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Abstract

The use of methanol as a chemical precursor and fuel additive has increased recently on a global scale. Hence, this
study combined bibliometric and traditional review methods to assess the recent trends and evolution of methanol
production, as well as its use. According to the study, producing methanol on a large scale from renewable sources

is still hampered by the immature technologies used in its production. For instance, methanol production via the pro-
cess of biochemical conversion still remains at the laboratory level even though it has proven to be a promising pro-
duction option. Cu-based catalysts, especially Cu-Zn-based catalysts, were found to be the most frequently used cata-
lysts for the hydrogenation of CO, to methanol due to their superior activity. The bibliometric study shows an annual
growth rate of 3.63% in research within the last decade, with 867 authors involved. China leads globally in metha-

nol production and consumption research. The highest collaboration occurred between China and the United

States of America with a frequency of six. The study proposed future research directions, including the evaluation

of the environmental impact of CO, conversion to methanol, focusing on the entire life cycle, comparing approaches,
and streamlining procedures. It is also recommended to conduct research on flow chemistry and novel reactor
designs that enhance mass and heat transfer in catalytic reactors.

Highlights

- The review focuses on renewable methods for methanol production.

« Biomass and CO, conversion to methanol were discussed.

- The challenges associated with each of the methods were presented.

- Cu-based catalysts were found to be the highest used for the hydrogenation of CO, to methanol.
« The way forward for the development of the methanol industry was also discussed.
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1 Introduction

Sustainable energy supply to meet global energy needs
has become a major challenge globally. Research shows
that one out of every six deaths that occurred worldwide
in 2019 was related to environmental pollution (Fuller
et al. 2022; Wang et al. 2023). The pollution of the envi-
ronment is further heightened by climate change since
the greenhouse gases (GHG) that are emitted are mostly
from the same sources, i.e., fossil fuels and the burning
of biofuels. Global carbon dioxide emissions in 2018 were
estimated to be around 33 Gt, and the atmospheric car-
bon dioxide concentration within that same period was
also around 410 ppm, rising from pre-industrial levels of
280 parts per million (Zhong et al. 2020). To achieve the
global temperature increase target set forth in the Paris
Agreement, which will be 1.5 °C by 2050, global lead-
ers have thus intensified the need to reduce anthropo-
genic carbon dioxide emissions by discovering alternate
energy sources to meet demands in the form of renew-
able energy (RE) (Wang et al. 2023; Chen et al. 2024). A
surge in the use of RE, particularly solar and wind power,
represents a significant aspect of meeting the said ambi-
tious target.

Nonetheless, the erratic nature of some of these RE
sources remains a challenge as a result of their reliance
on time of day and weather conditions. Energy storage
devices have been suggested in order to solve this obsta-
cle. The production of hydrogen from water electrolysis

from the surplus generated energy from renewables
for later use during high energy demands is one of the
options proposed (Araya et al. 2020; Agyekum et al.
2022; Odoi-Yorke et al. 2024). Under these circum-
stances, the hydrogen that is produced can be employed
as long-term storage, which can then be transferred as a
fuel or for use in industries. Hydrogen can alternatively
be transformed into electro-fuels using the concept of
power-to-X, thus storing RE in the chemical bonds of
liquid or gaseous fuels. Methanol is identified as one of
the possible carbon-neutral electro-fuels when gener-
ated from hydrogen through electrolysis and carbon
dioxide from the atmosphere, the exhaust of industrial
processes, or biomass (Goldmann et al. 2018; Araya et al.
2020). The economy of methanol using green-metha-
nol synthesis methods is proposed compared to that
of hydrogen, which necessitates a massive transforma-
tion in its transportation and means of energy storage.
Methanol’s density is approximately half that of gaso-
line in terms of volume, with an octane number of 113.
Blending methanol and gasoline at 10% or 90% can result
in an octane number that is up to 130. The efficiency of
engines powered by pure methanol can reach about 43%
and sustain it beyond 40% in a broad velocity and load
range (Bozzano and Manenti 2016).

Methanol, apart from being a vital alternative fuel
for transportation, also serves as an intermediate for
a number of downstream products, including olefins,
formaldehyde, biodiesel, dimethyl ether (DME), and
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acetic acid. It can be used as an efficient and safe car-
rier for the transportation and storage of hydrogen.
Syngas, primarily composed of carbon monoxide (CO)
at temperatures between 200 and 300 °C and pressures
between 50 and 100 bar, is a source of industrial meth-
anol. Hydrogenation of CO, and CO as well as water—
gas shift reactions can also yield this product (RWGS)
(Cui and Keer 2019). Although methanol and hydro-
gen can be neutral in terms of CO, emissions if their
production is from renewable sources, the handling of
methanol is easier and can serve as an alternative to oil
directly in the chemical industry (Alberico and Nielsen
2015). Additionally, since methanol at ambient tem-
perature is a liquid, it therefore ties the practices and
infrastructure of the fossil-based economies to future
RE systems, where electrolyzers and fuel cells (FC) are
projected to play a major role. Through the reform-
ing process, methanol can be converted to hydrogen,
and the gas mixture, which is a product, can be used
directly in high-temperature proton exchange mem-
brane (PEM) FC or low-temperature PEM FC after
purification (Araya et al. 2020). There are two primary
benefits linked to the power-to-methanol technique.
Some of these include the chance to produce a renew-
able product that can completely replace ones derived
from fossil fuels and store RE in the form of a chemi-
cal. Using traditional infrastructure, e-methanol can
be distributed and stored (Fournas and Wei 2022; Luo
et al. 2022; Sollai et al. 2023). CO, hydrogenation may
reduce GHG emissions by about 59% when compared
to traditional methods, according to a life cycle assess-
ment of methanol production (Assen et al. 2013).

In this study, we review renewable approaches for
the production of methanol. The synthesis of methanol
from biomass and CO, is documented in this literature.
A review of methanol, its synthesis, and comparative
properties with other fuels is presented. The challenges
associated with the production process of methanol
from both biomass and CO, are also presented. Next,
a bibliometric analysis of clean methanol production
is also presented, which presents current research
trends in the last decade on methanol synthesis. The
bibliometric assessments also present the evolution
of studies on the topic of research over the past dec-
ade, including emerging, declining, and well-developed
areas of research in the production of methanol. The
way forward in terms of technical and policy direc-
tions for the development and use of methanol is also
proposed. This gives researchers and academics a more
refined and comprehensive understanding of the intel-
lectual and conceptual structure of the research body.
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2 Current state of methanol production and use
in the world

Methanol’s (CH;OH) global production capacity as of
2021 was about 164 Mton-a~!, with a projected yearly
increase of about 10% for the next ten years. Methanol
synthesis is traditionally obtained from the syngas of fos-
sils, which is accomplished by steam reforming natural
gas or gasifying coal. Captured CO, and renewable elec-
tricity are, however, gaining considerable interest globally
(Campos et al. 2022). The present technology for the syn-
thesis of methanol is largely built on the utilization of Cu/
ZnO/Al,O; (CZA) catalysts in either adiabatic reactors
with intermediate cold syngas quenching, usually known
as quench reactors (for instance, the Haldor Topsoe pro-
cess, ICI, and the Casale process), or multi-tube reactors
with boiling water that serves as cooling fluid, generally
known as isothermal reactors (for instance, the Linde
process and the Lurgi process) (Bozzano and Manenti
2016; Campos et al. 2022). Other forms that are generally
not used are the Toyo process and the Kellogg process,
which are adiabatic reactors with intermediate cooling
(Campos et al. 2022). A scheme that shows methanol’s
intermediate position in the transformation of both sus-
tainable syngas and fossil-based methanol end-use appli-
cations, as well as added-value chemicals and fuels, is
presented in Fig. 1.

Methanol as a fuel constitutes about a third of the global
total consumption of methanol. Its demand is estimated
to increase due to the world’s rising energy demand and
the necessity of abandoning fossil fuel use. China, due to
its coal production, leads the world methanol market with
57% utilization of the world’s demand (Roode-Gutzmer
et al. 2019). Currently, the emissions over a lifetime due
to the production of methanol are estimated to be about
0.3 Gt CO, a year; this is approximately 10% of all emis-
sions from the chemical industry. In the past 10 years, its
production has almost doubled, with China having the
largest share. It is forecast that its production per year
could increase to about 500 metric tons by 2050 under
the current production trends, which will release an esti-
mated 1.5 metric tons of CO, a year if wholly obtained
from fossil fuels. It costs about USD 100-250 per tonne to
generate methanol utilizing fossil-based fuels. Renewable
methanol that is currently produced is less than 0.2 Mt
annually; it is mainly in bio-methanol form (IRENA 2021).
Methanol’s demand globally has already reached some
107 Mt, which is virtually a double of what existed in the
past decade, and is mostly driven by methanol-to-olefin
(MTO) process expansion as well as developing energy
applications (Fig. 2, Sen et al. 2022).
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3 Methanol, its synthesis, and comparative
properties with other fuels

Robert Boyle first isolated methanol in 1661 through
the distillation of wood, and Dumas and Peligot in
1834 first discovered its chemical composition. Pro-
duction volume at that time was around 10-20 L per
ton of treated wood. It was originally utilized for the
purposes of cooking, lighting, and the provision of
heat. Sabatier in 1905 suggested the original synthetic
method of methanol production, which involves the
reaction of CO and H, (Bozzano and Manenti 2016).
Methanol’s production on an industrial scale started in
1923 at BASF (Leuna Werke, Ludwigshafen, Germany).
The method employed ZnO/Cr,0; (a sulfur-resistant
catalyst) at 320-450 °C and a high pressure between
250-350 bar (Dieterich et al. 2020). The high-pressure
process was in the 1960s replaced by a low-pressure
process (50—100 bar), which was originally marketed by
ICI (now Johnson Matthey). The low pressure was done
beyond 200 °C established by the used copper catalysts’
activity and less than 300 °C restricted by its thermal
stability. Today, due to kinetic observations and iso-
tope tracing experiments, several researchers agree that
the formation of methanol occurs mostly through CO,
hydrogenation, according to the reactions presented by
Dieterich et al. (2020):

COy + 3Hy = CH30H + HyO AH = —49.4k mol™? (1)

whereas the hydrogenation of CO; incorporates water
formation, CO is transformed into CO; using the RWGS
by water consumption:
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COy+ Hy = CO+H,OAH = 412K mol™' (2)
The conversion of the CO can be presented as:
CO +2H, = CH30H AH = —90.6 k] mol™"  (3)

The two reactions are exothermal; therefore, they com-
prise a decline in volume. Therefore, the formation of
methanol is supported by increased pressures and tem-
peratures. The hydrogenation of CO is notably more
exothermic than that of CO,, which results in a higher
demand for cooling (Alper and Yuksel Orhan 2017; Diet-
erich et al. 2020).

Table 1 compares the properties of some fuels.
Machines such as the Otto and diesel motors can use
methanol. It has a high octane number and can be mixed
with gasoline, which improves combustion efficiency.
Whereas methanol has relatively lower local emissions,
the energy density is approximately 50% that of gasoline,
and with respect to methanol, corrosion is also disad-
vantageous. Additionally, it does not have a lubricating
impact on the motor; it can also be used either directly or
with a reformer in fuel cells with high efficiency (Dieter-
ich et al. 2020).

Some challenges and advantages of methanol as a fuel
are illustrated in Fig. 3; it provides a general scheme that
connects the properties of methanol to the performance
of an engine.

3.1 Methanol’s power density

Compared to compressed hydrogen, methanol has effi-
cient energy storage in terms of volume and weight.
Liquid hydrogen has a lower volumetric density than

Table 1 Comparison of synthetic and traditional fuels. Adapted from (Dieterich et al. 2020)

Properties Methanol Gasoline DME Diesel LPG FT-fuel (diesel)
Aggregate Liquid Liquid Gaseous (liquid under,  Liquid Gaseous (liquid under,  Liquid
5 bar) 5-10 bar)
Chemical formula CH;OH -G, CH;0CH; Cio=Cys GG, CioCo3
Miscibility In diesel and gasoline In LPG; in diesel In diesel
Density (g7") 791 715-780 668 815-855 540 (at 10 bar) 770-860
Pollution Oxygen content No C-C binding— Emission Emissions of NOy Less hydrocarbon, CO
reduces local emis- almost no particle of high soot 80%, KW emissions and particle emissions
sions emissions and NOy 50% in comparison
with gasoline
LHV (M) ) 154-156 31.2-32.2 18.2-193 353-36 24.84 33.1-343
Boiling pointat 1 atm  64.7 25-215 =249 170-380 —-42t0-0.5 150-320
(0
Degradable Yes No No Yes
Vapour pressure 037 045-09 53 0.01-0.1 2.1-83 0.01-0.1
at 20°C (bar)
Cetane number 5 (low) - 55-60 45-53 - 70-80
Octane number 110-112 90-95 - - 105-115 -
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methanol; they are 99 g L™! and 71 g L™, respectively,
and hence do not need a cryogenic container, which
requires a temperature of —-253 °C (Cifre and Badr
2007; Shamsul et al. 2014; Agyekum et al. 2023). Serv-
ing as the main fuel source for FCs, the energy density
of methanol is 6100 kW kg™, which increases the oper-
ative lifetime of the FC in the restricted fuel cartridge
volume. Also, FCs that make use of methanol as their

primary FC attain an output energy of 480 Wh within
a volume of 0.6 L with a 19-h run-time; this translates
into a power density of 7.4 WL™! and an energy den-
sity of 289.2 Wh kg™!. With 0.24 L of methanol over the
course of seven hours, a mixture of methanol and water
used indirectly as a polymer-electrolyte membrane fuel
yields an output energy of 166 Wh, or 112.2 Wh L™ of
energy density and 16.9 WL™! of power density (Sham-
sul et al. 2014).
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3.2 Activation of CO, and methods leading to its
hydrogenation into methanol

Because CO, molecules are thermodynamically and
kinetically inert (A;G°=-394.38 k] mol™!), activation
of individual molecules is difficult. Two reactive sites,
carbon and oxygen, make up the linear, non-polar mol-
ecule known as CO,. The electron shortage in carbonyl
carbon suggests that carbon dioxide has a strong affinity
for nucleophiles and reagents that donate electrons; the
oxygen atom, however, exhibits a different behaviour (Li
et al. 2014; Guil-Lépez et al. 2019). Hence, it is required
to get an effective catalyst and external energy input to
convert CO, into methanol since its conversion is kineti-
cally limited. A number of techniques have been created
for the production of methanol using the hydrogenation
of CO, such as (Guil-Lépez et al. 2019):

+ homogeneous catalysis
+ heterogeneous catalysis
+ electrochemical

+ photocatalysis

H
(N
2H,
0] H

L

H
ko~
HCO0OO©

Amine
Ru-4

Overall Equation CO, + 3H,
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3.2.1 Homogeneous catalysis

Studies on homogeneous catalysts have mostly focused
on the formic acid or formaldehyde synthesis for the
hydrogenation of CO,. The complexes of ruthenium
with various ligands are generally the most researched
homogeneous catalysts (Huff and Sanford 2011; Cui
et al. 2016; Guil-Lépez et al. 2019). The most effective
among that group has been identified to be the Ru-
Triphos (Triphos=1,1,1-tris (diphenylphosphinome-
thyl) ethane) (Wesselbaum et al. 2015; Guil-Lépez et al.
2019). Kothandaraman et al. (2016) suggested utiliz-
ing the Ru catalyst (Ru-4) in pentaethylenehexamine
(PEHA), whose reaction solution effectively traps CO,,
to hydrogenate CO, to produce methanol (Fig. 4). The
study performed a CO, hydrogenation reaction utiliz-
ing the Ru-4 catalyst in PEHA’s presence and obtained
a TON of 1060 (in THF, at 7.5 MPa H,/CO, (3/1) and
155 °C). It was additionally proven by using distil-
lation that the CH;OH/H,O could be split from the
solution following the reaction, and methanol synthe-
sis can be obtained from the PEHA and the residual

Co,
( H
M e
N2 CN/R _\\Pphz
u
coo© 2 HBH;
L Ru-4 |
H,
Ru-4
CH30H + H,0

Fig. 4 Suggested procedure of the hydrogenation of carbon dioxide to methanol with PEHA (Onishi and Himeda 2022). Copyright 2022, Elsevier

B.V. (License number: 5886450360157)
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catalyst. Furthermore, PEHA can capture air-derived
carbon dioxide (only 400 ppm in solution) and catalyze
via the Ru-4 under hydrogen to methanol. It is a sig-
nificant accomplishment to retrieve ruthenium cata-
lysts (a rare metal), since there is a general difficulty in
retrieving homogeneous catalysts in the carbon dioxide
hydrogenation reaction (Onishi and Himeda 2022). In
another study by Kar et al. (2018b), the authors pro-
posed a biphasic 2-MTHF (2- Methyltetrahydrofuran)-
water system. The carbon dioxide was initially trapped
in an aqueous solution that has amines, like PEHA, and
there was a hydrogenation of CO, to produce CH;OH
utilizing a Ru catalyst. Distillation could be used to
extract the produced CH;OH.

Most CO,-to-methanol homogeneous catalysts that
have been used so far are generally centered on noble
metal complexes, especially complexes of ruthenium
phosphine (Kar et al. 2018a). For this reaction, Sch-
neidewind et al. (2017) discovered a catalyzed homo-
geneous system for the first non-noble metal based
on cobalt (Fig. 5). Comparable to Fig. 6 Ru system, Co
(acac);, HNTf,, and triphos were employed as precur-
sor catalysts (Wesselbaum et al. 2012, 2015).
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3.2.2 Heterogeneous catalysis

Methanol synthesis from syngas is centered on the uti-
lization of Cu-ZnO heterogeneous catalysts, the active
phase of which is Cu, and the important promoter for the
improvement of the system’s activity is ZnO (Kuld et al.
2016; Guil-Loépez et al. 2019). The traditional process for
the hydrogenation of carbon dioxide exothermically into
methanol (AH 298 K= —49.5 k] mol™) includes the cata-
lytic conversion under relatively low working tempera-
tures (230-270 °C) with a number of phases as a result
of the kinetic limitations (15%—25%) (Guil-Lopez et al.
2019). Heterogeneous methanol catalysts are generally
grouped into three main categories, these are Dang et al.
(2019b):

+ In materials that are deficient in oxygen, their vacant
oxygen positions are employed as active sites.
Oxide catalysts have evolved in recent years, mainly
focusing on novel catalytic structures and reaction
mechanisms. In a study by Martin et al. (2016), the
In,O3-based catalysts were made, and the methanol
generation mechanism was achieved. A 100% selec-
tivity to methanol was exhibited by the In,O; even
at a high temperature of 300 °C under the following

Co(acac)s, triphos

CH3;0OH + HCOOEt

TON=50 TON=2

Cat. HNTTf,

CO, + 3H, >~
100°C, 24 h

20 bar 70 bar THF/EtOH

Fig.5 Cobalt-catalyzed hydrogenation of CO, to methanol (Kar et al. 2018a). Copyright 2017, Elsevier B.V. (License number: 5886450667058)

Cat. HNTf,
CO, + 3H,

CHs0H + H,0

140 °C, 24 h, THF

20 bar 60 bar 10 mmol EtOH TON =221
® O
NTf,
PPh2 PPh2
Ph2P thP / lo)
_R )
PPh, | PPh2
S
C-10 C-10A Cc-10B
Proposed active species Catalyst resting state
S= solvent or substrate S= solvent or free coordination site

Fig. 6 CO, hydrogenation system (Kar et al. 2018a) Copyright 2017, Elsevier B.V. (License number: 5886450906969)
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reaction conditions: H,/CO,=4:1, P=5.0 MPa, and
GHSV =16,000 h™! (Fig. 7).

Similarly, in the study conducted by Rui et al. (2017),
through a combination of In,O; powder and Pd/pep-
tide composite, a Pd/In,O4 catalyst was prepared.
The results of their investigation suggest that the cat-
alytic hydrogenation of carbon dioxide to methanol
is dependent on the interfacial sites and the oxygen
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vacancy. The catalyst that was obtained showed a
higher performance with carbon dioxide conversion
over 20%, a selectivity for methanol beyond 70%, and
a space-time yield up to 0.89 gMeOH h™! gcat™* at 5.0
MPa and 300 °C. The TEM and SEM images for the
Pd/In,O4 catalysts and Pd-P composite are presented
in Fig. 8. The outcome of their study showed a strong

b)

g

§

o

e

I

o

s

m (7

S W Cu-zn0-AlL0,

50.1-

0.0 » T T T T 1
0 200 400 600 800 1000

TOS/h

Fig. 7 a Methanol selectivity and STY for carbon dioxide hydrogenation over large In,0;, In,05/ZrO, (9 wt% In), and the standard Cu/ZnO/Al,0,
catalyst for different temperatures. b the progression of the STY of methanol with time on stream over In,0,/ZrO, and Cu/ZnO/ALO; (Martin et al.

2016) Copyright 2016, John Wiley and Sons. (License number: 5913140924227)

Fig. 8 Transmission electron microscopy diagrams of (a) and (b) Pd-I/In,O;, SEM images of (c) and (d) Pd-P composite, TEM images of (e) and (f)
Pd-P composite, (g) Pd-P/In,O5 (Rui et al. 2017). Copyright 2017, Elsevier B.V. (License number: 5886460183900)
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interaction between the In,O; and the Pd in the pre-
pared catalysts by utilizing the traditional method.

Catalysts that are metal-based are mostly modified
catalysts for hydrogenation of CO, with Cu species
being the key active component, like Pd, Ag, Au, and
Pt, which are noble metals. It is extensively known
that the active phase for the synthesis through car-
bon dioxide hydrogenation is metallic Cu. The pro-
cesses that lead to methanol from the CO, hydrogen-
ation over the Cu-based catalysts were suggested by
several scholars via means of density functional the-
ory (DFT) estimations and experiments. The reaction
routes for CO, hydrogenation over Cu are illustrated
in Fig. 9. The first route corresponds to the formate
(*HCOO) intermediate, which occurs through the
reaction of CO, with a surface atomic H through
either the Langmuir—Hinshelwood (LH) mechanism
or the Eley—Rideal (ER) mechanism (Zhao et al. 2011;
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Dang et al. 2019b). The hydrogenation of HCOO is
then subsequently done to obtain dioxymethylene
(HCOOH). This is followed by another hydrogena-
tion to H,COOH, cleaved to (‘H,CO) formalde-
hyde and (‘OH) hydroxyl. Further hydrogenation of
the adsorbed "'H,CO occurs to obtain methylenoxy
(‘H,COH) or methoxy (H,;CO) as well as methanol
(‘H;COH), which is the final product (termed as the
formate pathway).

The other catalytic system is made up of a unique
catalytic structure. This has a different reaction
mechanism compared to the earlier catalytic sys-
tems presented above. The hydrogenation of CO,
into methanol has been catalyzed by frustrated Lewis
pairs (FLPs). The formation of UiO-66-P-BX was
done through the grafting of some potential LP func-
tional groups, P-BX,, on the organic ligand tereph-
thalic acid of UiO-66. They also attached the Lewis
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pair -BX, on 4,4’-biphenyldicarboxylate (BPDC) (i.e.,
the organic linker) in the UiO-67 via fixing the BX,
moiety at carbon C, and substituting C; with N; this
led to the formation of UiO-67-NBX, (X=CH,, F,
CN, CF,, or NO,). These novel catalysts helped in
the heterolytic dissociation of H, to produce hydridic
and protic H atoms, which bind to the Lewis acid and
base sites, respectively. This accelerates a chain of
concurrent transfers of two hydrogens for methanol
production (Dang et al. 2019b).

3.2.3 Photocatalysis

Photocatalytic reduction of CO, is identified as a favora-
ble route for the conversion of CO, to useful chemicals
and fuels through the use of solar energy. Several forms
of photocatalysts for the reduction of CO, are pre-
sented in the literature; these include mixed-metal oxide
(MMO)-based, metal-organic framework (MOF)-based,
plasmonic-based, and TiO,-based photocatalysts (Shinde
et al. 2022).

The MOF is an organic—inorganic hybrid crystal-
line porous material comprising metal ions enveloped
by organic linkers. The MOF’s internal surface area is
remarkably large as a result of the internal hollow struc-
ture. This is because the metal ions act as nodes to con-
nect the linker arms into one (Su et al. 2017; Shinde et al.
2022). The MOF demonstrates unparalleled structural
diversity and atomic structural uniformity compared to
other porous materials; it also has tunable porosity, uni-
form pore structures, and flexibility in network topol-
ogy. The following MOF-based photocatalyst types, i.e.,
MOF-derived, MOF-based, MOF composites, single-site
MOFs, and MOFs as support, are used for CO, reduction
(Shinde et al. 2022).

Traditional TiO,-based nanoparticle photocatalysts
supported on reduced graphene oxide surfaces were uti-
lized as photocatalysts with high activity for the synthesis
of methanol from the reduction of CO, with a methanol
yield of 2330 pumol gcat ™' h™! (Olowoyo et al. 2019). The
limited amount of ultraviolet radiation in the entire spec-
tra makes the photoactivity of TiO, under solar illumina-
tion low. However, the band gap of TiO, can be reduced
as a result of the nanocomposite TiO,-reduced graphene
because of the influence of the reduced graphene oxide.
The additional tested photocatalysts for this procedure
are dependent on the cupric and cuprous oxides (CuO as
well as Cu,O) reinforced on the reduced graphene oxide
surface (Guil-Lépez et al. 2019; Liu et al. 2019).

MMOs that have two or more forms of metal and
oxygen are largely utilized as photocatalysts for the
reduction of CO,. The semi-conducting nature of their
aqueous suspensions, which are visible light-irradiated,
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has been a major area of study. MMO forms an impor-
tant photocatalyst that is different from normal oxides
in situations like redox, acid—base, and surface area. They
are extensively studied as a result of their tremendous
chemical and thermal stability compared to single oxides
(Gawande et al. 2012; Thompson et al. 2019; Shinde et al.
2022; Ng et al. 2022).

In recent times, the efficiency of photocatalysis has
improved as a result of plasmonic photocatalysis for the
reduction of carbon dioxide under irradiation with visible
light. It uses precious metal nanoparticles spread on pho-
tocatalysts that are semiconductors; it possesses excellent
characteristics like localized plasmonic surface resonance
(LSPR), which performs a significant role in visible light
absorption as well as active charge carrier excitation. The
LSPR helps in the plasmonic photocatalysts’ performance
since it supports excellent light absorption within an
extensive range of wavelengths simultaneously, thereby
accelerating an efficient transfer of energy to semicon-
ductors (Vu et al. 2020).

3.2.4 Electrochemical

Various products can be made from the direct elec-
trochemical CO, reduction; this, however, is depend-
ent on the reaction medium and the catalyst material.
CO, electrochemical reduction can mostly proceed
through 2, 4, 6, and 8 electron reduction routes in non-
aqueous phases, aqueous, and gaseous phases at vary-
ing cell and electrode configurations. Methane (CH,),
oxalic acid (H,C,0,) or oxalate (C,0,>") in basic solu-
tion, CO, formaldehyde (CH,O), ethylene (CH,CH,) or
ethanol (CH;CH,OH), formate (HCOQO™) or formic acid
(HCOOH) in basic solution, and methanol (CH;OH)
are the principal products of the reduction (Albo et al.
2015). CO, electrochemical activation via electrocata-
lysts permits hydrogenation to methanol under mild cir-
cumstances. Metals such as Pd, Pt, and Ru have all been
considered as possible catalysts for CO, electrochemical
activation, generally supported on K- or Na-modified
B-alumina, to be able to enhance the ceramic -alumina’s
conductivity and the chemisorption of H, and CO, over
the active sites of the metal. Other studies are also assess-
ing some less-costly metals, like Ni supported on YS zeo-
lite or Cu supported on K-B-alumina (Guil-Lépez et al.
2019).

4 Methanol production methods, economics,

and its applications in the industry
An assessment of methanol as an alternative sustainable
fuel for marine use indicates that methanol from conven-
tional NG has a higher global warming potential (almost
five times) compared to biomass-produced methanol.
Although technologies for renewable methanol have
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shown lower carbon intensities compared to those of fos-
sil fuel alternatives, methanol generation from renewable
feedstocks has some deficiencies, such as higher costs
and lower energy efficiency. Novel methods for synthesiz-
ing methanol in a renewable way with a relatively lower
carbon footprint have been proposed in various studies.
In addition to processes such as carbon capture units,
other studies have also proposed the modification of
upstream processes, including the design of methods or
ways using renewable feedstocks that have an inherent,
intrinsically lower carbon footprint (Harris et al. 2021).
Biofuels are fuels gotten from biomass; they may be lig-
uid or gas; they can be derived from different biomass
sources; hence, they can be produced virtually at most
places (Verma et al. 2012). Different types of chemicals
and biofuels, such as bioethanol, bio methanol, formalde-
hyde, acetic acid, synthetic liquid hydrocarbons and bio-
diesel, can be obtained from biomass, and most of these
products are accessible on the market currently (Gautam
et al. 2020).

The production of methanol can be said to be green or
renewable if the source of the carbon is a waste product,
the source of energy originates from renewable sources,
and the produced hydrogen is not from fossil fuels (Olah
2005). Bio-methanol is a methanol manufactured from
biogas, which is obtained from municipal solid waste
feedstock or biomass and is also categorized as renew-
able methanol (Roode-Gutzmer et al. 2019). Using CO,
as a chemical feedstock is increasing in methanol pro-
duction, as indicated early in this paper, as a result of ris-
ing interest in carbon capture and use. Some commonly
referenced methods in literature that are usually used
are catalytic carbon dioxide hydrogenation with renew-
able H, to methanol (Leonzio et al. 2019; Bos et al. 2020;
Lee et al. 2020). Currently, the technology’s large scale
and commercial development are being championed by
Carbon Recycling International (CRI 2023). Three differ-
ent renewable methods for the synthesis of methanol are
presented in Fig. 10.

4.1 Biomass-to-methanol

All sources of biomass can be gasified to generate meth-
anol; however, the most suitable materials for such
purposes are those with low moisture, as they provide
efficiencies that can go up to 55%. Similarly, black liquor
obtained from the manufacturing of paper is a potential
feed for gasification and the production of methanol.
This could, however, be more effective in small countries
such as Sweden and Finland, where they have widespread
paper mills. It has been stated that such economies can
produce up to 50% of their fuel demand for their motors
in this fashion (Bozzano and Manenti 2016). The way in
which methanol can be produced from biomass while
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preventing an increase in the concentration of CO, in the
atmosphere is presented in Fig. 11.

Researchers have investigated the process of turning
biomass into methanol in detail and it has occasionally
been carried out commercially. Gasification is a crucial
thermochemical conversion process for biomass. Bio-
mass is transformed into a multi-functional gaseous
mixture when a gasifying agent (GA) is present, mostly
known as synthesis gas or syngas. A solid residue is fur-
ther obtained after the conversion of the biomass (char)
(Asadullah 2014; Molino et al. 2018). The syngas is made
up of a combination of CH,, CO,, H,, CO (main compo-
nents), and NH,, H,O, tar, and H,S, as well as other trace
species (secondary components), with a structure contin-
gent on the nature of feedstock, gasification technology,
and the operating conditions (i.e., bed material type, pres-
sure and temperature of the gasifier, and the GA) (Ahmad
et al. 2016; Molino et al. 2018). The process of gasification
can be divided into four phases: reduction (endothermic),
oxidation (exothermic), pyrolysis (endothermic), and dry-
ing (endothermic). Tar-reforming is another process that
can be used to turn big tar molecules into light hydro-
carbons (Sikarwar et al. 2017). Gasification is made up of
various overlapping sub-processes, as mentioned earlier,
and as such, involves complex combinations of various
reactions, as presented in Table 2. The feedstock’s dry-
ing occurs until a temperature of 120 °C; species that are
volatile are produced below 500 °C. Char gasification can
start at 350 °C. By using exothermic combustion reac-
tions, the heat can be produced internally; it can also be
sourced from external sources. An equation showing a
basic gasification reaction is presented in Eq. (4) (Lange
2007; Sikarwar et al. 2017).

Biomass — CO(g) + Hg(g) + CH4(g) + Tar(l) + HzO([)
+ HQS(g) + NH3(g) + Cs) + tracespecies

The gasification of biomass is done by utilizing vari-
ous forms of gasifiers, i.e., fluidized beds, fixed beds, and
entrained flow reactors. The conversion process is ther-
mochemical, and it includes complicated reactions, mass
transfer, and heat transfer processes. Gasifying agents
like oxygen, air, and steam are needed for the gasifica-
tion process to help transform carbonaceous feedstocks
into gaseous fuels (Gupta et al. 2022). Recent literature
studies that looked at biomass gasification include dif-
ferent aspects applied to produce methanol. Piazzi et al.
(2022) assessed the exergy and energy efficiencies of
various combined biomass gasification coupled to Fis-
cher-Tropsch synthesis (IGFT) designs. They developed
four different models, i.e., air-based gasification, hot gas
cleaning (HGC), FT synthesis; air-based gasification, cold
gas cleaning (CGC), FT synthesis; steam-based gasifica-
tion, HGC, FT synthesis; and air-based gasification, cold
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Fig. 11 Bio-methanol’s carbon cycle (Bozzano and Manenti 2016). Copyright 2016, Elsevier BV. (License number: 5886461048850)

Table 2 Chemical reactions that take place in the gasification of biomass with steam as gasifying agent. Adapted from (Sikarwar et al.

2017). CCBY-NC

Name of reaction AGY 08, (kJ/mol)

AHSQ%) (kJ/mol) Chemical equation

Hydrogenating gasification 168.6
Boudouard equilibrium 140.1
Water gas shift (WGS) -285
Heterogeneous WGS 89.8
Steam reforming of methane 1184
Dry reforming of methane -50.3
Ethylene -111.6
Ethane -212.7
Propane —293.2
Butane -376.7
Pentane —457.9
Hexane —539.6

123.7 C+2Hy < CHy

2053 C+CO, < 2C0

—4147 CO+ H0 < CO; +Hy

1304 C+H0 < CO+H,

1726 CH4 + HO < CO + 3H,
-749 CH4 + COy < 2CO + 2H;
-104.3 2CO + 4Hy <> GoHa + 2H,0
=1727 2CO + 5H; <> CoHg + 2H,0
—165.1 3CO + 7H; <> G3Hg + 3H,0
-1619 4CO + 9Hp < C4Hio + 4H,0
-159.7 5CO + 11H; < CsHyp + 5H,0
—1583 6CO + 13H, <> CgHi4 4 6H,0

gas cleaning (CGC), FT synthesis. According to their
findings, high energy efficiency and exergy were obtained
for designs that utilized a hot gas cleaning system or
steam as an agent of gasification. The maximum exergy
irreversibility occurred at the gasification part of the pro-
cess, both in terms of exergy loss and destruction, as a
result of the degradation of large chemical exergy. Stud-
ies by Sues et al. (2010), Cruz et al. (2017), Samavati et al.
(2018), and Ostadi Mohammad et al. (2019) conducted
an exergy analysis of biomass gasification, most of which
used the integrated gasification Fischer—Tropsch con-
figuration. A promising method for producing synthetic
biofuels is the gasification of lignocellulosic biomass fol-
lowed by FT synthesis. They have the option to be inte-
grated with other systems for co-production of electrical

power (i.e., combined-cycle power plants) (Zhang 2010a;
Kalinci et al. 2012; Cruz et al. 2017).

Conventional pyrolysis was basically developed for
charcoal production, with the by-product being metha-
nol. In the current pyrolytic process, a thermo-chemical
path is taken in which a more innovative thermal treat-
ment is used to transform biomass into gases and bio-
oil under an inert atmosphere (Raheem et al. 2015). The
conditions under which pyrolysis operates are classi-
fied into two distinct phases, i.e., slow and fast pyrolysis
as presented in Fig. 12. Close to 19%—57% of biomass
is produced as bio-oil (as final product) and char under
the fast pyrolysis (Haiduc et al. 2009). However, accord-
ing to a study by Grierson et al. (2009), a slow pyrolysis
of some six different species of micro-algae could result
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in 30%—63% char, 24%—-43% bio-oils, and 13%-25% gas
production for the different micro-algal biomass. The
first step in all processes of thermochemical conversion
is pyrolysis. It is a complex route that includes de-polym-
erization, aromatization, isomerization, dehydration, and
charring (Collard and Blin 2014; Gautam et al. 2020). The
pyrolysis of biomass starts with moisture loss, and then
reactions occur in two phases where the initial processes
are described via the formation of char, fragmentation,
and depolymerization, as well as minor reactions such as
the cracking of oil and re-polymerization.

Wet biomass is transformed into liquid fuels through
liquefaction in the presence of catalysts under the fol-
lowing conditions: high pressure (5 bar—20 bar) and low
temperature (200 °C-500 °C). The processes involved
in pyrolysis are quite similar to those of thermal liq-
uefaction and are a mixture of different reactions such
as decarboxylation, dehydrogenation, dehydration,
and deoxygenation (Mohanty et al. 2022). However, it
changes in the requirements of pressure and tempera-
ture conditions, the catalyst type, and it also produces
liquid, mostly compared to that of pyrolysis (Gautam
et al. 2020). Liquefaction can be classified into two

categories, i.e., direct or indirect. Direct liquefaction,
also referred to as hydrothermal liquefaction (HTL),
involves the transformation of biomass into liquid fuels
using thermochemical processes. It is processed at a
high temperature in a pressurized water setting within
a time period to allow the breaking down of the solid
biopolymeric structure into largely liquid components.
Requirements like pressure and temperature are high
for the HTL mechanism in order to keep the water in
either a supercritical or liquid state. Utilizing water as
a solvent eliminates the necessity of drying the biomass
(Elliott et al. 2015; Ibarra-Gonzalez and Rong 2019).
Liquid tar, bio-oil, as well as condensable organic vapor
are the products formed in this process (Ye et al. 2013;
Mohanty et al. 2022). Indirect liquefaction through
syngas formation produces oil; it involves two stages,
and therefore it is used for methanol production (par-
tial CO hydrogenation). The raw materials used in this
mechanism determine the characteristics of the prod-
ucts (Fahmy et al. 2020; Mohanty et al. 2022). Table 3
shows a contrast of the benefits and drawbacks of the
various thermochemical conversion technologies used
to generate bio-oil.
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In essence, the reaction between H, and CO produces
methanol, and the presence of CO, intensifies that reac-
tion. The goal is to create two-phase catalytic reactors
that can use catalysts such as carbon, alumina, silica, or
graphene, which can be supported on a large surface area
or unsupported at the nanoscale (Jackson and Mahajan
2004). Moreover, methods based on plasma have been
developed to turn biomass waste into alcohol. One sig-
nificant drawback of these procedures is their high cost,
which results from the requirement for costly metal cata-
lysts and the necessary pressure and temperature ranges
of 5-20 MPa and 200-900 C (Riaz et al. 2013; Gautam
et al. 2020). It is therefore important to explore different
methanol production methods where cost is significantly
minimized. One of the promising pathways is the bio-
chemical approach, whose feedstock will be methane for
the methanotrophic bacteria, which will transform it into
methanol at ambient temperature and pressure (Gautam
et al. 2020). A review of recent studies on biomass-meth-
anol production is presented in Table 4.

4.1.1 Some challenges linked to biomass-methanol
production

The produced syngas from the processes of gasification
is found to be suitable for the generation of bio-metha-
nol. Large quantities of biomass are, however, required
for large-scale production. The biomass resources used
for its production are therefore expected to not be edible
in order to avoid competition with food crops (Shamsul
et al. 2014). The small bulk density of biomass means it
requires a high number of truck movements to be done,
making logistic operations a challenge. Furthermore,
some properties, such as its seasonality (making avail-
ability dependent on time) and geographic distribution,
make its collection, transportation, and storage costly
and difficult. Hence, it demands extensive infrastruc-
ture in terms of logistics (Akbarian et al. 2022). It is for
this reason that Caputo et al. (2005) assessed the effect
of logistical factors like specific purchased biomass cost,
vehicle capacity, distribution density, and specific vehi-
cle transport cost to understand the extent to which they
affect the viability of bioenergy production. Furthermore,
products of biowaste commonly contain sulfur com-
pounds (i.e., carbonyl sulfide, thiophene, and hydrogen
sulfide). Such chemicals have the capacity to negatively
affect the gasification catalysts even when their quanti-
ties are not much (less than 10 ppm) (Watson et al. 2018;
Akbarian et al. 2022). Although syngas from biomass is
green, it may have, for example, soot, which is made of
microparticles of submicron size. Energy efficiency can
therefore be reduced and cause breakdowns by trigger-
ing obstructions in pipes, hot-gas filters, heat exchangers,
and toxic catalysts. It is therefore important to regulate
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the concentration of soot in syngas because it is impor-
tant for the commercialization of biomass gasification,
stability, and scale-up. Some of the approaches that can
be used to control the quantity of soot are through the
reduction of benzene and C, hydrocarbons. Also, pre-
treatment for raw biomass can be used to reduce the level
of soot (He et al. 2021).

4.2 CO, electrolysis to methanol

A technique used to reduce the amount of CO, released
into the atmosphere as a result of burning fossil fuels
is called CO, capture and storage, or CCS. However,
a number of technical and financial obstacles, includ-
ing an unknown rate of CO, leakage, a lack of capital
investment, and geological incapacity in some areas,
face the CCS technology. For the technology to advance
toward widespread development, these obstacles must
be removed. Due to its capacity to transform waste CO,
into valuable products like methanol and other signifi-
cant chemicals, carbon capture utilization, or CCU, has
attracted a lot of attention recently. A few advantages of
using carbon dioxide are that it is non-toxic, renewable,
and less expensive (Li and Tsang 2018).

4.2.1 Direct CO, electrolysis to methanol

The electrolysis of CO, offers effective, on-site produc-
tion of a chemical, provided there exist catalyst and
reactor combinations with appropriate selectivity, over-
potential, stability, and ability to withstand commercially
germane current densities (Burdyny and Smith 2019;
Sarp et al. 2021). If the electrolysis of CO, goes in the way
of the electrolysis of water for production, then the latter,
which currently reaches total thermal efficiencies of more
than 70% in modular systems (Ayers 2019), could real-
ize this potential. Cathodic reduction of carbon dioxide
to saturated-chain alcohols such as n-propanol, ethanol,
and methanol needs six electrons and six protons, which
are offered by the oxidation of water; this is presented
in Eq. (4). For methanol production (#=1), some major
hurdles still exist in the areas of CO, electro-reduction
research, as presented supra. In order to resolve these
hurdles, it will be important to develop a catalyst that
binds CO stably to its surface but maintains the ability for
the initiation of four protons and four electrons reduc-
tion to methanol (Sarp et al. 2021).

nCOy + (6m)H' + (6n)e™ — C,Ha, 1 1OH + (2n — 1)H,0 (4)

Even though the reaction is viable thermodynamically,
the linear CO, molecule’s inert nature as well as the mul-
tiple proton and electron transfers make the general reac-
tion slow kinetically. To facilitate such reactions, active
catalytic materials will be required, and an appreciation
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of the complex reaction pathways is essential for the
design of the materials (Zhang et al. 2021a). Even though
much work has been made towards the development of
flow reactors for the electro-reduction of CO,, the devel-
opment of reactor design still needs to be relooked at in
terms of the optimization of efficiency at the system level
and mass transport (Angulo et al. 2020; Sarp et al. 2021).
Methanol possesses a unique characteristic that could
help in enhancing system-level efficiency compared to
other room-temperature liquids that can be obtained
through the reduction of CO,. Methanol’s boiling point
at atmospheric pressure (65 °C) is beyond room tem-
perature; however, it is similar to the polymer electrolyte
membrane (PEM) electrolyzer’s operational tempera-
tures. This offers an opportunity for an effective integra-
tion process, as presented in Fig. 13, where methanol is
produced at the gas phase while water is eliminated as a
liquid. It allows methanol separation from gas and liquid
recycle streams through an unsophisticated glycol-cooled
condenser and gas—liquid separator, which minimizes the
requirement for expensive distillation (Sarp et al. 2021).

4.2.2 CO, hydrogenation to produce methanol

The major products for carbon dioxide activation and
transformation are methanol, methane, hydrocarbons
(LPG, olefins, aromatics, and gasoline), and DME (Centi
et al. 2013). There has been much attention given to
the use of excess power from sustainable resources like
wind and solar, the “power-to-fuel” strategy, and CO,
hydrogenation, which is central to this technology when
combined with the capture of CO, and the produc-
tion of renewable H, from electrolysis. Hence, for CO,
hydrogenation, several studies, such as Landau et al
(2014), Ruiz et al. (2016), Zhang et al. (2018b), Chen et al.
(2019a), and Nezam et al. (2021) assessed the various
methods to manufacture different chemicals as fuels or
feeds in other methods.

CO, conversion to methanol by hydrogenation reaction
(Eq. (1)) requires a substantial supply of energy; thus, it is
required to provide an adequate catalytic system. Look-
ing at the importance of CO, hydrogenation, Li et al.
(2018b) in their recent study provided some opportuni-
ties and challenges for its production. The traditional
process is generally performed at a temperature of 200
°C, and pressure of 35-55 bar, with the highest selective
and active catalysts based on Cu/ZnO/Al,ONiu, (Dalena
et al. 2018a).

In theory, two key paths (except catalyst enhancements)
can be followed to improve the production of methanol
in conventional reactors, i.e., unconverted synthesis gas
recycling after the separation of products via condensa-
tion and removal of in situ reaction products. CO, cat-
alytic hydrogenation via renewable energy-produced
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hydrogen gas (H,) is, however, regarded as a potential
route for methanol’s sustainable production, as well as
formic acid, lower olefins, and higher alcohols and hydro-
carbons (Dalena et al. 2018a).

The catalyst used for the hydrogenation of CO, is usu-
ally the same as that utilized in the hydrogenation of CO
for the production of methanol. Several studies have
indicated that the type of catalyst, reactor configura-
tion, and operating conditions have a significant influ-
ence on the CO, hydrogenation to methanol. Several
metal-based catalysts, as presented in earlier sections,
have been assessed for methanol synthesis, and the
most active catalytic element has been found to be cop-
per (Cu), employing various promoters like Si, B, Zn, Cr,
Ag, Ce, Ti, Ga, Zr, V, Al etc. (Arena et al. 2007; Garcia-
Trenco et al. 2017; Tada et al. 2017; Lam et al. 2018; Tang
et al. 2019; Saeidi et al. 2021). Even though there is much
reported literature on Cu-based catalysts, their sintering,
deactivation, and phase segregation in the hydrogena-
tion of CO, processes have given more reasons to study
novel materials. Indium oxide (In,O;) has therefore been
found as a developing material in the synthesis of metha-
nol by CO, hydrogenation as a result of its stability and
high selectivity (Martin et al. 2016; Tsoukalou et al. 2019;
Frei et al. 2020).

It is important to get catalysts that are more water-
tolerant and can offer an extended lifespan for the plant.
An attempt has been made to use Pd as a catalyst for the
production of methanol from CO,+H, even though it is
not environmentally benign or economically viable. Pd
is expected to be a poor catalyst for methanol produc-
tion, which has been proven by (Bahruji et al. 2016) This
is because it favorably catalyzes the RWGS reaction to
generate CO, but it also produces an insignificant quan-
tity of methane. However, the selectivity of Pd could be
improved when it is alloyed with other metals. Maybe
a case of this will be when Pd is supported on ZnO, a
reduction in the high temperature (>~ 300 °C) will result
in the creation of a 1:1 PdZn alloy (Bahruji et al. 2016,
2017; Bowker 2019). This demonstrates excellent selectiv-
ity to methanol (Xu et al. 2016). There are several ways to
synthesize such catalysts, and with other assistance, like
the ZnAl,O;, for its performance enhancement, which
can compete with that of the traditional CZA catalysts.
It can similarly function with Pd levels as low as 1% and
remain effective; however, it is costly (Bowker 2019).

The combination of ZrO, and Cu results in a very
active, stable, and selective catalyst. Yet, a recent study
by Stangeland et al. (2021) showed that Cu/ZnO still out-
shines Cu/ZrO, in terms of performance, particularly at
low temperatures. Similarly, the selectivity and activity of
mono-metallic Cu catalysts can be improved with CeO, in
the hydrogenation of CO, to methanol (Zhu et al. 2020b).
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However, the applicability of CeO, is limited due to its low
stability in the presence of water (Wang et al. 2020; Schwi-
derowski et al. 2022). Cu/MgO, which demonstrated a
high rate of formation of methanol in the hydrogenation
of CO to methanol (Fig. 14), is not appropriate for the use
of CO,-containing feed gases since it is poisoned via the
creation of very stable carbonates and bicarbonates on the
surface of the catalyst (Nielsen et al. 2020; Schwiderowski
et al. 2022).

Researchers such as Ye et al. (2014) and Rui et al. (2017)
have reported that In-based catalysts exhibit similar per-
formance in bifunctional catalysts like Pd-In, and com-
posite In-based oxides/zeolite (Gao et al. 2018; Dang
et al. 2019a), and Zr-In (Chen et al. 2019¢). Furthermore,
flame spray pyrolysis (FSP) was found to be an efficient
approach to preparing effective catalysts for the purpose
of hydrogenating CO, to produce methanol (Niu et al.
2022). The FSP method was utilized by Zhu et al. (2021a)

for the preparation of the catalysts of Cu/ZnO-CeO,, Cu/
CeO, and Cu/ZnO as shown in Fig. 15b. The study iden-
tified that the inclusion of CeO, improves the dispersion
of Cu compared to that of the ZnO due to its stronger
Cu-CeO, interactions. The high selectivity of the CH;OH
can also be ascribed to the synergistic interactions of Cu-
CeO, and Cu-ZnO.

A study by Chen et al. (2019b) as presented in Fig. 16,
indicated that the formate route was better over the
Cu-LaO, interface in comparison to the hydrocarboxyl
path. The LaO, improved the Cu dispersion, which then
enhanced the adsorption of CO,. The approach resulted
in 81.2% selectivity for methanol at a CO, conversion
rate of 6% within a period of 100 h. In the study of Wang
et al. (2019), the authors also suggested the application
of visible light irradiation to excite electrons over Cu—
ZnO. They showed that there was an easier activation of
the reaction intermediates. This resulted in a reduction
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of 40% in terms of activation energy, which was accom-
panied by a 54% increase in the production of metha-
nol. Photo-mediated catalysis was cited as the cause
through the formate pathway. Some current research on
the transformation of CO, to methanol is reviewed and
depicted in Table 5.

4.3 Techno-economic analysis and industrial application
of methanol

Techno-economic analysis was conducted by research-
ers mainly using simulations, employing modeling-based
analysis techniques to study the production and utili-
zation of methanol. Battaglia et al. (2021) investigated
the decarbonization of the chemical process industry
through the use of "green" methanol produced from
renewable electricity. A process model was created to
use water electrolysis to transform CO, from a coal-
fired power plant into methanol. According to the study,
a network of recovery heat exchangers could increase
plant efficiency from 26.74% to 37.22%, save 4.59 MW
of energy, and lower the demand for heating and cooling

by 81% and 47%. The price of methanol was in line with
future market prices, ranging from 2624—2706 €t~! to
565—647 €t~L. Similarly, the Aspen Plus® and the TEPET
tool for techno-economic analysis were used by Rahmat
et al. (2023) to simulate the e-MeOH plant. The plant
can achieve energetic and exergetic Power-to-Fuel (PtF)
efficiency of 52.4% and 56.4%, respectively. The study
states that the production of e-MeOH is possible at net
present value of 1129-1481 €t~! or 57-74 €G]}, which
could be doubled if the plant in Germany runs solely on
solar and wind power. Additionally, Zhang et al. (2019a)
investigated the solid-oxide electrolysis process’s techno-
economic optimization of CO, hydrogenation for the
production of green methanol. To assess the process
and its tradeoff between production cost and energy
efficiency, a case study was carried out. The research
produced 150 kton of CO, utilization and 100 kton of
pure methanol, which translates to an annual renew-
able energy storage capacity of 800 GWh. With a 13-year
payback period, the cost of producing methanol at 560
$ton! was not economically feasible at an electricity
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price of 73.16 $MWh~. Using an Aspen Plus simulation
model, Xiao et al. (2009) evaluated the life cycle of the
production of biomethanol. With 42.7% energy efficiency,
they discovered a methanol yield of 0.308 kg per (kg rice
straw). 387 USDt™! was the total cost of production;
338.35 USDt™! represented the economic cost, and 38.65
USDt™! represented the environmental cost. Utilizing
rice straw has been found to be an advantageous mate-
rial for improving the environment and using agricul-
tural waste. Chiou et al. (2023) investigated six different
schemes based on adiabatic and non-adiabatic fixed-bed
reactors as means of converting CO, to methanol. With
an average market price of 378 USDton™" and a metha-
nol minimum required selling price of 998 USDton},
Scheme 5’s two-reactor system offered the best decar-
bonization potential and the lowest production cost. The
hydrogen produced from SMR with carbon capture on
both flue gas and syngas leads to net decarbonization,
as evidenced by the finding that the highest amount of
CO, that can be produced when using hydrogen is 6.554
ton-CO, per ton-H,. In two scenarios—photovoltaic

electrolysis with a battery and without a battery, using
grid electricity—the efficiency of integrated metha-
nol synthesis and hydrogen production using a heat
exchanger network (HEN) was examined in the study
by (Nizami et al. 2022). The cost per tonne of methane
produced was 1040.17 and 1669.56 $ per tonne-MeOH,
respectively. The total emissions of CO, equivalent were
0.244 and —0.016 kg-CO,-eq per MJ-MeOH, respectively.

Methanol is a commonly utilized chemical in industries
and common in our daily lives. It is mostly used as fuel
in factories and for the generation of electricity due to its
high efficiency as an energy carrier (Jadhav et al. 2014;
Schorn et al. 2021). Some other applications for metha-
nol are as follows:

Antifreeze—the chemical property of methanol enables
it to reduce the freezing point of a liquid (water-based)
and raise the boiling point. It is because of these proper-
ties that it is appropriate for methanol to be utilized in
windshield washer fluids as an antifreeze to avoid freez-
ing the cleaning fluid. Methanol is also introduced in
NG pipelines to help reduce water’s freezing point in the
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Fig. 16 Suggested mechanism of reaction for the hydrogenation of CO, over Cu,La,,/SBA-15 catalyst (Chen et al. 2019b). Copyright 2019, Elsevier

B.V (License number: 5886540390309)

course of the transportation of oil and gas (Haschek et al.
2010; Garg and Ketha 2020; Xu et al. 2020).

Solvent—it is also used as a solvent in industry to help
in the creation of resins, inks, dyes, and adhesives. Meth-
anol is also employed in the manufacturing of important
products in the pharmaceutical industry, some of which
are streptomycin, cholesterol, hormones, and vitamins
(Haschek et al. 2010; Garg and Ketha 2020; Xu et al.
2020).

Methanol to DiMethylEther—in the petrochemical
industry, methanol is used as a C1 building block, and
a greater portion of it is produced and utilized as a sub-
stitute fuel in the DME industry. Properties of DME, i.e.,
ignition temperature and octane number close to those
of diesel fuel, result in less engine noise, less smoke, and
lower NO, emissions compared to those of conventional
diesel engines (Hosseininejad et al. 2012). The perfor-
mance of DME fuel blend with diesel fuel has been pre-
sented in various analyses. For example, Taghavifar et al.
(2019) explored the application of varying fuel blends of
D50M30DME20, D60M10DME30, D70M20DME10, and
D80M20 with different ratios of exhaust gas recirculation.
Blending 20% of DME (D50M30DME20) and 30% metha-
nol with diesel at 1400 rpm produced high pressure and

accrued heat with 35% mechanical efficiency. However,
a blend of D80M20 at 2000 rpm with a 20% exhaust gas
recirculation produced a relatively inferior efficiency for
the engine with defective combustive performance.

Methanol Fuel Cells—the need for external power sup-
plies for charging various electrical gadgets is grow-
ing globally. Chemical energy is converted to electrical
energy by PEM fuel cells. An example of the PEMFC is
the DMFC (direct methanol FC), whose fuel is metha-
nol solutions or methanol and operates at ambient
temperature. It is comparable to the electrolysis of a
methanol-water solution system. The typical reaction
for the method is as presented in Eq. (5) (Dalena et al.
2018b).

CH30H + 1505 — CO, + 2H,0 )

The DMEC structure is made up of two porous elec-
trocatalytic electrodes that are at both ends of a solid
polymer electrolyte membrane. The overall cell reac-
tion’s thermodynamic reversible potential is estimated
to be 1.214 V (Mallick et al. 2016; Dalena et al. 2018b).
Electrons and protons are released through the oxidation
of methanol and water in the anode catalyst layer (ACL)
as indicated in Eq. (6). The protons get to the cathode
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by passing through the electrolyte membrane, while the
electrons move through an external circuit to the cathode
(Dalena et al. 2018Db).

CH30H + HyO — COy + 6H ™ + 6e (6)

5 Bibliometric analysis

A brief bibliometric analysis was conducted along the
study objectives to understand the study trend and evolu-
tion of methanol production between the periods of 2013
and 2023 using the Scopus database. A total of 232 docu-
ments were retrieved from the database using keywords
such as "methanol production methods" OR "biomass
to methanol production” OR "carbon dioxide to metha-
nol" OR "green methanol production”, which were then
fed into the VOSviewer and the Biblioshiny package in
the R software for analysis and visualization. The overall
information for the documents evaluated is presented in
Fig. 17. Research in the area of study recorded an annual
growth rate of 3.63% with a total authorship of 867.

The co-occurrence, fractional counting, and author
keywords were used for the analysis. The results as pre-
sented in Figs. 18 and 19 show major networks between
the production of methanol and certain particular key-
words related to the different production methods, some
of which are CO, reduction, bio-methanol, biofuels,
biomass-to-methanol, CO,-to-methanol, gasification,
optimization, hydrogenation, etc. A total of 7 clusters and
135 links were identified. The places with dense clusters
indicate that those words are more connected, and such
words are more relevant to the production of methanol.
The thicker and bigger circles represent the frequency of
usage of the word or phrase in published literature.

Most of the keywords are words that are related to CO,
conversion to methanol; according to the network, they

Timespan

2013:2023

Authors Authors of single-authored doc:

867 8

Author's Keywords (DE)

513

References

11480

Fig. 17 Overview of the main information for the study period
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have a strong link to the production of methanol. Key-
words like carbon dioxide emissions, CO,-methanol, and
carbon dioxide fixation are terms that fall closely to the
dense cluster of methanol production. This implies that
for the last 10 years, most studies on methanol produc-
tion have focused on the use of CO, conversion to meth-
anol, especially due to the increasing need to reduce CO,
pollution and the abundant nature of that resource for
methanol production.

The ways in which the different themes have devel-
oped for the study period was divided into three dif-
ferent time periods, i.e., 2013-2017, 2018-2020, and
2021-2023. As demonstrated in Fig. 20, there has been
a considerable evolution in the areas of research on the
research topic over the years. Studies within the first 4
years (i.e., 2013-2017) were mainly limited in terms of
scope; topics such as biodiesel, gasification, methanol,
CO, reduction, and methanol synthesis were the main
areas of focus. During the second period of the analy-
sis (i.e., 2018-2020), this, however, evolved to include
topics such as electrocatalysis, carbon dioxide utiliza-
tion, bio-methanol, and biomass gasification. This sug-
gests that researchers expanded their studies beyond
just the production of methanol and CO, reduction in
the first four years to cover its uses in different areas
of life. The last stage of the evolution covers the period
between 2021 and 2023, where topics like life cycle
assessment (LCA), process simulation, methanol syn-
thesis, etc., were investigated by researchers. During
the period, researchers such as Hoppe et al. (2018), Li
et al. (2018a); Eggemann et al. (2020), Adnan and Kibria
(2020), and Zang et al. (2021) conducted LCA analysis
on the methanol synthesis. The thematic map for the
various author keywords used by various researchers
is presented in Fig. 21. The thematic map is produced

Annual Growth Rate

3.63 %

International Co-Authorship Co-Authors per Doc

4.72

22.41 %

Document Average Age

4.5

Average citations per doc

37.95
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Fig. 18 Research network visualization for the production of methanol

based on the centrality and density of the keywords
used by the authors over the years. It has four topologi-
cal regions. It is generated using the semi-automatic
algorithm in the Biblioshiny package and reviews the
various titles of the documents assessed in the study.

methanol

6!}5 VOSviewer

Fig. 19 Density visualization for the production of methanol research

The clusters presented in the graph show the topics or
areas of the research, whereas the cluster size highlights
the proportion to the number of author keywords. The
graph has four quadrants, i.e., the motor themes, niche
themes, emerging/declining, and basic themes.
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2013 - 2017

Fig. 20 Evolution of themes within the past decade in the study area
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2021 -2023

‘methanol synthesis|
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enzymes
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Fig. 21 Thematic map for the author keywords

The motor themes quadrant refers to themes that are
well-developed and important in the area of research;
the niche themes correspond to topics that are isolated
and highly developed. The emerging or declining themes
appear in the third quadrant. The fourth quadrant has

the basic themes, which are topics that are transversal,
general, and basic in the research field (Cobo et al. 2011;
Agyekum and Odoi-Yorke 2024). The motor themes have
topics such as CO, reduction, enzymes, and bio-electro-
catalysis; these themes are well developed in the area of
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research. Studies by Zeng et al. (2014), Liang et al. (2015),
Gallo et al. (2020), Ma et al. (2022), and Garcia-Baldovi
et al. (2023) assessed various aspects of CO, reduction to
methanol; similarly, other studies by Zhang et al. (2021c¢),
Weliwatte and Minteer (2021), Katagiri et al. (2022), and
Luan et al. (2023) also investigated recent advances in the
use of bio-electrocatalysts for CO, reduction. The niche
themes recorded three different clusters; themes such as
biodiesel, kinetics, and transesterification fall within the
first and highly dense cluster; such themes are mostly
interlinked and studied together by researchers. The sec-
ond cluster in the niche themes consists of themes like
reduction, carbon dioxide fixation, and density functional
calculations. The density functional theory has been used
by researchers like Sun et al. (2015), Kumari et al. (2015),
Liu et al. (2018), and Kopac¢ et al. (2019) to investigate
the methods for CO, reduction to methanol. One cluster
appeared in the declining or emerging themes; it has top-
ics such as electrodeposition and electrochemical CO,
reduction. The electrodeposition technique is a long-
standing process that has been used to coat thin layers of
one metal on top of another to help in the alteration of its
surface characteristics through the donation of electrons
to the ions in a solution. In recent years, the electrodepo-
sition technique has gained much recognition in the area
of methanol production (Abraham and Chetty 2021;
Traipop et al. 2021). The topics in the emerging/declin-
ing themes can best be described as emerging instead of
declining since these are new topics being researched by
scientists in the area of methanol production. The last
quadrant, i.e., the basic themes, has three clusters with
topics that are basic in the research field, all of which
have already been discussed in earlier sections.

The factorial analysis presents the conceptual framework
for the topic of research (Fig. 22). The clustering of the
author keywords was done using the K-means approach.
This allows researchers to find documents or topics that
are common in concept. The outcome as presented in the
graph can be explained through the use of the individual
points’ locations and how they are distributed across the
dimensions. Words that are close have a similar distribu-
tion structure (Aria and Cuccurullo 2017). According to the
outcome of the algorithm as presented in the graph, dur-
ing the study period, the majority of the author keywords
exhibited a similar distribution and strong correlation.

The geographical collaboration map indicating co-
authored documents among countries around the world
is shown in Fig. 23. The Biblioshiny software was used
in the visualization of the research collaborations in the
study area. It demonstrates the social structure of the sci-
entific community in the area of biomass and CO, con-
version to methanol. The intensity of the blue color is an
indication of the number of publications in that country;
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on the other hand, the level of collaboration among the
academics in the various countries is represented by the
red lines. A total of nine clusters with 279 links were
observed. A total of 61 documents were recorded for
China; the United States followed with 28 documents;
India, Italy, Spain, and Malaysia followed with 15, 12, 11,
and 10 documents, respectively. Other countries followed
with single-digit figures under the various clusters. China
comes first globally in terms of research on methanol
production and consumption; hence, many resources are
invested in its studies. The highest collaboration occurred
between China and the United States of America, which
recorded a frequency of six. The next highest collabora-
tions with frequencies of two each occurred between
China—-Denmark, China—Germany, India—France, India—
Malaysia, Italy—Iran, Italy—Netherlands, Italy—Switzer-
land, Malaysia—Bangladesh, Malaysia—Pakistan, and the
United States—Korea. It is worth indicating that a country
like China, which is leading in green methanol produc-
tion research, is intensifying its methanol vehicle devel-
opment to reduce pollution in the environment and also
secure the supply of energy (Li et al. 2023b, 2023a).

6 The way forward for the production

of renewable methanol.
The cost of production is a key hindrance to renewable
methanol adoption; just like other sustainable alternate
fuels and feedstocks, the cost differential between renew-
able methanol and fossil-based alternatives may continue
for some time to come. Compared to methanol obtained
from natural gas and coal-based production, which
have costs of production ranging between 100 $t™' and
120 $t™1, and 150 $t™* and 250 $t~), respectively, that of
renewable methanol is assessed to be higher. On the Euro-
pean market, for instance, the cost of methanol fluctuates
in the range of 200 $t™'~400$t ! when adjusted for infla-
tion. It therefore suggests that fossil fuel-based methanol
is already competitive with several fuels produced from
petroleum, such as diesel, gasoline, heating oil, and jet fuel
(IRENA 2021). The production cost for bio-methanol, and
e-methanol (from hydrogen and CO,) are estimated to be
327 $t7'-764 $t~1, and 800 $t~'-1600 $t~!, respectively,
making them very expensive (IRENA 2021). Hence, the
right policies ought to be put in place to stimulate and sus-
tain renewable methanol’s production and utilization on
a large scale. More research is needed to determine how
CO, to methanol technologies affect the environment.
Future studies may concentrate on evaluating the effects
of the entire life cycle, i.e, life cycle assessment, contrast-
ing various approaches, and streamlining the procedure to
cause the least amount of environmental destruction.

Renewable methanol production methods ought to be
at a technology readiness level (TRL) that is high enough
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to be deployed at scale; this will enable them to compete
with traditional methanol production methods in the
near future. According to a study by Harris et al. (2021),
biomass-methanol is the only production route that can
be potentially implemented at scale in the near term. In
terms of cost, biomass gasification to methanol at a cost
of 0.39 $kg™! could compete with conventional methanol
production’s economic performance. Additionally, the use
of commercialized methanol production pathways from
biomass offers the opportunity to incorporate them with
existing traditional methanol plants, which will result in

Longitude

Fig. 23 Country research collaboration map

a reduction in cost and transition time. Factors such as
established infrastructure and high productivity are some
of the advantages of the thermochemical conversion of
biomass waste. Although it has a high rate of productiv-
ity in terms of the quantity of methanol produced, there
is still little information in the literature on the technical
drawbacks, proper conditioning of appropriate raw mate-
rials, cheaper catalysts depending on the feedstock of
the biomass, as well as some process parameters such as
residence time, particle size, temperature, and yield (Gau-
tam et al. 2020). All of these factors have to be looked at

b

e

Latitude
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prior to its large-scale implementation for the production
of methanol. Effective CO, capture is critical to the con-
version process, and cutting-edge capture technologies,
such as direct air capture (DAC), including innovative
materials, membrane separation, and liquid absorption
techniques, are necessary to make CO,—based methanol
economically viable (Sodiq et al. 2023; Garcia-Bordejé
and Gonzélez-Olmos 2024). A closed-loop system that
transforms captured CO, into methanol for use as a fuel
or chemical feedstock might be created by integrating
CO, capture combined with utilization (CCU) procedures
into the current carbon capture and storage infrastructure
(Pérez-Fortes et al. 2016; Djettene et al. 2024).

A look into the reviewed literature suggests that Cu-
based catalysts are the most commonly used for CO,
hydrogenation to methanol, particularly Cu-Zn based
catalysts, as a result of their excellent activity. Cu-based
catalysts are, however, found to have low selectivity when
subjected to low H,/CO, conditions or low pressure. It is
therefore important for future studies to focus on devel-
oping other forms of catalysts that do not depend on Cu.
Such catalysts must have characteristics such as high sta-
bility, high performance, and cheapness in terms of cost.
Going forward, it is vital to construct durable and efficient
catalysts. There has been some positivity in the use of new
ligands with functional groups that improve activity via
metal-ligand cooperation. Such ligands include proton-
and electron-responsive ligands, which have the potential
to lose some protons or electrons, respectively. Energy
footprints could be greatly reduced by solar-assisted CO,
reduction processes, which use solar energy to power
catalytic reactions (Dey et al. 2004; Adekoya et al. 2019).
High efficiency and stability for direct CO, conversion to
methanol should be the main goals of research into photo-
catalysts such as TiO,, CdS, or copper-based materials.

Furthermore, the production of renewable hydrogen via
water electrolysis is essential for CO,-to-methanol con-
version processes (Barbato et al. 2013; Sollai et al. 2023).
The economics of producing CO, to methanol will be
greatly impacted by lowering the cost of producing hydro-
gen. Also, reactor configurations should be optimized
for CO, to methanol conversion; this can lower energy
consumption and increase yield. For catalytic reactors to
transfer heat and mass more efficiently, research on flow
chemistry and creative reactor designs is essential.

In terms of policy, biomass can be employed for the
generation of bio-methanol or e-methanol in the indus-
trial and transport sectors. There may be varying paths
to carbon neutrality for each sector; hence, there should
be a public policy by various governments and institu-
tions across the globe that creates an equal playing field
to expand the opportunities therein and not rather limit
them. Furthermore, robust policies and programs will be
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required to remove the hindrances linked to the develop-
ment and introduction of renewable methanol. Govern-
ment mandates for incentives for renewable fuels, fuel
blending quotas, and carbon taxes could influence the
willingness of the energy market to pay a premium for
clean methanol (IRENA 2021).

7 Conclusions

Producing methanol from renewable sources is gaining
traction in the world’s quest to reduce its GHG emissions.
Its production can be done by either using conventional
sources or renewable sources, and it is projected to be a
possible solution to the world’s clean energy needs in the
near future. This study reviewed recent developments in
the production of clean methanol from biomass and CO,
sources. The challenges associated with the generation
of methanol from the two sources were also highlighted.
The study combined bibliometric and traditional review
methods to assess the recent trends and evolution of
methanol production and use. The study revealed that the
immature nature of the technologies used for the produc-
tion of clean methanol continues to serve as a hindrance
to the product’s mass production. For instance, methanol
production via the process of biochemical conversion
remains at the laboratory level, even though it has proven
to be a promising production option. Cu-based catalysts
are the most used for CO, hydrogenation to methanol,
particularly Cu-Zn based catalysts, because of their
excellent activity. Cu-based catalysts are, however, found
to have low selectivity when subjected to low H,/CO,
conditions or low pressure. It is therefore important for
future studies to focus on developing other forms of cata-
lysts that do not depend on Cu. Such catalysts must have
characteristics such as high stability, high performance,
and cheapness in terms of cost. It is also important to get
catalysts that are more water-tolerant, which can extend
the life of the plant. An effort has been made to use Pd
as a catalyst for the synthesis of methanol from CO,+H,,
even though it is not environmentally benign or econom-
ically viable. The trend in research as identified through
the bibliometric analysis indicates that the research in the
last decade has developed from just the process of pro-
ducing methanol to its application in industrial settings.
It indicates that a total of 867 authors were involved in
research on the topic. Major networks between metha-
nol production techniques and particular keywords were
found through analysis employing co-occurrence, frac-
tional counting, and author keywords. A total of 135 links
and 7 clusters were found. The factorial analysis revealed
that the majority of the author keywords used during the
study period have a similar distribution and are strongly
connected, suggesting a shared concept. The study con-
cluded with potential future research directions.
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