,𝚙2,𝚙3,𝚙6 ,𝚙7

} {
𝚙3
} {

𝚙3,𝚙8
}

𝚙4
{
𝚙4
} {

𝚙4
} {

𝚙4
} {

𝚙4
}

𝚙5
{
𝚙5,𝚙8

} {
𝚙5
} {

𝚙5
} {

𝚙5,𝚙8
}

𝚙6
{
𝚙3,𝚙6,𝚙8

} {
𝚙6,𝚙7

} {
𝚙6
} {

𝚙3,𝚙6,𝚙7,𝚙8
}

𝚙7
{
𝚙3,𝚙6,𝚙7 ,𝚙8

} {
𝚙7
} {

𝚙7
} {

𝚙3,𝚙6,𝚙7,𝚙8
}

𝚙8
{
𝚙8
}

ℙ−
{
𝚙4
} {

𝚙8
} {

𝚙8
}

∙ 1 =
{
𝚙1
}

, representing patients infected with the Alpha variant.
∙ 2 =

{
𝚙2
}

, representing patients infected with the Omicron variant.
∙ 3 =

{
𝚙5,𝚙6,𝚙7

}
, representing patients infected with the Alpha variant.

We will compute the rough approximations for all the above sets using the previously established methods and the proposed 
𝕀𝚥-approximations discussed in this article. Furthermore, we provide a comparative analysis to evaluate the accuracy degrees of these 
previous approaches against our suggested methods.

First, according to Table 30, the constructed relation  is a preorder. So, by using Theorem 3.1, Yao-approximations and Abd 
El-Monsef et al. for cases 𝚥 = {𝑟,𝓁} are equal, and the methods of Allam et al. and Abd El-Monsef et al. for cases 𝚥 = {⟨𝑟⟩ , ⟨𝓁⟩} are 
equal. Consequently, we compare these methods with the proposed 𝕀𝚥-approximations in a case 𝚥 = ⟨∧⟩, and similarly for the other 
cases. We display that the proposed methods, 𝕀𝚥-approximations provide greater accuracy compared to other methods.

∙ Yao, Allam et al., and Abd El-Monsef et al. approaches:

According to Theorem 2.6, the 𝚥-neighborhoods and minimal 𝚥- neighborhoods, for every member in ℙ, they are equal. There-
fore, the techniques proposed by Yao, Allam et al., and Abd El-Monsef et al. are identical in this application. Consequently, their 
approximations and accuracy measures for the set  =

{
𝚙1,𝚙2,𝚙5,𝚙6,𝚙7

}
, by using Table 30, are as follows:

  1 2 3

Lower approximation 
{
𝚙4
}

𝜑
{
𝚙2
} {

𝚙5,𝚙6 ,𝚙7
}

Upper approximation ℙ−
{
𝚙4
}


{
𝚙1 ,𝚙3,𝚙8

} {
𝚙1,𝚙2,𝚙3 ,𝚙8

} {
𝚙3,𝚙5,𝚙6 ,𝚙7,𝚙8

}
Accuracy 5

7
1
3

0 1
4

3
5

∙ Dai et al. approach:

By using Table 30, the (𝑟)-approximations given in [11] are:

  1 2 3

Lower approximation 𝜑
{
𝚙4
}

𝜑 𝜑 𝜑

Upper approximation ℙ−
{
𝚙4
}

ℙ ℙ−
{
𝚙4
}

ℙ−
{
𝚙4
}

ℙ−
{
𝚙4
}

Accuracy 0 1
8

0 0 0

∙ Current method (1):

Utilizing the proposed methods, the 𝕀(∧)-approximations, as determined from Table 31, are as follows:

   1 2 3

𝕃𝚘i(∧) () 𝜑  𝜑 𝜑 𝜑

𝕌𝚙
i

(∧) () ℙ−
{
𝚙3 ,𝚙4,𝚙8

}
ℙ

{
𝚙1,𝚙2

} {
𝚙1,𝚙2

}
3

𝔸𝚌i(∧) () 0 3
8

0 0 0
∙ Current method (2):

By using the proposed methods, 𝕀⟨∧⟩-approximations, by using Table 32 are:

   1 2 3

𝕃𝚘i⟨∧⟩ ()   1 1 3

𝕌𝚙
i

⟨∧⟩ ()   1 1 3
𝔸𝚌i⟨∧⟩ () 1 1 1 1 1
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Concluding remark: Building on the comparative analysis presented above, we observe the following key points:

1. Current Method (1) (which relies on maximal approximation) generalizes the approaches of Dai et al. and is more accurate. For 
example, the accuracy degree of the given set  is 18 , whereas in the current method (1), we have 𝔸𝚌i(∧)( ) = 3

8 . Furthermore, the 
lower and upper approximations of  , as offered by Dai et al., are 𝜑 and ℙ−

{
𝚙4
}

, respectively. This means that the boundary region 
is ℙ−

{
𝚙4
}

, implying that 𝚙4 is the only person identified as not infected, which contradicts Table 30, which states that the uninfected 
persons are 𝚙3, 𝚙4, and 𝚙8. 
2. On the other hand, the lower and upper approximations of  building on the current method (1) are: 𝜑 and ℙ−

{
𝚙3,𝚙4,𝚙8

}
, 

respectively. This implies that the boundary region in this issue is ℙ−
{
𝚙3,𝚙4,𝚙8

}
, indicating that the persons 𝚙3, 𝚙4, and 𝚙8 are not 

infected. Therefore, the current method (1) successfully resolves the ambiguity found in Dai et al.’s technique and aligns accurately 
with the doctor’s diagnoses. 
3. Moreover, according to Current Method (2), the accuracy measure for all specified sets is 100%, matching the doctor’s decisions 
exactly. Therefore, this method is extremely useful for decision-making in medical diagnoses. 
4. In conclusion, the proposed 𝕀⟨∧⟩-approximations method is the most accurate technique for approximating rough sets, yielding the 
highest accuracy. As a result, this method will be highly valuable in medical diagnosis decision-making.

6.4. Second application: attribute reduction using 𝕀𝚥-approximations criteria for determining core attributes to diagnose Covid-19

At this stage, we apply the proposed techniques to perform a topological reduction of the attributes listed in Table 30. The objective 
is to designate the most meaningful risk factors associated with Covid-19. This analysis involves utilizing the concept of “generalized 
nano-topology” to determine these factors by extracting key attributes through topological reduction. The process will be carried 
out for all patients represented in Table 30, with a specific focus on the first group: patients infected with Covid-19, denoted as 
 =

{
𝚙1,𝚙2,𝚙5,𝚙6,𝚙7

}
.

From Subsection 6.3, we compute the generalized nano-topology ( ) generated by  using all the attributes or symptoms listed in 
Table 30 as follows:

The 𝕀⟨∧⟩-neighborhoods for the Covid-19 group are:

𝕃𝚘i⟨∧⟩ () =𝕌𝚙
i⟨∧⟩ () =  , and hence  ={ℙ, 𝜑, }.

Attribute Analysis and Reduction

Case 1: Removing Attribute (𝔸1)
When removing attribute 𝔸1, the symptoms for each patient become: 

(
𝚙1
)
=
{
𝔸3,𝔸4,𝔸6,𝔸8

}
, 

(
𝚙2
)
=
{
𝔸3,𝔸4,𝔸5,𝔸6,𝔸8

}
, 

(
𝚙3
)
=
{
𝔸4

}
, 

(
𝚙4
)
=
{
𝔸7

}
, 

(
𝚙5
)
=
{
𝔸2, 𝔸4,𝔸6,𝔸8

}
, 

(
𝚙6
)
={

𝔸2,𝔸4
}

, 
(
𝚙7
)
=
{
𝔸2,𝔸3,𝔸4

}
, and 

(
𝚙8
)
=
{
𝔸4

}
. 

The relation 𝑚𝑖 𝑚𝑗 ⟺ (𝑚𝑖) ⊆ (𝑚𝑗 ) gives: 
 = Δ

⋃
{
(
𝚙1,𝚙2

)
, 
(
𝚙3,𝚙1

)
,
(
𝚙3,𝚙2

)
,
(
𝚙3,𝚙5

)
,
(
𝚙3,𝚙6

)
,
(
𝚙3,𝚙7

)
, 
(
𝚙3,𝚙8

)
,
(
𝚙6,𝚙5

)
,
(
𝚙6,𝚙7

)
, 
(
𝚙8,𝚙1

)
, 
(
𝚙8,𝚙2

)
,
(
𝚙8,𝚙3

)
,
(
𝚙8,𝚙5

)
, (

𝚙8,𝚙6
)
,
(
𝚙8,𝚙7

)
where Δ is an identity relation. 

Therefore, the 𝕀⟨∧⟩-neighborhoods of all members in ℙ become: 𝑛i⟨∧⟩
(
𝚙1
)
=
{
𝚙1
}

, 𝑛i⟨∧⟩
(
𝚙2
)
=
{
𝚙2
}

, 𝑛i⟨∧⟩
(
𝚙4
)
=
{
𝚙4
}

, 𝑛i⟨∧⟩
(
𝚙5
)
=
{
𝚙5
}

, 
𝑛i⟨∧⟩

(
𝚙6
)
=
{
𝚙6
}

, 𝑛i⟨∧⟩
(
𝚙7
)
=
{
𝚙7
}

, and 𝑛i⟨∧⟩
(
𝚙3
)
= 𝑛i⟨∧⟩

(
𝚙8
)
=
{
𝚙3,𝚙8

}
. 

The 𝕀⟨∧⟩- approximations of  in this case are:

𝕃𝚘i⟨∧⟩ () =𝕌𝚙
i⟨∧⟩ () =  , and hence 

𝔸1 = {ℙ, 𝜑, } =  . 

Case 2: Removing Attribute (𝔸2)
Using a similar method as in Case 1, the 𝕀⟨∧⟩- approximations of  in this case are

𝕃𝚘i⟨∧⟩ () =
{
𝚙1,𝚙2,𝚙5,𝚙7

}
and 𝕌𝚙

i⟨∧⟩ () = {
𝚙1,𝚙2,𝚙3,𝚙5,𝚙6,𝚙7

}
. Thus, we obtain


𝔸2 =

{
ℙ, 𝜑,

{
𝚙3,𝚙6

}
,
{
𝚙1,𝚙2,𝚙5,𝚙7

}
,
{
𝚙1,𝚙2,𝚙3,𝚙5,𝚙6,𝚙7

}}
≠  .

Case 3: Removing Attribute (𝔸3)
Using a similar method as in Case 1, the 𝕀⟨∧⟩- approximations of  in this case are

𝕃𝚘i⟨∧⟩ () =𝕌𝚙
i⟨∧⟩ () =  , and hence 

𝔸3 = {ℙ, 𝜑, } =  . 

Case 4: Removing Attribute (𝔸4)
Using a similar method as in Case 1, the 𝕀⟨∧⟩- approximations of  in this case are

𝕃𝚘i⟨∧⟩ () =𝕌𝚙
i⟨∧⟩ () =  , and hence 

𝔸4 = {ℙ, 𝜑, } =  . 

Case 5: Removing Attribute (𝔸5)
Using a similar method as in Case 1, the 𝕀⟨∧⟩- approximations of  in this case are
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𝕃𝚘i⟨∧⟩ () =𝕌𝚙
i⟨∧⟩ () =  , and hence 

𝔸6 = {ℙ, 𝜑, } =  . 

Case 6: Removing Attribute (𝔸6)
Using a similar method as in Case 1, the 𝕀⟨∧⟩- approximations of  in this case are

𝕃𝚘i⟨∧⟩ () =𝕌𝚙
i⟨∧⟩ () =  , and hence 

𝔸6 = {ℙ, 𝜑, } =  . 

Case 7: Removing Attribute (𝔸7)
Using a similar method as in Case 1, the 𝕀⟨∧⟩- approximations of  in this case are

𝕃𝚘i⟨∧⟩ () =𝕌𝚙
i⟨∧⟩ () =  , and hence 

𝔸7 = {ℙ, 𝜑, } =  . 

Case 8: Removing Attribute (𝔸8)
Using a similar method as in Case 1, the 𝕀⟨∧⟩- approximations of  in this case are

𝕃𝚘i⟨∧⟩ () =𝕌𝚙
i⟨∧⟩ () =  , and hence 

𝔸8 = {ℙ, 𝜑, } =  . 

Therefore, the attribute {𝔸2} is indispensable, while the remaining attributes can be omitted. Consequently, {𝔸2} represents the reduced set of 
attributes for the information system presented in Table 30, highlighting the essential features for diagnosing Covid-19, which are the critical 
factors influencing Covid-19. Hence, CORE = {𝔸2}. This means that the common attribute or symptom among all infected individuals is 
𝔸2, which thus forms a key factor for diagnosing the patient. If this symptom is not present, a Covid-19 infection can be ruled out, whereas 
if the symptom is present, further tests can be conducted to confirm the infection. It is worth noting here that identifying a single common 
symptom resulted from the relationship used in data analysis, which is the containment relationship. If the medical expert were to use a 
different relationship, the results would certainly differ. From the above, it is evident how mathematical methods can be beneficial in medical 
diagnostics.

7. Algorithms and frameworks

This section introduces two algorithms, Algorithm 1 and Algorithm 2, which are designed to address decision-making challenges 
in the diagnosis of Covid-19 disease. Specifically, Algorithm 2 serves as a framework that applies the proposed techniques to identify 
essential core attributes required for an accurate diagnosis. Both algorithms are evaluated using simulated data and compared with 
existing methods, providing practical and implementable solutions, especially for environments like MATLAB. Although MATLAB is 
used as the primary example in this paper, it is important to note that the algorithms are versatile and can be implemented in various 
programming platforms, including Python, R, and Julia. These languages offer comprehensive tools and libraries for data analysis 
and algorithm development, ensuring the proposed methods can be adapted for a broad range of applications.

The following analysis discusses the effectiveness, efficiency, and scalability of both algorithms.

Algorithm 1 Analysis 

Effectiveness: The core objective of Algorithm 1 is to distinguish between exact and rough sets by calculating binary relations and 𝕀𝚥-
approximations of 𝕀𝚥-neighborhoods. The algorithm performs well in making accurate decisions for exact and rough set classifications, 
assuming that precise data and definitions are provided. It iteratively computes neighborhoods using established definitions, ensuring 
that the checks for exactness and roughness, through 𝕀𝚥-accuracy (𝔸𝚌i𝚥 (𝕊)) calculations, contribute to its overall effectiveness. 
Efficiency: The efficiency of Algorithm 1 is influenced by dataset size, as the complexity of binary relations and neighborhood cal-
culations grows with data volume. By implementing iterative recalculations for each symptom using programming languages like 
Python or R, the algorithm is equipped to manage computationally intensive tasks. Utilizing optimized data structures or memoriza-
tion techniques could further enhance performance by reducing redundant computations and improving runtime efficiency. 
Scalability: Despite its iterative structure, Algorithm 1 may face scalability challenges with very large datasets. However, program-
ming languages like Python or R can help address these challenges, facilitating the processing of larger and more complex datasets. 
Additionally, techniques such as parallel processing or data reduction can further improve scalability, enabling the algorithm to 
handle extensive data effectively and supporting its application in real-time or large-scale contexts.

Algorithm 2 Analysis 

Effectiveness: Algorithm 2 is specifically designed to analyze patient datasets and identify core symptoms using rough set and general-
ized nano-topology techniques. The algorithm constructs binary relations for each patient and recalculates neighborhoods, effectively 
distinguishing between significant and non-significant symptoms. By refining the symptom set—removing irrelevant symptoms and 
recalculating relationships—it ensures the accurate identification of core symptoms, provided that the underlying data and symptom 
definitions are reliable. 
Efficiency: The algorithm demonstrates strong efficiency for large datasets, as it can be adapted to handle extensive data effectively. 
By implementing iterative recalculations for each symptom using programming languages like Python or R, the algorithm is equipped 
to manage computationally intensive tasks. Further optimization through caching or reducing redundant calculations can enhance 
runtime performance. 
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Algorithm 1 Decision-Making Using 𝕀𝚥-Approximation to Identify Exactness and Roughness.

Scalability: Despite its iterative structure, the algorithm may face scalability challenges with very large datasets. However, program-
ming languages like Python or R can improve scalability, facilitating the processing of larger and more complex datasets. Techniques 
such as parallel processing or data reduction can further enhance scalability, making the algorithm suitable for real-time or large-scale 
applications. 

In a conclusion, both algorithms offer effective solutions for Covid-19 diagnostic decision-making but may require optimization for 
large datasets. Further development, including parallelization and computational improvements, could enhance their scalability and 
efficiency for broader use.

8. Conclusion and discussion

In this article, we presented eight novel types of initial-neighborhoods and examined twelve distinct types of neighborhoods de-
rived from binary relations to enhance rough set theory. By defining initial-minimal and initial-maximal neighborhoods, we developed 
eight types of rough approximations (𝕀𝚥-approximations for each 𝚥 ∈  , where  = {𝑟,𝓁,∧,⋎, ⟨𝑟⟩ , ⟨𝓁⟩ , ⟨∧⟩ , ⟨⋎⟩ , (𝑟), (𝓁), (∧), (⋎)}) that 
generalize Pawlak’s theory. Our methods represent a significant improvement over previous techniques, achieving accuracy rates of 
up to 100% for specific patient subsets, with results that align precisely with physicians’ diagnoses in the dataset. We demonstrated the 
effectiveness of our approach in medical applications, specifically focusing on Covid-19, and introduced two algorithms for decision-
making in information systems. These advancements underscore the potential of our methods across various fields, particularly in 
medical decision-making, where traditional approaches may fall short.

In this article, we also presented a novel approach to medical diagnostics by developing an accurate framework for diagnosing 
Covid-19 using rough set theory. Our methodology was tested on a dataset of 10 patients, achieving a diagnostic accuracy of up 
to 100%, matching physician diagnoses for specific patient subsets. This high level of accuracy, which surpasses those achieved by 
traditional methods, marks a significant breakthrough in mathematical modeling for medical applications. Unlike existing approaches, 
our framework accurately differentiates between Covid-19 patients and healthy individuals, highlighting its potential in streamlining 
diagnostic processes and conserving critical resources for both patients and healthcare providers.
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Algorithm 2 Attribute Analysis and Reduction Using 𝕀𝚥-Approximation Criteria for Determining Core Attributes to Diagnose Covid-19 
Disease.

Furthermore, this paper extended the concept of Nano-Topology within generalized rough sets, building on previous research by 
El-Bably et al. [44]. By employing approximation techniques from Yao [7], Allam et al. [22,23], Dai et al. [11], El-Sayed et al. [32], 
and Abu-Gdairi [43], we developed new generalized nano-topologies suited to practical applications of initial-rough sets. To validate 
this approach, we applied it in a medical context to analyze factors affecting Covid-19 infections [41], achieving accuracy rates 
comparable to exact diagnoses. Our method supports decision-making by identifying key Covid-19 risk factors using binary relations, 
thereby enabling healthcare providers to make more informed and effective diagnostic decisions.

This paper also introduced two novel algorithms specifically designed for Covid-19 diagnostics. Algorithm 1 focuses on distinguish-
ing between exact and rough sets by computing binary relations and 𝕀𝚥-approximations, demonstrating robust accuracy in classifying 
sets. Although computationally intensive, performance can be enhanced through optimization strategies, such as iterative recalcula-
tions and data structure enhancements. Algorithm 2, which identifies core Covid-19 symptoms through rough set and nano-topology 
techniques, was also tested with high accuracy. While both algorithms are implemented in MATLAB, they are adaptable to other 
programming environments, such as Python, R, and Julia, for wider practical use.

Advantages

1. High Accuracy: The proposed 𝕀𝚥-approximations achieve high accuracy rates, with some methods reaching up to 100%, thereby 
enhancing the reliability of diagnostic processes.

2. Generalization of Pawlak’s Theory: Our approach extends traditional rough set theory by generalizing it to accommodate a 
broader range of applications.

3. Effective Decision-Making: The introduced algorithms and approximations improve decision-making by providing clearer in-
sights and reducing data ambiguity.
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4. Versatility: The methods are applicable across various fields, as demonstrated by their successful application to Covid-19 diag-
nosis and decision-making.

5. Robust Methodology: Using initial neighborhoods and binary relations provides a robust framework for addressing uncertainty 
and ambiguity in data.

Disadvantages

1. Similarity to Previous Studies: One of the proposed techniques, specifically the 𝕀⟨𝚥⟩-approximations for each 𝚥 ∈ {𝑟,𝓁,∧,⋎}, is 
identical to Abu-Gdairi’s [43] methods (namely, 𝕀𝚥-approximations, 𝚥 ∈ {𝑟,𝓁,∧,⋎}) when the relation is a preorder. This overlap 
may limit the perceived novelty of our contribution.

2. Specialized Knowledge Requirement: The application of these methods necessitates a thorough understanding of rough set 
theory and the generalizations introduced in this article. As a result, their accessibility may be limited for practitioners who lack 
specialized expertise in this field.

Future work

Future research can build on the findings of this study in several ways:

1. Optimization of Algorithms: Additional research could focus on optimizing the proposed algorithms to reduce computational 
demands and improve efficiency, making them more suitable for real-time applications.

2. Broader Medical Applications: Expanding these approaches to other medical environments beyond Covid-19 can validate their 
flexibility and effectiveness across various domains.

3. User-Friendly Implementations: Developing user-friendly software tools and frameworks that incorporate these advanced 
rough set methods could simplify adoption for practitioners without specialized knowledge.

4. Integration with AI Techniques: Integrating the proposed rough set approaches with other artificial intelligence and machine 
learning techniques may further increase the accuracy and applicability of diagnostic tools.

5. Longitudinal Studies: Conducting longitudinal studies to evaluate the effectiveness of these methods over time across different 
fields could provide deeper insights into their practical benefits and limitations. This includes exploring related concepts such as 
new types of neighborhoods based on topological structures, as cited in references [5,6,46,47].

In summary, the advancements presented in this study offer significant improvements to rough set theory and its practical appli-
cations, particularly in the medical field. Despite the challenges that remain, the potential benefits of these methods underscore the 
importance of continued research and development in this area.
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