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A B S T R A C T

In recent decades, there has been an increasing interest from the research community in various scientific and
engineering fields, including robotic control, signal processing, image processing, feature selection, classifica-
tion, clustering, and other issues. Many optimization problems are inherently complicated and complex. They
cannot be solved by traditional optimization methods, such as mathematical programming, because most con-
ventional optimization methods focus on evaluating first derivatives. On the other hand, metaheuristic algo-
rithms have high ability and adaptability in finding near-optimal solutions in a reasonable time for different
optimization problems due to parallel search and balance between exploration and exploitation. This study
discusses the basic principles and mechanisms of the GJO algorithm and its challenges. This review aims to
provide valuable insights into the potential of the GJO algorithm for real-world and scientific optimization tasks.
In this paper, a complete review of the Golden Jackal Optimization (GJO) algorithm for various optimization
problems is done. The GJO algorithm is one of the metaheuristic algorithms invented in 2022 and inspired by the
life of natural jackals. This paper’s complete classification of GJO in hybrid, improved, binary, multi-objective,
and optimization problems is done. The analysis shows that the percentage of studies conducted in the four fields
of hybrid, improved variants of GJO (binary, multi-objective), and optimization are 11 %, 44 %, 9 %, and 36 %,
respectively. Studies have shown that this algorithm performs well in real-world challenges. GJO is a powerful
tool for solving scientific and engineering problems flexibly.

1. Introduction

Constrained nonlinear optimization is concerned with finding the
best possible solution from a set of available options by minimizing or

maximizing a specific objective function [1]. This area is crucial in
various fields, such as engineering, finance, physics, and management,
offering numerous practical applications [2]. Depending on the nature
of the objective function and the constraints involved, these
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optimization problems are categorized into two primary types: convex
and nonconvex. Convex optimization problems, encompassing methods
like linear and quadratic programming, represent a specialized subset
within the broader realm of nonconvex optimization challenges and
have attracted significant research attention. Strategies such as the
primal-dual interior point method have been developed to address these
problems effectively. In contrast, nonconvex optimization problems are
known for their complexity and are typically tackled with gradient
descent-based techniques. However, these methods often face chal-
lenges in achieving global optimality, representing a common obstacle
in the optimization process [3].

Current optimization methods include well-established techniques
such as linear programming, mixed-integer programming, nonlinear
programming, and integer programming. These are complemented by
newer methods such as Newton’s method, the conjugate gradient
method, and the gradient descent method [4]. While these approaches
are practical for globally optimizing certain types of problems, they
typically require conditions like the convexity of the solution space,
continuity in the objective function, or specific additional constraints to
be met [5]. However, complex optimization challenges often present
characteristics such as non-differentiability, non-convexity, or multi-
modality, which complicate their resolution within traditional frame-
works [6]. Consequently, conventional optimization strategies can
encounter significant difficulties when faced with large-scale and intri-
cate problems.

In light of the challenges faced, there is an increasing demand for
optimization algorithms that are accurate, efficient, and robust enough
to tackle complex problems. Metaheuristic (MH) algorithms have
become a key solution, gaining widespread acceptance for their ability
to approach optimal solutions in diverse optimization contexts. These
algorithms often incorporate stochastic elements and are capable of
delivering near-optimal outcomes in various scenarios [7,8]. Drawing
inspiration from the collective behaviors observed in nature, such as
those of ants, bees, and birds, MH algorithms are marked by their
collaborative and competitive dynamics, along with their
self-organizing and adaptive qualities [9]. The strengths of MH algo-
rithms lie in their integration of swarm intelligence principles with
optimization theories, offering notable advantages such as ease of
implementation, exceptional stability and resilience, and effective
scalability [10]. High-dimensional solution spaces, nonlinear relation-
ships, and the existence of multiple local optima lead to the failure to
find a global optimum in optimal computational time [11]. MH algo-
rithms are effective as powerful tools for optimizing complex and
nonlinear problems. Optimization problems often involve constraints
that make it difficult to find practical solutions [12]. MH algorithms use
intelligent strategies such as balancing and optimal exploitation to
handle the constraints flexibly.

The superiority of MH algorithms compared to conventional
methods stems from their gradient-free approach and their ability to
circumvent local optima [13]. Traditional optimization methods often
struggle with the issue of getting trapped in local optima, resulting in
slow convergence rates and hindering their ability to identify global
optimal solutions. In contrast, MH algorithms offer greater flexibility
and adaptability, making them applicable across a wide range of prob-
lems without requiring a deep understanding of the specific optimiza-
tion landscape [14]. In contrast to traditional methods, MH algorithms
explore many potential solutions, increasing the likelihood of discov-
ering excellent solutions with fewer computational resources. Over time,
MH algorithms, endowed with unparalleled advantages over traditional
methods, have evolved into iterative adaptive heuristic probabilistic
search algorithms [15,16]. With their adaptability, capacity for global
optimality, and inherent parallelism in addressing diverse nonlinear
problems, metaheuristic algorithms hold unique appeal and offer
expanded application prospects in engineering design.

Researchers have, researchers, have introduced a range of optimi-
zation techniques: physics-based, evolution-based, swarm-based,

nature-based physics-based algorithms, evolution-based algorithms,
swarm-based algorithms, nature-based algorithms, and human-based
algorithms. Physics-based algorithms include Gradient-based Opti-
mizer (GBO) [17], Golden Sine Algorithm (GSA) [18], Charged System
Search (CSS) [19], Sine Cosine Algorithm (SCA) [20], etc.
Evolution-based algorithms include Biogeography-based optimization
[21], biology migration algorithm (BMA) [22], Barnacles Mating Opti-
mizer (BMO) [23], etc. Swarm-based algorithms include Particle swarm
optimization (PSO) [24], Seagull Optimization Algorithm (SOA) [25],
Emperor Penguin Optimizer (EPO) [26], Sparrow Search Algorithm
(SSA) [27], etc. Nature-based algorithms include Golden Jackal Opti-
mization (GJO) [28], Farmland Fertility Algorithm (FFA) [29], Grey
Wolf Optimizer (GWO) [30], Electric Eel Foraging Optimization (EEFO)
[31], Dung Beetle Optimizer (DBO), Manta Ray Foraging Optimization
(MRFO), Capuchin Search Algorithm (CapSA) [32], Greylag Goose
Optimization (GGO) [33]Forty Thievesbased algorithms include Ali
Baba and the forty thieves (AFT) [34], Gaining Sharing Knowledge
based Algorithm (GSK) [35], coronavirus herd immunity optimizer
(CHIO) [36], etc.

Each of these algorithms surpasses traditional ones in their respec-
tive contexts and continues to develop. The primary objective of all
generated algorithms is to locate an optimal solution (global optimum)
from the pool of available solutions within the search space. MH algo-
rithms function through two key phases: exploration and exploitation.
Exploration involves traversing the entire search space to identify the
global optimum, while exploitation entails focusing on previously
identified potential subspaces to converge toward the optimal solution
[37,38]. A successful MH algorithm balances exploration and exploita-
tion, ultimately achieving the finest optimal solution [39]. Traditional
optimization methods, such as gradient-based and exhaustive search
methods, often face many challenges when dealing with complex,
multidimensional, or nonlinear problems. These methods usually get
stuck in local optima, require significant computational resources, and
are highly dependent on the mathematical formulation of the problem
[40]. In real-world applications, these limitations can significantly
reduce the efficiency of these methods, especially in dynamic and
multi-objective problems. In contrast, metaheuristic algorithms inspired
by nature can explore the search space more efficiently. For example, the
GJO algorithm has overcome the limitations of traditional methods by
utilizing various strategies and providing powerful solutions to optimi-
zation challenges.

The Golden Jackal Optimization (GJO) [28] algorithm, unveiled by
Chopra and Ansari in 2022, introduces a novel, nature-inspired
approach to optimization, aligning with the broader family of MH al-
gorithms. This technique is specifically designed to tackle complex en-
gineering problems by emulating the cooperative hunting strategies of
Golden Jackals. These animals are known for their group hunting tactics,
employing a systematic process that includes locating, encircling, and
ultimately overpowering their prey. The GJO algorithm encapsulates
this behavior into two primary phases: the exploration phase, which
focuses on detecting, following, and closing in on the prey, and the
exploitation phase, which involves the strategic encirclement and final
assault on the prey. The GJO algorithm stands out for its global opti-
mization capabilities, requiring only a few control parameters to
simplify its application. Furthermore, it is characterized by its high level
of stability and the ease with which it can be implemented. The signif-
icant contributions of this research include the introduction of the GJO
algorithm itself, an in-depth exploration of its theoretical un-
derpinnings, and its practical implications for solving real-world engi-
neering problems.

• A comprehensive review of the GJO algorithm is done. This review
includes changes and improvements to the GJO algorithm. The
limitations and advantages of GJO compared to other algorithms are
investigated
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• All hybrid models of the GJO algorithm have been thoroughly
investigated and analyzed

• This study has investigated the binary and multi-objective models of
the GJO algorithm.

• All problems and areas that have used the GJO algorithm have been
examined using formulas and results.

• Advantages and disadvantages of GJO compared to other algorithms
are investigated.

• Applied concepts and methods of solving optimization problems are
proposed as future works.

The structure of this paper is as follows: Section 2 describes the
growth of GJO. Section 3 states the definition of GJO and its mathe-
matical model. In Section 4, all versions and modifications of GJO are
reviewed. GJO methods are classified into four categories: hybridiza-
tion, improvement, GJO variations, and optimization problems. Section
5 describes convergence behavior analysis. This section compares the
GJO algorithm with other algorithms based on convergence. Section 6
will discuss GJO, including its capabilities, advantages, and

disadvantages. In Section 7, we discuss the final summary and future
works.

2. The growth of GJO

This section examines the growth trend of GJO-related research from
various angles. These aspects include the number of citations to GJO-
related articles and the number of articles published in multiple jour-
nals. It also examines the leading countries that publish GJO-related
research, prominent academic institutions and organizations, and au-
thors focused on the GJO field.

Table 1 shows the most cited GJO articles from 2022 to 2024. The
article "Golden Jackal Optimization: A Novel nature-inspired Optimizer
for Engineering Applications" had the most impact, with 519 citations.
This indicates that this article pioneered this algorithm’s introduction
and initial application. The reviewed articles were published in various
countries, including India, Egypt, China, Iran, Saudi Arabia, and Turkey.
This geographical diversity indicates the importance and widespread
application of the GJO algorithm in various scientific and industrial

Table 1
GJO articles with the most citations (Source: https://scholar.google.com).

Title Authors Journal Publisher Country Year Cited

Golden jackal optimization: A novel nature-inspired
optimizer for engineering applications [28]

Nitish Chopra, Muhammad Mohsin Ansari Expert Systems with
Applications

Elsevier India,
Pakistan

2022 519

An efficient image segmentation method for skin
cancer imaging using an improved golden jackal
optimization algorithm [41]

Essam H. Houssein, Doaa A. Abdelkareem,
Marwa M. Emam, Mohamed Abdel Hameed,
Mina Younan

Computers in Biology
and Medicine

Elsevier Egypt 2022 119

Model parameters estimation of the proton exchange
membrane fuel cell by a Modified Golden Jackal
Optimization [42]

Mehrdad Rezaie, Keyvan karamnejadi azar,
Armin kardan sani, Ehsan Akbari, Noradin
Ghadimi, Navid Razmjooy, Mojtaba
Ghadamyari

Sustainable Energy
Technologies and
Assessments

Elsevier Iran, Iraq 2022 104

Prediction of tribological properties of alumina-
coated, silver-reinforced copper nanocomposites
using extended short-term model combined with
golden jackal optimization [43]

Ismail R. Najjar, Ayman M. Sadoun, Adel
Fathy, Ahmed W. Abdallah, Mohamed Abd
Elaziz and Marwa Elmahdy

Lubricants MDPI Saudi Arabia,
Egypt

2022 69

A multi-objective optimization (MOO) solution for
distributed generation energy management in
microgrids with hybrid energy sources and battery
storage systems [44]

R. Praveen Kumar, G. Karthikeyan Journal of Energy
Storage

Elsevier India 2024 58

Performance prediction of aluminum and
polycarbonate solar stills with air cavity using an
optimized neural network model by golden jackal
optimizer [45]

Emad Ghandourah, Y.S. Prasanna, Ammar H.
Elsheikh, Essam B. Moustafa, Manabu Fujii,
Sandip S. Deshmukh

Case Studies in Thermal
Engineering

Elsevier Saudi Arabia,
India, Japan,
Egypt

2023 45

Fast random opposition-based learning Golden
Jackal Optimization algorithm[46]

Sarada Mohapatra, Prabhujit Mohapatra Knowledge-Based
Systems

Elsevier India 2023 43

A Hybrid Golden Jackal Optimization and Golden
Sine Algorithm with Dynamic Lens-Imaging
Learning for Global Optimization Problems [47]

Panliang Yuan, Taihua Zhang, Liguo Yao, Yao
Lu, and Weibin Zhuang

Applied Sciences MDPI China 2022 32

A novel deep learning ensemble model based on two-
stage feature selection and intelligent optimization
for water quality prediction [48]

Wenli Liu, Tianxiang Liu, Zihan Liu, Hanbin
Luo, Hanmin Pei

Environmental
Research

Elsevier China 2023 30

Copula entropy-based golden jackal optimization
algorithm for high-dimensional feature selection
problems [49]

Heba Askr, Mahmoud Abdel-Salam, Aboul Ella
Hassanien

Expert Systems with
Applications

Elsevier Egypt 2024 29

Adaptive infinite impulse response system
identification using an enhanced golden jackal
optimization [50]

Jinzhong Zhang, Gang Zhang, Min Kong& Tan
Zhang

The Journal of
Supercomputing

Springer China 2023 28

IGJO: an improved golden Jackel optimization
algorithm using a local escaping operator for
feature selection problems [51]

R. Manjula Devi, M. Premkumar, G. Kiruthiga
& R. Sowmya

Neural Processing
Letters

Springer India 2023 27

Intrusion detection in the Internet of Things using
improved binary golden jackal optimization
algorithm and LSTM [52]

Amir Vafid Hanafi, Ali Ghaffari, Hesam
Rezaei, Aida Valipour & Bahman Arasteh

Cluster Computing Springer Iran, Turkey 2024 20

Golden jackal optimization algorithm with deep
learning assisted intrusion detection system for
network security [53]

Nojood O. Aljehane, Hanan Abdullah
Mengash, Majdy M. Eltahir, Faiz Abdullah
Alotaibi, Sumayh S. Aljameel, Ayman Yafoz,
Raed Alsini, Mohammed Assiri

Alexandria Engineering
Journal

Elsevier Saudi Arabia 2024 19

A hybrid strategy-based GJO algorithm for robot
path planning [54]

Tai-shan Lou, Zhe-peng Yue, Yu-Zhao Jiao,
Zhen-dong He

Expert Systems with
Applications

Elsevier China 2024 18

IBGJO: Improved Binary Golden Jackal Optimization
with Chaotic Tent Map and Cosine Similarity for
Feature Selection[55]

Kunpeng Zhang, Yanheng Liu, Fang Mei, Geng
Sun and Jingyi Jin

Entropy MDPI China 2023 12
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problems. Most GJO articles have been published in Elsevier journals,
which means the prestigious position of this publication in accepting
and publishing-related research.

Fig. 1 shows the relationship between the GJO algorithm and the
keywords. In the center of the graph, the GJO algorithm is located and is
connected with dotted lines to concepts such as Optimization, Meta-
heuristics, and Global Optimization. These concepts include algorithm
applications in Machine Learning, Deep Learning, and Engineering
Problems. Feature Selection, Benchmark Function, and Multi-Objective
can be mentioned. Also, concepts such as Adaptive Strategy, Internet of
Things, and Image Segmentation indicate the algorithm’s capabilities in
solving complex problems. The relationship between Opposition-based
Learning and Chaotic Mapping is also clearly shown. This graph em-
phasizes that GJO is a metaheuristic algorithm with broad applications
in mathematics, computing, and optimization of complex problems. This
algorithm is designed to solve complex problems with a creative and
adaptive approach and can be generalized to many practical problems.

Table 2 lists the most recent published papers based on the GJO.
According to the documents published in 2025, the GJO continues to be
recognized as a powerful and practical tool in solving complex problems
and various engineering and computer science optimizations. This
shows that GJO, as a reliable and effective algorithm, will continue to be
used in the coming years and will be able to solve new challenges in
various fields, such as energy management, cloud computing, dynamic
modeling, and complex data analysis. The GJO has been effectively used
in multiple fields such as energy, cloud computing, resource manage-
ment, and modeling due to its features, such as optimizing complex and
challenging spaces, and its learning and information processing capa-
bilities with limited data. GJO applications usually involve complex
optimization problems that require accurate modeling and complex
decision-making. The GJO has explicitly been used with a progressive
conditional generative adversarial network (PCGAN) to optimize energy
mix in microgrids and electric vehicle charging. This optimization is
suitable for managing energy resources, reducing costs, and increasing
efficiency. Using a recurrent autoencoder, the GJO has also been used to
schedule tasks in cloud environments. This research shows that GJO can

be effectively used for task scheduling in cloud computing with various
conditions and constraints. Since cloud tasks may face latency, network
traffic, and limited resources, using the GJO for scheduling optimization
is very effective.

Fig. 2 plots the number of articles published in Elsevier journals
based on the GJO algorithm. The vertical axis shows the names of the
different journals, and the horizontal axis indicates the number of arti-
cles published in each journal. Clearly, "Expert Systems with Applica-
tions" has the highest number of publications, with 17 articles. Other
journals have published fewer articles. The graph shows that some
specialized journals, such as "Knowledge-Based Systems" and "Applied
Soft Computing," have published more articles than others.

Fig. 3 plots the distribution of GJO articles with the highest number
in different journals. These journals belong to the three leading pub-
lishers: Elsevier, Springer, and IEEE. The highest number of articles is
related to journals such as "Expert Systems with Applications," "Knowl-
edge-Based Systems," and "Applied Soft Computing," which indicates the
high focus of this algorithm in the fields of expert systems, soft
computing, and knowledge-based systems. Also, reputable journals such
as "Scientific Reports" from Springer and "Access and IEEE" from IEEE
indicate that the GJO algorithm has been used in various scientific fields,
including applied mechanical engineering, bioengineering, and software
engineering. The distribution of these articles in prominent journals of
different publishers indicates the impact and scope of GJO application in
research and industrial issues.

Fig. 4 plots the distribution of GJO papers in Springer based on
different topics between 2022 and 2025. The most significant number of
articles is in the optimization field, with 111 articles indicating the
widespread use of this algorithm in solving optimization problems.
Topics related to continuous optimization (93 articles) and learning
algorithms (73 articles) are in the following positions. Other widely used
areas include discrete algorithms (64 articles) and variational and
optimization calculations (37). Also, topics such as machine learning (16
articles), computational intelligence (15 articles), and image processing
(9 articles) indicate more specialized applications of GJO in various
sciences. This distribution shows that the GJO algorithm has been used

Fig. 1. Relationship between GJO algorithm and keywords (Source: https://journals.scholarsportal.info).
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in multiple scientific and engineering fields.
Fig. 5 plots the distribution of GJO articles in Elsevier based on

different subjects between 2022 and 2025. The largest share is related to
engineering, with 28 %, which indicates the importance of many articles
in this field. Then, computer science is in second place with 18 %, which
accounts for a significant share of articles. Energy, with 11 %, and
agricultural and life sciences, with 9 %, are the following places and
have a considerable share. Mathematics comprises 8 % of the articles,
while environmental sciences constitute 7 %. Medicine and dentistry are
next with 6 % and materials sciences with 5 %. Finally, the two fields of
immunology and microbiology and molecular biology and genetics
cover 4 % of the articles. This distribution reflects the thematic diversity
of GJO articles and highly focuses on engineering and computer science
topics. Other areas have also received a reasonable share of research. By
taking advantage of the flexibility in defining search functions and

updating positions, the GJO algorithm can adapt and connect to opti-
mization problems.

Fig. 6 plots the distribution of GJO papers in Scopus based on
different subjects between 2022 and 2025. The largest share is from the
engineering field with 26 % (116 papers), followed by computer science
with 23 % (102 papers). Mathematics accounts for 12 % of the articles,
while energy and other subjects have a 7 % share. Physics and astron-
omy are next with 6 %, materials science with 5 %, and environmental
science with 4 %. Other fields include decision sciences (3 %), multi-
disciplinary (2 %), chemical engineering (2 %), medicine (2 %), mo-
lecular biology and genetics (2 %), and agriculture and life sciences (1
%). This distribution shows that the main focus of GJO articles in Scopus
is on technical and engineering topics, likely due to industrial needs and
advanced scientific research in these areas. The low share of subjects
such as arts and humanities indicates a lower focus on the humanities.

Table 2
Latest published papers based on GJO (Source: https://www.scopus.com).

Title Authors Journal Publisher Country Year

A battery SOH estimation method based on entropy domain
features and semi-supervised learning under limited sample
conditions [56]

Yaming Liu, Jiaxin Ding, Yingjie Cai,
Biaolin Luo, Ligang Yao, Zhenya Wang

Journal of Energy Storage Elsevier China 2025

Multiple microgrids with electric vehicle charging in a hybrid
GJO-PCGAN approach for energy management [57]

Sankar Rangasamy, S. Arun Prakash, Nitin
Nandkumar Sakhare & U. Arun Kumar

Electrical Engineering Springer India 2025

An Efficient Workflow Scheduling Using Genetically Modified
Golden Jackal Optimization with Recurrent Autoencoder in
Cloud Computing [58]

Saurav Tripathi and Sarsij Tripathi International Journal of Network
Management

CoLab India 2025

Golden jackal optimization-based regression analysis
application on volume expansion estimation of cement pastes
with MgO expansive additive [59]

Yuqing Tian, Lina Zhang & Guozhi Wang Multiscale and Multidisciplinary
Modeling, Experiments and
Design

Springer China 2025

Investigation of Lamb wave modes recognition and acoustic
emission source localization for steel plate based on golden
jackal optimization VMD parameters and CWT [60]

Shishang Dong, Jun You, Mohamed El-
attaboy, Ming Li, Li Guo, Zian Cheng, Xin
Zhang, Shi Gong, Yong Wang

Measurement Elsevier China 2025

Optimization-based control of overcurrent relays in
distribution network considering real-time measurements: A
case study [61]

Ali Unluturk, Ishak Ozer Applied Energy Elsevier Turkey 2025

Dynamics and analog circuit of a class of new Hénon maps and
its application in the welded beam optimal design [62]

Yao Lu, Xu Wang, Xianming Wu, Shaobo
He, Longxiang Fu & Huihai Wang

Nonlinear Dynamics Springer China 2025

Fig. 2. Number of articles published in Elsevier journals.
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The papers were collected by scrutinizing titles, keywords, and ab-
stracts, ensuring a meticulous review process. All reputable and widely
recognized databases were meticulously searched to gather relevant
literature. Each paper underwent a comprehensive evaluation, focusing
on both content and the type of algorithm employed. Duplicate papers
were identified and eliminated during the initial screening phase. Sub-
sequently, papers about the GJO algorithm were categorized and
grouped accordingly. Fig. 7 visually represents the sequential search
steps and the corresponding number of articles at each stage.

In this section, first a comprehensive and general analysis of the GJO
algorithm was conducted. Then, the articles related to this algorithm
were manually analyzed and monitored. Only articles that directly and
practically belong to the GJO algorithm were selected. It is worth noting
that in some articles, the name of the GJO algorithmwas only mentioned
and it was not used in solving problems or functions. For this reason, all
articles were carefully and in full detail reviewed, and only articles that
had practical application and scientific value related to the GJO algo-
rithm were selected for the final analysis. Fig. 8 shows the number of
GJO papers published per year. The number of GJO papers published in

2023 was equal to 51.
Since 2022, there has been a surge in research focused on employing

the GJO method to tackle optimization problems. To gauge the volume
of research output on GJO, a comprehensive collection of papers
employing this method was assembled. Subsequently, an analysis was
conducted to categorize these papers based on their distribution across
various publications and the yearly output of GJO-related articles. Fig. 9
illustrates the distribution of GJO papers across different publication
platforms. The graph in Fig. 9 was drawn manually based on expert
analysis of the articles. To draw this graph, all important and main
sources were reviewed using the keywords optimization and GJO and
their articles were extracted. The majority of publications were found in
Elsevier (33%), followed by IEEE (22 %), Springer (24 %), MDPI (10 %),
Tandfonline (4 %), and Other (7 %) journals.

3. Golden jackal optimization

The GJO technique was proposed in 2022 [28]. This approach is
inspired by the hunting habits of the golden jackal in its natural habitat.

Fig. 3. Distribution of GJO articles published with the highest number in different journals (Source: https://journals.scholarsportal.info).
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Fig. 4. Distribution of GJO articles in Springer based on different topics.

Fig. 5. Distribution of GJO papers in Elsevier based on different topics (Source: https://www.sciencedirect.com/).
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The golden jackal, a terrestrial predator of moderate size belonging to
the canine family, inhabits various regions in the world. With its
compact build and long legs, the jackal can cover great distances while
pursuing prey. Jackals usually form pairs and engage in cooperative
activities with their mates. Their actions are highly coordinated, with
pairs hunting, foraging, and resting together. Cooperative hunting is
vital for jackals, as hunting in pairs can be significantly more effective
than solitary hunting, potentially yielding three times the success rate.
Golden jackals communicate through various calls and utilize various
howls to locate each other.

The primary steps involved in the hunting process of a golden jackal
pair (illustrated in Fig. 10) are outlined as follows:

➢ Searching for and advancing towards the prey.
➢ Surrounding and provoking the prey until it ceases movement.
➢ Launching an attack on the prey.

3.1. Search space formulation

Like numerous other metaheuristic approaches, GJO follows a
population-based methodology, wherein the initial solution is evenly
spread across the search space for the initial trial.

Y0 = Ymin + rand(Ymax − Ymin) (1)

Where Ymax and Ymin represent the upper and lower bounds for var-
iables, respectively, and "rand" denotes a random vector uniformly
distributed within the range of 0 to 1.

The initialization process generates the initial Prey matrix, wherein
the first and second-fittest members constitute the jackal pair. The Prey
matrix is represented as shown in Eq. (2).

Prey =

⎡

⎢
⎢
⎣

Y1,1 Y1,2 ⋯ Y1,d
Y2,1 Y2,1 ⋯ Y2,d
: : : :

Yn,1 Yn,2 ⋯ Yn,d

⎤

⎥
⎥
⎦ (2)

In this context, Yij represents the jth dimension of the ith prey. There
are n preys and d variables. The position of a prey pertains to the pa-
rameters defining a particular solution. A fitness function is then utilized
to evaluate the fitness value of each prey during the optimization pro-
cess, followed by the assembly of a matrix to collect the fitness values of
all prey.

FOA =

⎡

⎢
⎢
⎣

f
(
Y1,1;Y1,2;⋯;Y1,d

)

f
(
Y2,1;Y2,1;⋯;Y2,d

)

:

f
(
Yn,1;Yn,2;⋯;Yn,d

)

⎤

⎥
⎥
⎦ (3)

In this setup, FOA represents the matrix used to store the fitness of
each prey, while Yij indicates the value of the jth dimension of the ith prey.
Here, n is the number of preys, and f denotes the objective function. The
most fit individual is referred to as the Male Jackal, and the second most
fit is the Female Jackal. The jackal pair then assumes the corresponding
positions of their respective prey.

3.2. Exploration stage or searching the prey

The sophisticated exploration strategies deployed by GJO are delved
into in this segment. These strategies are remarkably reminiscent of the
innate behaviors of jackals in the wild, characterized by their acute
ability to sense and actively chase down potential prey. However, it is
worth noting that prey can sometimes outmaneuver their pursuers,
successfully evading capture. When this occurs, jackals must pause their
chase momentarily and reassess their surroundings for new hunting

Fig. 6. Distribution of GJO papers in Scopus based on different topics (Source: https://www.scopus.com).
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opportunities. It is typically observed that the male jackal assumes the
lead role, spearheading the pursuit with keen determination. In contrast,
the female jackal adopts a more supportive stance, closely following the
male and contributing to the hunting efforts from behind. This coordi-
nated approach underscores the adaptability and teamwork inherent in
their survival tactics.

Y1(t) = YM(t) − E⋅|YM(t) − rl.Prey(t)| (4)

Y2(t) = YFM(t) − E⋅|YFM(t) − rl.Prey(t)| (5)

Here, the symbol "t" denotes the ongoing iteration, while Prey(t)
represents the position vector of the prey. Furthermore, YM(t) and YFM(t)
signify the locations of the male and female jackals, respectively.
Furthermore, Y1(t) and Y2(t) denote the updated locations of the male
and female jackals relative to the prey. The variable E represents the
prey’s evading energy, which is computed using Eq. (6).

E = E1 ∗ E0 (6)

E1 represents the diminishing energy level of the prey, while E0 signifies
its initial energy state.

E0 = 2∗r − 1 (7)

r is any random value selected uniformly from 0 to 1.

E1 = c1 ∗ (1 − (t /T)) (8)

In Eq. (8), T represents the maximum number of iterations, where c1
is a constant set to 1.5, and t signifies the current iteration. The variable
E1 decreases linearly from 1.5 to 0 throughout iterations. The term rl
Eqs. (4) and (5) represent a vector of random numbers generated ac-
cording to the Lévy distribution, miming the Lévy movement. In Eqs. (4)
and (5), |Y(t) − rl.Prey(t)| calculates the distance between the jackal and
the prey. This distance is subtracted from or added to the jackal’s current
position based on the prey’s evading energy. The multiplication of rl and
prey simulates the prey’s movement in a Lévy-like manner and is
computed as follows.

rl = 0.05∗LF(y) (9)

LF represents the levy flight (LF) function, computed using the following
formula. This function is utilized to model characteristic movements
similar to LF.

LF(y) = 0.01× (μ× σ)
/

( ⃒
⃒v(1/β)

⃒
⃒
)
; σ =

⎛

⎜
⎝

Γ(1+ β) × sin(πβ/2)

Γ
(
1+β
2

)

× β ×
(
2

β− 1
2
)

⎞

⎟
⎠

1/β

(10)

In Eq. (10), u and v represent random values ranging between 0 and
1, while β is a preset constant value, typically set to 1.5. Ultimately, the
positions of the jackals are adjusted by averaging the results obtained
from Eqs. (4) and (5).

Fig. 7. The Procedure for extracting papers belongs to the GJO algorithm.
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Y(t+ 1) =
Y1(t) + Y2(t)

2
(11)

3.3. Exploitation stage or enclosing and pouncing the prey

When subjected to persistent harassment by the jackals, the prey’s
capacity to evade gradually depletes, leading to a scenario where the

prey, previously singled out, becomes encircled by the jackals. At this
juncture, the encirclement strategy allows them to initiate an attack,
ultimately leading to prey consumption. This methodical approach to
hunting, characterized by a joint effort between the male and female
jackals, is encapsulated within the mathematical frameworks outlined in
Eqs. (12) and (13). This passive strategy highlights the systematic and
collaborative nature of the jackals’ hunting tactics, emphasizing the role

Fig. 8. Number of GJO papers published per year.

Fig. 9. Percentage of papers published with GJO in different publications.
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of endurance and strategic encirclement in their success.

Y1(t) = YM(t) − E.|rl.YM(t) − Prey(t)| (12)

Y2(t) = YFM(t) − E⋅|rl.YFM(t) − Prey(t)| (13)

In this context, t denotes the current iteration, while Prey(t) signifies
the location vector of the prey. YM(t) and YFM(t) represent the locations
of the male and female jackals, respectively. Y1(t) and Y2(t) denote the
updated locations of the male and female jackals relative to the prey.
The prey’s evading energy, denoted as E, is computed according to Eq.
(6). Ultimately, the locations of the jackals are adjusted based on Eq.
(11).

In Eqs. (12) and (13), the role of rl is to introduce random behavior
during the exploitation phase, promoting exploration and avoiding local
optima. The rl calculation follows the procedure outlined in Eq. (9). This

component circumvents the sluggishness associated with local optima,
especially during the final iterations. This element can be seen as a result
of obstacles that hinder the approach to the prey. Typically, challenges
in nature manifest along the pursuit routes of jackals, impeding their
efficient and swift advancement toward their prey. This is the function of
rl during the exploitation phase.

3.4. Switching from exploration to exploitation

In the GJO algorithm, the prey’s diminishing energy is a mechanism
for transitioning from exploration to exploitation phases. As the prey
engages in evasion maneuvers, its energy diminishes considerably. To
represent this, the prey’s evading energy is formulated according to Eq.
(6). The initial energy, denoted as E0, exhibits random variations within
the range of − 1 to 1 during each iteration. A decrease in the E0 value

Fig. 10. A) Duo of Golden Jackals B) Golden Jackal on the hunt C) Ambushing and surrounding the prey D) & E) Leaping at the prey [28].

Fig. 11. Attacking vs searching for prey [28].
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from 0 to − 1 signifies a weakening of the prey, whereas an increase from
0 to 1 indicates an enhancement in its vigor. When the absolute value of
E exceeds 1, the jackal pairs venture into distinct regions to explore
potential prey. Conversely, when the absolute value of E falls below 1,
the GJO algorithm switches to attacking the prey and engaging in

exploitation, as depicted in Fig. 11. This transition between the explo-
ration and exploitation phases is crucial for optimizing the hunting
strategy.

In the GJO algorithm, the initiation of the search process is marked
by forming a diverse, randomly generated group of prey, each

Fig. 12. The flowchart of the GJO algorithm [28].
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symbolizing a potential solution. As the algorithm progresses through
various iterations, the positions where the prey is likely to be found are
deduced by a team comprising a male and female jackal. Subsequently,
every member within this group of potential solutions adjusts its prox-
imity to the jackal duo based on their movements. A key parameter,
denoted as E1, is methodically reduced from an initial value of 1.5 to 0.
This gradual transition shifts the focus from exploring the search space
to exploiting the discovered solutions. The value of E influences the
behavior of the golden jackal pair; they distance themselves from the
prey when E exceeds the threshold of 1 andmove closer as E drops below
this critical value. Completing the GJO algorithm signifies fulfilling a
predetermined termination condition, marking the end of the search
process.

Fig. 12 shows the flowchart of the GJO algorithm.
The pseudo-code of the GJO algorithm is presented in Algorithm 1.

4. Methods of GJO

Fig. 13 presents the categorization of GJO methodologies, which is
structured around four main classifications: Hybridization, Improved
Techniques, Variants of GJO, and Optimization Problem Domains.
Under Hybridization, MH algorithms are incorporated. In the Improved
category, various sub-categories are explored to enhance solution
quality. Variants of GJO encompass Binary and Multi-objective ap-
proaches. Lastly, within the Optimization Problem domain, GJO is
applied to address a diverse range of optimization challenges, aiming to
identify optimal solutions.

4.1. Hybridization with other metaheuristics

The hybridization approach is a technique developed to deal with the
drawbacks of MH algorithms, where two or more MH algorithms are
synergistic. Each base algorithm exploits the weakness of the other
algorithm.

4.1.1. GJO-SCA
Multilevel thresholding is an essential technique that has gained

significant attention and acceptance in recent years due to its effec-
tiveness and utility. However, as threshold levels increase, the compu-
tational complexity also grows, presenting a challenge. To address the
limitations of traditional GJO, such as its tendency for premature
convergence, less precise computation results, and slow convergence
speed, a novel approach combining GJO with the sine cosine algorithm,
termed Sine Cosine-GJO (SCGJO) [63], has been introduced. SCGJO is a
suitable method for solving complex problems due to its exceptional
consistency and reliability, and it effectively uses the advantages of
synergy to achieve high convergence accuracy. Therefore, the

exploration and exploitation stages are skillfully balanced, and the risk
of search stagnation is minimized. Experimental results show that
SCGJO outperforms competing algorithms regarding faster convergence
rate, high computational accuracy, improved segmentation perfor-
mance, and strong stability. This makes the SCGJO a reliable and
consistent method for addressing challenges in image segmentation
tasks. During the exploration phase of SCGJO, it generates positions
based on specific mathematical equations, referred to as Equations 14
and 15 [63], which plays a crucial role in its operational mechanism.

Yʹ
1(t) =

{
Y1(t) + r1 × sin(r2) × |r3 prey − Y1(t)|, r4 < 0.5
Y1(t) + r1 × cos(r2) × |r3 prey − Y1(t)|, r4 ≥ 0.5 (14)

Yʹ
2(t) =

{
Y2(t) + r1 × sin(r2) × |r3 prey − Y2(t)|, r4 < 0.5
Y2(t) + r1 × cos(r2) × |r3 prey − Y2(t)|, r4 ≥ 0.5 (15)

Y(t+1) =
Yʹ
1(t) + Yʹ

2(t)
2

(16)

In Eq. (14), Prey(t) represents the location vector of the prey, while
Y1(t) and Y2(t) indicate the most recent positions of the pair of jackals.
The terms Yʹ

1(t) and Yʹ
2(t) refer to the positions of the jackal pair after

being adjusted by the Sine-Cosine. The variables r2, r3, and r4 fall within
the ranges [0, 2π], [-2, 2], and [0, 1], respectively, with r1 gradually
reducing from 2 to 0 over time. Y signifies the revised location of the
jackal following these updates. During the exploitation stage of the
SCGJO, the positions are determined according to Eqs. (17) and (18)
[63].

Yʹ́
1(t) =

{
Y1(t) + r1 × sin(r2) × |r3 prey − Y1(t)|, r4 < 0.5
Y1(t) + r1 × cos(r2) × |r3 prey − Y1(t)|, r4 ≥ 0.5 (17)

Yʹ́
2(t) =

{
Y2(t) + r1 × sin(r2) × |r3 prey − Y2(t)|, r4 < 0.5
Y2(t) + r1 × cos(r2) × |r3 prey − Y2(t)|, r4 ≥ 0.5 (18)

Y(t+1) =
Yʹ́
1(t) + Yʹ́

2(t)
2

(19)

Prey(t) refers to the vector indicating the prey’s location in this
context. Y1(t) and Y2(t) represent the most recent positions of the two
jackals, while Yʹ́

1(t) and Yʹ́
2(t) stand for the positions of the jackals after

being updated through the Sine Cosine Algorithm (SCA). The parame-
ters r2, r3, and r4 have specified ranges: r2 falls between 0 and 2π, r3
between − 2 and 2, and r4 between 0 and 1. The value of r1 decreases
linearly from 2 to 0. Y signifies the revised position of the jackal after
these adjustments.

In [54], the authors introduced a new method called the Hybrid
Strategy-based GJO (HGJO) algorithm, designed for planning the paths
of mobile robots. This improved algorithm version blends a unique

Algorithm 1
Pseudo code of the GJO algorithm [28].

Inputs: The size of the population N and the highest number of cycles T
Outputs: The position of the prey and its corresponding fitness level
Initialize the random agent population Yi(i= 1, 2,…,N)
While (t < T)

Compute the fitness values of prey
Y1 = best agent (Male Jackal position)
Y2 = second best agent (Female Jackal Position)

For (each prey)
Upgrade the evading energy E using Eq. (6), Eqs. (7) and (8)
Upgrade rl using Eqs. (9) and (10)
IF (|E| is greater than or equal to 1) (Exploration phase)
Update the prey location using Eq. (4), Eq. (5), and Eq. (11)
IF (|E| is <1) (Exploitation phase)
Upgrade the prey location using Eq. (12), Eq. (13), and Eq. (11)

End For
t = t + 1
End While
Return Y1

M. Hosseinzadeh et al. Computer Science Review 56 (2025) 100733 

13 



strategy that reduces energy nonlinearly, ensuring a good mix of broad
and precise search capabilities. The HGJO algorithm adds a roulette
wheel selection method and Lévy flight technique to the GJO’s updating
process to boost its effectiveness and avoid getting stuck in less optimal
solutions. The performance of the HGJO algorithm was thoroughly
evaluated against leading optimization algorithms using 23 standard
tests and the CEC2021 benchmark. Additionally, it was assessed in
detailed studies focused on planning paths for mobile robots. The out-
comes were encouraging, showing that the HGJO algorithm could sur-
pass the original in minimizing the average path length for mobile
robots. In particular, based on 30 separate tests, enhancements of 0.21
%, 82.4 %, and 7.9 % were shown in three different settings. A key new
feature of the HGJO algorithm is using a roulette wheel selection
approach when exploiting resources, which significantly improves the
search effectiveness of the GJO algorithm. The adjustments made to the
algorithm are explained in detail in Eqs. (20) and (21) [54], highlighting
the advanced formulas that help achieve better results.

Y1(t) = (YM(t) − E⋅|rl⋅YM(t) − Prey(t)|)⋅cos(θ) (20)

Y2(t) = (YFM(t) − E⋅|rl⋅YFM(t) − Prey(t)|)⋅cos(θ) (21)

In this context, θ represents a randomly chosen angle ranging from
0 to 360◦, and the term cos(θ) is used to denote the application of a
roulette wheel selection algorithm, producing values within the range of
− 1 to 1. Using random angles prevents the algorithm from becoming
stuck in local optima, offering a significant advantage. Moreover, this
approach positively influences the hunting behavior, enhancing the al-
gorithm’s effectiveness in exploring and exploiting the search space.

In the GJO algorithm, the simulation of hunting behavior mirrors
that of actual golden jackals, where the hunt is typically led by male
jackals and followed by their female counterparts. While effective in
specific scenarios, this method can sometimes cause the algorithm to
prematurely converge to local optima, limiting its ability to effectively
explore the broader search space. This study integrates the Lévy flight

strategy into the GJO’s position updating mechanism to overcome this
limitation and enhance the algorithm’s exploration capabilities. Lévy
flights, characterized by long jumps interspersed with short, random
movements, are known for their efficiency in exploring complex land-
scapes. By integrating this strategy, the position update formula within
the GJO algorithm is significantly improved to promote a more exten-
sive search of the optimization landscape. The enhancements made to
the algorithm are encapsulated in the revised formulae, which are
detailed in Equations 22 and 23 [54]. These modifications aim to
enhance the GJO algorithm’s ability to avoid premature convergence
and improve its overall performance in finding global optima.

Y(t+ 1) = YM(t) − [0.5×(Y1(t)+Y2(t))]⋅cos(θ)|A| < 0.5 (22)

Y(t+1) = YM(t) − rand× Y(t) + Z× LF(β)|A| > 0.5 (23)

Z = 0.01× (Y(t) − YM(t)) (24)

The text describes a process where rand represents a random number
from 0 to 1; A also signifies a random value within the same range, and
its role is to boost the capability to escape local optima; Z stands for the
control step weight and signifies Lévy motion. During each cycle, the
golden jackal adjusts its location by considering both the position of the
male jackal and its existing location. This enhancement allows the
golden jackal’s subsequent location to be positioned somewhere be-
tween its current spot and the location of the prey.

4.1.2. GJO-GWO
A hybrid optimization technique that blends the GJO and Grey Wolf

Optimizer (GWO) to form a novel method aimed at reducing the di-
mensions of data effectively [64]. This method removes unnecessary,
irrelevant, and noisy attributes from datasets with many dimensions. In
one scenario, this combined GJO-GWO approach was applied to eight
intricate benchmark functions, and in another, it was used for ten
feature selection challenges. The experimental results consistently

Fig. 13. Classification of GJO methods.
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demonstrated that the GJO-GWO strategy outperforms in terms of lower
average values, reduced variability, improved classification precision,
and faster processing times across both types of tasks. These results
highlight the method’s exceptional ability in optimization, accuracy in
classification, and stability. A standout characteristic of this proposed
approach is its adeptness at balancing the exploration and exploitation
phases within the search process. This helps prevent the algorithm from
getting stuck in local optimums and enables it to identify the most
optimal global solutions. This balance makes the algorithm particularly
effective for complex optimization problems with multiple local
optimums.

4.1.3. GJO- CapSA
A combined method to evaluate the efficiency of buck converters

controlled by fractional-order proportional integral derivative (FOPID)
controllers has been designed. This hybrid method merges the Capuchin
Search Algorithm (CapSA) with the GJO, resulting in an enhanced
version of GJO, termed the Improved GJO (IGJO) [65]. Power con-
verters are challenging to control due to their nonlinear characteristics;
searching for practical and intelligent control solutions is an ongoing
endeavor. In recent years, fractional-order controllers have shown su-
perior performance in managing power electronic systems. The IGJO
approach is used to optimize the design of a FOPID controller for buck
converters and minimize various performance indicators, particularly
the integral squared error (ISE). This method is implemented and tested
in MATLAB, comparing its effectiveness against existing approaches.
The simulation results indicate that the proposed IGJO method achieves
a more significant reduction in error than current techniques.

4.1.4. GJO- Gradient-based optimizer
In [51] an enhanced version of the GJO, the Improved GJO (IGJO),

incorporates a local escaping operator to tackle feature selection issues
more effectively. The standard GJO algorithm gets stuck in local optima,
especially when dealing with high-dimensional feature selection tasks.
To overcome this limitation, the IGJO integrates mechanisms from
gradient-based optimizers, specifically focusing on a local escaping
operator and the direction of populationmovement. These additions aim
to boost the algorithm’s capability to explore and exploit the search
space more efficiently. The efficacy of the IGJO algorithm was rigor-
ously tested across a wide array of problems, including 23 standard
numerical benchmarks, 29 optimization challenges from the CEC2017
suite, and 33 constrained real-world engineering design problems from
CEC2020. Furthermore, to address feature selection specifically, the
IGJO was adapted into a binary version employing a novel nonlinear
time-varying sigmoid function. This binary variant was assessed on
various feature selection tasks using benchmark datasets. A comparative
analysis with other well-known algorithms was conducted to establish
the effectiveness of the IGJO. The results from these comparisons
highlighted the IGJO as a dependable and superior option for both nu-
merical optimization and feature selection challenges.

4.1.5. GJO-WOA
In [66] discusses an adaptive algorithm known as GJO-Whale

(GJOW), designed to enhance the accuracy of detecting bone cancer
in bone scans by focusing on feature extraction and selection. This
method aims to identify the presence or absence of tumors in bone scans
that are preliminarily categorized as normal or abnormal. The study
introduces a novel approach using machine learning techniques to
detect bone metastasis through gamma camera scans. It improves the
GJO algorithm by integrating elements from the Whale Optimization
Algorithm (WOA), and it assesses a new feature selection technique
using actual datasets related to bone metastasis. The effectiveness of the
GJOW algorithm is demonstrated through experimental results, which
show a significant improvement in classification accuracy. The method
surpasses other approaches in all tested datasets, achieving an impres-
sive average accuracy rate of 97 % in one set of experiments and the

highest accuracy rate of 73 % in another. The study plans to expand its
evaluation using a more extensive dataset and investigate other feature
selection techniques to enhance further the model’s performance in
detecting bone cancer.

The fitness function is recalculated for every updated solution within
the cycle in the process described. This procedure continues to repeat
until a predefined stopping criterion is met. In the context of the
described GJOW algorithm, this criterion is set as reaching the
maximum number of iterations. Fig. 14 illustrates the core framework of
the combined GJO and GJO-WOA, detailing this iterative process and
how solutions are updated and evaluated in each cycle until the algo-
rithm concludes.

4.1.6. GJO-MFO
To improve upon the limitations of the GJO algorithm, a novel

hybrid approach combining Moth Flame Optimization (MFO) with GJO,
named the Opposition-based Moth Flame GJO (OMGJO), is introduced
[67]. This model integrates the concept of opposition learning with the
spiral path search mechanism from MFO, aiming to boost the algo-
rithm’s efficiency and speed of convergence. The performance of the
OMGJO algorithm is assessed by comparing it against 10 different
metaheuristic algorithms across 30 benchmark functions, followed by
statistical analysis of the results. The findings from these experiments
highlight the competitive advantage of the OMGJO algorithm, demon-
strating its ability to achieve superior outcomes. Compared to the con-
ventional GJO and other optimization techniques, the enhanced
algorithm excels with faster convergence rates and more efficient search
capabilities. Furthermore, the algorithm’s effectiveness and versatility
are validated through its application to various engineering challenges,
underlining its potential for practical implementation.

4.1.7. GJO-PSO
A novel enhanced metaheuristic algorithm named PSO-based GJO

was explicitly designed to optimize the parameter estimation of Proton
Exchange Membrane Fuel Cells (PEMFC) to achieve minimal error
values [42]. The core concept behind this method is to utilize the
PSO-enhanced GJO technique to minimize the Sum of Squared Errors
(SSE) between the actual output voltage and the modeled output voltage
of the PEMFC stack. To demonstrate the effectiveness of the proposed
methodology, it was applied to two test cases, and the results were
benchmarked against various contemporary optimization algorithms.
The comparison findings showed that the proposed implicitly referring
to the improved algorithm (ICSO) consistently outperformed the other
evaluated methods in accurately estimating the PEMFC model param-
eters. A significant aspect of this approach is incorporating PSO’s swarm
behavior to enhance the exploration capabilities of the GJO algorithm.
In updating the PSO equation, two key elements are considered: the
position and velocity of each candidate solution. Specifically, the ve-
locity component, crucial for the PSO’s efficiency, is computed as per
Eq. (25) [42], underscoring its importance in optimization.

V(t+1) = c1
(
Ylocal
best (t) − Y(t)

)
+ c2

(
Yglobal
best (t) − Y(t)

)
+ wV(t) (25)

In the context of the PSO algorithm, V(t) and V(t + 1) denote the
velocities of a particle at consecutive time steps, where V(t) is the ve-
locity at the current time step, and V(t + 1) is the velocity at the next
time step. The velocity update equation in PSO is crucial for guiding the
particles toward optimal solutions by incorporating both their best-
found positions (local best) and the best position found by any particle
in the swarm (global best). The parameters c1 and c2 in the velocity
update equation are critical constants known as acceleration co-
efficients. By adjusting these parameters, one can control the extent to
which individual particles are influenced by their past successes versus
the successes of their neighbors, thereby affecting the exploration and
exploitation capabilities of the PSO algorithm. This balance is crucial for
the effectiveness of PSO in finding optimal solutions across a wide range
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of optimization problems.
In this formula, Ylocal

best (t) represents both the best positions found
individually and by the swarm. Eqs determine the updated position. (26
and 27) [42], with the coefficients α and β set to 0.6 and 0.4,
respectively.

Ynew
1 (t) = YM(t) − α × E.|YM(t) − rl.Prey(t)| − β × V(t+1) (26)

Ynew
2 (t) = YFM(t) − α × E.|YFM(t) − rl.Prey(t)| − β × V(t+1) (27)

4.1.8. GJO- Golden Sine algorithm
The GJO algorithm, inspired by the collaborative hunting strategy of

golden jackals, is a potent metaheuristic approach. However, its reliance
on the leadingmale jackal for updating prey positions and the occasional
lack of variety among the jackals can lead to premature convergence at
local optima. To overcome these limitations, this study introduces an
enhanced version called the Golden Sine Algorithm (GSA) integrated
Dynamic Lens-Imaging Learning (LSGJO) with GJO [47]. First, this
approach can enhance GJO with dual update mechanisms inspired by
GSA. Then, it enhances the intelligence of search agents and the overall

optimization power. In addition, a unique nonlinear dynamic scaling
factor is used to maintain diversity among the population. The efficacy
of LSGJO is confirmed through tests on 23 standard benchmarks and
three intricate real-world design challenges. The findings indicate that
LSGJO outpaces 11 cutting-edge algorithms in terms of convergence
speed and precision, showcasing notable enhancements in global and
local search capabilities, and excels particularly in handling constrained
optimization tasks.

Fig. 15 shows the advantages of combining GJO with other
algorithms.

Fig. 16 illustrates the disadvantages of combining GJO with other
methods. Combining algorithms has many advantages, but it also cre-
ates disadvantages in reaching the final solution. Increased computa-
tional complexity is one of the main problems because combining
algorithms requires more time and resources to execute. Another
problem is convergence instability because some algorithms, such as
SCA or MFO, tend to have oscillatory behavior, and this behavior can
interfere with GJO for local optimization. In addition, the need for
precise parameter tuning in combined algorithms is a serious challenge
because a lack of proper tuning can lead to reduced effectiveness and get

Fig. 14. The main structure of the GJO-WOA [66].
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stuck in local optima.

4.2. Improved

Challenges the GJO algorithm faces are characterized by its slow rate
of convergence, a tendency to become ensnared in local optima, and an
inability of the exploration and exploitation phases to address scenarios
involving high-dimensional spaces adequately. Various enhancement
strategies have been introduced in recent years in response to these
limitations. Among these are adaptive strategies that adjust parameters
dynamically, integrating deep learning and machine learning tech-
niques to refine decision-making processes, Opposition-Based Learning
(OBL) to explore alternative solutions, and employing parallel process-
ing for efficiency improvements. Additionally, the sine and cosine al-
gorithm has been proposed to enhance the GJO’s ability to navigate
complex search spaces, offering a more robust approach to global
optimization.

4.2.1. Adaptive strategy
An enhanced version of the GJO algorithm termed Local-GJO

(LGJO), which incorporates multiple strategic enhancements, is intro-
duced [68]. Initially, the algorithm deploys a chaotic mapping tech-
nique for populating the initial solutions, diverging from the
conventional approach of using random parameters. This method aims
to produce initial solutions exhibiting broad diversity across the search
space. Subsequently, the algorithm introduces a dynamic inertia weight,
modulated by cosine variations, to enhance the realism of the search
process. This modification is designed to balance the algorithm’s ability

to explore the search space broadly (global search) and exploit the areas
around promising solutions in depth (local search). Lastly, the LGJO
algorithm integrates a Gaussian mutation-based position update strat-
egy, capitalizing on the optimal individual within the population to
guide the search. This approach not only boosts the diversity within the
population but also aids in effectively navigating uncharted territories of
the search space, thereby mitigating the risk of the algorithm getting
trapped in local optima.

Dimensional Gaussian mutation is applied to the position of the
optimal individual within the population to enhance diversity and guide
the evolutionary process towards the most promising regions of the
search space. This technique is strategically employed to avoid the
common pitfall of converging to local optima, ensuring a more
comprehensive exploration of potential solutions. Additionally, using an
inertia weight factor is crucial in accelerating the convergence rate
while preventing the algorithm from getting stuck in suboptimal solu-
tions. This inertia weight is mathematically articulated in Eq. (28) [68],
where it likely adjusts the momentum of the search, balancing the
exploration of new areas with the exploitation of known reasonable
solutions to navigate the optimization landscape efficiently.

ω = 1 − (t/ MaxIter )2 (28)

Several strategies have been implemented to enhance the algo-
rithm’s global search capability. An inertia weight factor is introduced at
the optimal location to modulate the search momentum, promoting a
broader search space exploration. Gaussian mutation is applied as a
mutation technique, introducing variability and preventing premature
convergence by diversifying the population. Moreover, a greedy strategy

Fig. 15. The advantages of combining GJO with other algorithms.
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is utilized to ensure that the best solution for each dimension is retained,
optimizing the search process by selectively keeping the most promising
solutions. This greedy approach is also used to update the fitness values
of solutions, according to Eq. (29) [68], ensuring that the algorithm
consistently progresses towards more optimal solutions by favoring
those with better fitness. This methodical combination of strategies aims
to strike a balance between exploring new areas and exploiting known
reasonable solutions, thus improving the efficiency and effectiveness of
the optimization process.

Xbestbew(j) = ω ∗ Xbest (j) + randn ∗ Xbest (j) (29)

Xbest =
{
Xbestnew, if f (Xbestnew) < f (Xbest)
Xbest, else (30)

The LGJO effectiveness is rigorously assessed using a comprehensive
set of 23 mathematical benchmark functions alongside the CEC-2019
and CEC-2021 test suites. The performance of this algorithm is bench-
marked against several renowned and highly competent optimization
techniques. This comparative analysis examines various aspects, such as
solution quality, convergence trends, and the algorithm’s robustness, to
highlight its superior performance and high-quality outcomes.
Furthermore, the practical applicability of the proposed algorithm is
showcased through its deployment in solving four constrained industrial
problems. The results from these real-world applications underscore the
algorithm’s capability to tackle complex, constrained challenges,
establishing its competitive edge over other optimization methods. A
flowchart illustrating the multi-strategy mixing approach, integral to the
algorithm’s design, is depicted in Fig. 17, visually representing the al-
gorithm’s workflow and strategic components. The Gaussian Mutation
operator is a technique used in MH and optimization algorithms that

makes minor changes to solutions using the Gaussian Distribution. In
this method, a new value is generated for the current solution. This value
is obtained by adding a random noise to the current solution. The
Gaussian Mutation operator helps enhance the search capability in the
exploration and exploitation phase.

An enhanced approach for optimizing rolling bearing dynamics
models is introduced, utilizing an Improved IGJO algorithm combined
with a technique for fusing sensitive features [69]. The initial step in-
volves the development of the IGJO algorithm. This aims to tackle the
complexities of multidimensional optimization and address the balance
between the global and local search capabilities inherent in the GJO
algorithm. Following this, the method introduces a strategy for
combining sensitive features related to bearing faults, employing a bi-
nary version of the Improved GJO (B-IGJO) algorithm alongside Prin-
cipal Component Analysis (PCA). The B-IGJO algorithm is derived using
a discretization method based on the Sigmoid function. The parameters
of the rolling bearing dynamics model are refined using the IGJO algo-
rithm. It’s noted that during the local search phase, the search scope
narrows as the algorithm progresses through iterations, potentially
increasing the likelihood of the algorithm converging to local extremes.

An adaptive weight, denoted as η is introduced, which is determined
by the fitness value of the male golden jackal. Eq. (31) [69] allows each
golden jackal in the algorithm to adjust its search range dynamically
during the local search phase, avoiding convergence to local extremes.
Upon entering the local search stage, each golden jackal is assigned a η
value. A smaller η reduces the immediate search area around the prey,
prompting the golden jackal to broaden its hunting territory. This
strategy helps maintain a balance between intensively searching a
promising area and exploring wider regions to discover potentially
better solutions.

Fig. 16. The disadvantages of combining GJO with other algorithms.
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η =

⎧
⎪⎨

⎪⎩

ηmaxfi⩾favg

ηmin +
(ηmax − ηmin) × (fi − fmin )

fmin
fi < favg

(31)

In the given context, fi represents the fitness value of the ith golden
jackal, favg represents the average fitness value of all golden jackals, fmin
denotes the minimum fitness value among the golden jackals, and fmax
denotes the maximum fitness value among the golden jackals. ηmin stands
for the minimum weight and ηmax stands for the maximum weight.
Consequently, during the capture stage, Eq. (4) undergoes an update to
Eq. (9). The exploration stage of GJO is executed by Eq. (32) [69].
{

Xi− M(t + 1) = XM(t + 1) − D× η|Levy(ζ) × XM(t + 1) − Xi(t)|
Xi− FM(t + 1) = XFM(t + 1) − D× η|Levy(ζ) × XFM(t + 1) − Xi(t)|

(32)

A new approach for detecting unusual behavior among users is
introduced, which utilizes an adaptive form of the GJO [70]. This
method establishes an array of weak learners in the initial stages,
drawing upon data indicative of atypical user activities. This is achieved
through a process of sampling with replacement, coupled with the
application of filtering methodologies to pinpoint the foundational

models for tri-training. To counteract the inherent issues of slow
convergence rates and the propensity to fall into local optima that pla-
gue conventional optimization techniques, the adaptive GJO is applied
to refine the parameter optimization process within the tri-training
framework. When comparing the computational efficiency of the stan-
dard GJO algorithm against its adaptive counterpart, the latter exhibits a
notable decrease in processing time by approximately 8.22 %. Further-
more, the adaptive GJO’s nuanced mimicry of a golden jackal’s hunting
dynamics—specifically, the adjustments in velocity and the acceleration
phase during the chase—is articulated through Eq. (33) [70].

φ = Ep × erf
((

δ
2(t − γ)

)2)

(33)

Within this context, the symbol φ denotes the incremental function
attributed to the golden jackal, whereas δ indicates the scaling param-
eter. The notation Ep is employed to represent the energy function of the
body, with γ serving to mark the position parameter and t being used to
signify the number of the current iteration in the generation sequence.
The agent’s endeavor to reach the target function is divided into two
distinct segments: an adjustment and a pursuit phase. It is posited that

Fig. 17. The flowchart of multi-strategy mixing [68].
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the vigor of the agent is subject to variation in direct correlation with the
distance of pursuit at any given instance. Reflecting the unique char-
acteristics of the agents, this particular aspect is quantified with the aid
of Eq. (34) [70].

Ep = 2θ0
((

sin
(
1
t

))2

+1
)

0 ≤ t ≤ T (34)

The initial physical capability is denoted by θ0. Consequently, the
hunting actions of the agents are revised according to Eqs. (35) and (36)
[70].

Y1(t) = YM(t) − Eφ|r×YM(t) − prey(t)| (35)

Y2(t) = YFM(t) − Eφ|r×YFM(t) − prey(t)| (36)

Within the framework of an IEEE 33-bus radial distribution network,
a thorough strategy for allocating and scheduling wind turbines and
electric vehicle (EV) parking lots has been implemented [71]. The
strategic placement and sizing of wind turbines and EV parking in-
frastructures are ascertained using an advanced version of the GJO,
augmented with Rosenbrock’s Direct Rotational (RDR) method. This
enhanced algorithm, IGJO, is distinguished by its superior efficacy and
ability to secure optimal solutions with greater precision and more
favorable objective function values. The effectiveness of the IGJO
method is particularly underscored by its substantial reduction in energy
loss costs, grid energy expenditures, and fluctuations in network voltage,
which are decreased by 29.76 %, 65.86 %, and 18.63 %, respectively,
relative to the baseline network configuration. These improvements are
further corroborated by statistical analyses that validate IGJO’s superior
performance against traditional optimization techniques. Moreover, the
inclusion of considerations for EV battery degradation costs into the
IGJO methodology yields further reductions in energy loss expenses,
grid energy costs, and voltage irregularities by 3.28 %, 1.07 %, and 4.32
%, respectively, when contrasted with scenarios that overlook the im-
plications of battery wear. The research additionally sheds light on the
consequences of diminished EV availability, which is shown to escalate
grid energy costs and compromise voltage stability within the network,
thereby underscoring the significant influence of EV integration on the
grid’s overall performance.

A new version of GJO called the Ameliorated GJO (AGJO), is intro-
duced to solve engineering problems [72]. Three strategies, including
augmented movement, global search, and multi-way updating of prey
position, are used to reduce the imbalance of GJO. Also, an environ-
mental disturbance factor is added in the third strategy to enhance the
ability of GJO to avoid local optima. The performance of AGJO is tested
on 23 reference functions and engineering problems compared to GJO
and seven other algorithms. The results show that AGJO achieves high
convergence speed and optimization ability in >90 % of cases. A new
algorithm, Q-learning-improved GJO (QIGJO), is introduced for opti-
mization problems [73]. The method uses five update mechanisms and a
two-population cooperation mechanism based on Q-learning. Also, a
new convergence factor is added to the algorithm to enhance the
convergence ability of GJO significantly. Evaluations are conducted on
23 standard benchmark functions, the CEC2022 function set, and three
classical engineering design problems. The results demonstrate high
convergence accuracy and improved algorithm global search capability.

4.2.2. Deep learning
Enhancing the precision of wind power generation forecasts is vital

for power grids’ secure and stable functioning. To address this, the paper
introduces a novel wind power prediction model that leverages cutting-
edge methodologies such as a GJO-optimized Bidirectional Long Short-
Term Memory (BiLSTM) neural network, Kernel Principal Component
Analysis (KPCA), and Empirical Mode Decomposition (EMD).

The paper introduces a tool life prediction model for dicing saws that
employs an Adaptive GJO (AGJO) optimized Gated Recurrent Unit

(GRU) to enhance prediction accuracy [74]. The conventional GJO al-
gorithm faces challenges such as slow early convergence, reduced
later-stage accuracy, and a tendency to get trapped in local optima. To
overcome these issues, the study incorporates a nonlinear convergence
factor and an adaptive weighting factor into the standard GJO, resulting
in an improved AGJO. Experimental outcomes reveal that the proposed
AGJO-GRU model significantly outperforms the original GJO-GRU
model, showing a 1.96 % increase in accuracy and a 27.04 % reduc-
tion in root mean square error, demonstrating superior predictive ca-
pabilities. The overall methodology of the AGJO-GRU model is depicted
in Fig. 18.

Challenges faced by the standard GJO include an imbalance in the
exploration and exploitation phases and a lack of convergence precision.
To address these issues, it is recommended that the standard GJO al-
gorithm be augmented with a nonlinear convergence factor and an
adaptive weighting factor. A key element of this enhancement is the
dynamic modification of the prey energy value (E), which is crucial to
the algorithm’s effectiveness. In the traditional GJO approach, the linear
decrement of the prey energy E1 with the progression of iterations fails
to achieve an optimal equilibrium between the algorithm’s global search
(exploration) and the local search (exploitation) components. The
enhancement proposes a gradual decline in the prey’s energy during the
algorithm’s early stages, permitting a broader search scope and
enhancing global exploration capabilities. As the algorithm advances to
the intermediate and final phases, a more pronounced reduction in the
prey’s energy is advocated. This adjustment aims to concentrate the
algorithm’s efforts on the most promising regions, thereby accelerating
convergence and improving the overall efficiency of the optimization
process. The revised methodology for calculating the prey’s energy
value is encapsulated in Eq. (37) [74], which incorporates these modi-
fications to foster a more balanced and efficacious optimization strategy.

E1 =

⎧
⎪⎪⎨

⎪⎪⎩

c1 ∗
(

1 −
1

e − 1

)

∗
(
e
t
T − 1

)
t ≤

T
2

c1 ∗
(
1 −

t
T

)1
2 t >

T
2

(37)

As per Eq. (37), E1′s value will gradually approach convergence
during the initial half cycle of the iteration, broadening the algorithm’s
search range. In the latter half of the iteration, E1′s value will hasten
convergence, enhancing the algorithm’s efficiency. c1 and c2 are random
parameters for the search equilibrium. t and T represent the current
iteration and the maximum iteration.

In response to the challenge posed by the inherent unpredictability of
traffic flow, which often leads to diminished prediction accuracy, the
GJO-GRU data prediction model has been developed [75]. This inno-
vative model employs the GJO to refine the GRU architecture, aiming to
counteract the issues stemming from nonlinearity and temporal fluctu-
ations. An initial decision made by the model involves opting for a more
straightforward GRU framework over the more complex Long
Short-Term Memory (LSTM) neural networks, a choice motivated by the
desire to reduce complexity and accelerate training speeds. The next
step involves the application of the GJO algorithm to adjust the GRU
model’s hyperparameters meticulously. This process is designed to
diminish the influence of human biases and significantly improve the
accuracy of predictions. Following these adjustments, the performance
of the GJO-GRU model is rigorously evaluated against other models,
including the GRU, LSTM, and GJO-LSTM, utilizing the data from the
California Performance Measurement System (PeMS). The outcomes of
these experiments reveal that the GJO-GRU neural network prediction
model surpasses its counterparts, achieving the highest coefficient of
determination alongside the lowest values in mean absolute error
(MAE), root-mean-square error (RMSE), and mean absolute percentage
error (MAPE). These findings highlight the model’s exceptional ability
to fit data and generalize, thereby markedly enhancing the precision of
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traffic flow predictions.
A new Intrusion Detection System (IDS) model for IoT networks is

developed using the Improved Binary GJO (IBGJO) algorithm and LSTM
network [52]. Initially, the GJO algorithm is enhanced with OBL. The
improved GJO operates in binary mode to select features from IDS data,
optimizing subset selection. IBGJO further enhances GJO’s performance
by incorporating the OBL strategy and managing the initial population
to avoid local optima. In the IBGJO-LSTM model, LSTM is employed for
sample classification. While traditional machine learning techniques
achieve high detection rates, their efficiency diminishes with larger
datasets. Deep learning methods like LSTM are better for distinguishing
samples from extensive data. This is attributed to the binary mode of the
improved GJO algorithm effectively selecting relevant features from IDS
data and LSTM accurately classifying samples.

A new methodology, termed GJODL-ADPW (GJO with Deep
Learning-based Anomaly Detection in Pedestrian Walkways), has been
introduced to enhance road traffic safety [76]. This innovative tech-
nique is engineered to effectively identify anomalies, such as vehicles or
skaters, within pedestrian pathways. Employing the Xceptionmodel, the
method excels in the efficient extraction of features, while the GJO al-
gorithm is applied for the optimal tuning of hyperparameters. Anomaly
detection within this framework is subsequently performed through the
use of a bidirectional LSTM (BiLSTM) technique. A comprehensive series
of experimental analyses is undertaken to ascertain the enhanced effi-
cacy of the GJODL-ADPW system. Through detailed comparative eval-
uations, the GJODL-ADPWmethod is demonstrated to outperform other
contemporary techniques, underscoring its superiority in anomaly
detection on pedestrian walkways.

The GJO with Deep Learning-based Cyberattack Detection and

Classification (GJODL-CADC) approach has been devised and subjected
to evaluation on the Industrial Internet of Things (IIoT) platform [77].
This system’s fundamental objective is identifying and categorizing
cyber threats within the IoT framework. Optimization issues in IoT, such
as offloading tasks and data security, are important [78,79]. To address
these challenges, the GJODL-CADC algorithm integrates an innovative
feature selection method based on GJO to enhance classification accu-
racy. In the next phase, the GJODL-CADC methodology combines an
autoencoder with a deep belief network (AE-DBN) for cyberattack
detection. The efficiency of the AE-DBN model is further augmented by
integrating the pelican optimization algorithm (POA), which contributes
to a notable enhancement in detection capabilities. A series of
comprehensive simulations are performed to validate the efficacy of the
GJODL-CADC approach. These extensive evaluations reveal that the
GJODL-CADC method outshines existing techniques, showcasing its
potential with promising results in detecting and classifying cyber-
attacks on IIoT platforms.

A cutting-edge hybrid methodology is introduced to predict closing
prices of West Texas Intermediate (WTI) and Brent crude oil futures. The
process begins with applying the variational modal decomposition
(VMD) technique, which dissects the original dataset of prices into
several sub-models. Each of these sub-models is then fed into an LSTM
network. To optimize the performance of the LSTM, an improved
version of the Golden Jackal Optimizer, known as IGJO, is deployed to
adjust the network’s hyperparameters [85] meticulously. In a subse-
quent step, an innovative form of the ensemble empirical mode
decomposition method with adaptive noise (ICEEMDAN) is employed to
break down further the error sequences generated. These decomposed
sequences of errors are independently forecasted using the GRU

Fig. 18. AGJO-GRU overall flowchart [74].
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network. The final forecasting results are compiled through a process of
linear aggregation. Moreover, the research introduces kernel density
estimation (KDE) for interval estimation, building on point predictions
to forecast uncertainties. Empirical evaluations of the VILIG model
demonstrate its superior performance compared to other leading models
across various quantitative metrics. Given its demonstrated efficacy, this
model is well-positioned to become a crucial tool for investors in crude
oil futures and market regulators. It offers a solid basis for strategic
decision-making and enhances the robustness of investment and regu-
latory strategies.

Predicting multivariate time series in wastewater treatment plants
(WWTPs) poses a challenge due to their complex nonlinear nature. To
address this challenge, a novel prediction framework is proposed in this
study [48]. The findings underscore the efficacy of the proposed pre-
diction system in accurately forecasting multivariate water quality time
series data in WWTPs, highlighting its potential for practical applica-
tions in wastewater management and treatment.

The research introduces an innovative machine learning model
named LSTM-GJO, which synergizes the LSTM neural network with the
GJO algorithm to predict tribological properties [43]. It has been noted
that there is a decrease in the coefficient of friction attributed to the
diminished contact area between the composite materials and the

corresponding disk. Considering the array of variables implicated in
wear assessments, such as the composition of reinforcements, the ve-
locity of sliding, and the applied load, a machine learning framework
has been formulated to adeptly forecast wear rates. The construction of
the LSTM-GJO model aims to augment the efficacy of the LSTM neural
network by capitalizing on the optimization capabilities of the GJO. To
assess the reliability of this model, empirical data from experiments on
Cu–Al2O3 nanocomposites are used. Additionally, the performance of
the LSTM-GJO is compared with alternative models, such as the SCA,
GWO, and Salp Swarm Algorithm (SSA). The empirical results under-
score the LSTM-GJO model’s predominance over the models against
which it was compared. An illustrative representation, found in Fig. 19,
delineates the procedural steps involved in predicting tribological
characteristics, emphasizing the LSTM-GJO model’s dependency on the
GJO algorithm to calibrate the parameters within the LSTM network.
This methodological approach is intended to offer a more precise and
effective prediction tool for tribological attributes, thereby contributing
to materials science and engineering progress.

LSTM, GRU, and CNN algorithms are among the main algorithms in
the field of deep learning that are used to predict, classify, and recognize
objects [80]. Conventional machine learning approaches exhibit several
flaws, including a constrained capacity to capture complex patterns and

Fig. 19. Structure of LSTM- GJO model used to predict the tribological properties of the composites [43].

M. Hosseinzadeh et al. Computer Science Review 56 (2025) 100733 

22 



challenges in addressing nonlinear issues. These limitations affect the
predictive performance of standard machine learning algorithms.
However, the past few years have seen a surge in computing power,
leading to the emergence of advanced deep-learning models that offer
enhanced capabilities for modeling and generalization. These include
technologies like Recurrent Neural Networks (RNN), LSTM networks,
and GRU. GRU, a variant of RNN, is designed to overcome the vanishing
gradient challenge often faced by traditional RNNs. Furthermore, GRUs
excel in identifying relationships within nonlinear sequential data over
time, making them particularly effective for predictive tasks.

The adaptive multi-level attention-based deeplabv3+ (AMLA-Deep-
labv3+) model with the improved GJO algorithm is proposed for the
semantic segmentation of small objects in aerial images [81]. This model
uses multi-level attention units in the Atrous module and compression
and excitation units in the decoder section. By carefully tuning param-
eters such as the number of neurons, learning rate, and batch size, the
experimental results show an improvement in accuracy (99.65 %) and
computation time (3.02 min) compared to conventional methods.

A new method for classifying cancer-related miRNA biomarkers,
named Syntax-Guided Hierarchical Attention Network optimized with
Golden Jackal Optimization Biomarker Categorization (SGHAN-GJOA-
MiRNA-BC), is proposed [82]This model uses an SGHAN optimized with
the GJO algorithm. SGHAN is used to classify miRNA biomarkers and is
intended to aid in cancer diagnosis, treatment, and prognosis. The GJO
algorithm improves the accuracy and performance of SGHAN. This
method significantly improves accuracy, sensitivity, F-criterion,
computational time, and error reduction compared to traditional
techniques.

4.2.3. Machine learning
In [53], a deep learning-assisted intrusion detection system with a

GJO algorithm for network security (GJOADL-IDSNS) is proposed,
which marked a significant advancement in cybersecurity. The core aim
of the GJOADL-IDSNS framework is to proficiently detect and categorize
network intrusions, thereby bolstering the security of networks. The
initial step in the GJOADL-IDSNS process involves normalizing data and
transforming the input data into a format more conducive to analysis
and processing. Within the GJOADL-IDSNS approach, a feature selection
(FS) mechanism based on the GJO Algorithm (GJOA-FS) is employed to
identify an optimal set of features for intrusion detection. Following this,
the GJOADL-IDSNS system adopts an attention-based bidirectional
LSTM (A-BiLSTM) model specifically tailored for the detection of in-
trusions. To refine the hyperparameters of the A-BiLSTM model and
enhance its effectiveness, the GJOADL-IDSNS method integrates the
SSA. The efficacy of the GJOADL-IDSNS technique is rigorously assessed
using well-established benchmark datasets in a simulated environment.
Comparative analysis establishes that the GJOADL-IDSNS technique
surpasses competing models in intrusion detection and classification
accuracy and efficiency. These findings indicate that the GJOADL-IDSNS
method provides superior performance in safeguarding network security
and effectively identifying and mitigating intrusions.

To overcome the challenges inherent in conventional photovoltaic
(PV) power models, which frequently suffer from overfitting and the
tendency to get ensnared in local optima, a new hybrid model named
IXGBoost-KELM is introduced [83]. This innovative model synergizes
the strengths of both XGBoost and Kernel Extreme Learning Machine
(KELM) algorithms, capitalizing on their respective advantages to boost
the dependability of predictive outcomes. The introduction of the
IXGBoost-KELM model is particularly pertinent given the known issues
with XGBoost, including its slow execution speeds, substantial memory
demands, and the KELM’s noted instability in performance. To address
these concerns, the study optimizes the hyperparameters for both al-
gorithms. This optimization is achieved by applying random search (RS)
techniques alongside the GJO, which refine the model’s stability and
enhance its predictive precision while reducing the likelihood of over-
fitting. The effectiveness of the IXGBoost-KELM model is validated

through experimental testing, demonstrating significant improvements
in prediction accuracy under various environmental conditions. This
development marks an important step forward in resolving the limita-
tions of traditional PV power models, presenting a more effective and
reliable method for forecasting PV power generation.

Predicting suspects in crime scenes involves categorizing potential
perpetrators based on location, time, and the type of crime committed.
However, electronic forensics poses significant challenges for in-
vestigators in scenarios involving large datasets. Law enforcement often
relies on hand-drawn or computer-generated face sketches to identify
perpetrators. Hence, developing an automated method for expanding
face sketches becomes crucial in enhancing investigative processes.
Deep learning models, such as the GJO-Artificial Neural Network (GJO-
ANN), have emerged as valuable tools for generating face sketches that
aid in crime detection [84]. These generated sketches are then compared
with eyewitness descriptions and artist renditions to identify similar-
ities, thereby facilitating perpetrator detection. Experimental results
demonstrate the superior performance of GJO-ANN in synthesizing face
sketches for crime detection purposes. This underscores the potential of
advanced deep learning techniques in augmenting law enforcement ef-
forts and improving investigative outcomes in criminal cases.

Introduced to address the shortcomings of conventional molybde-
num ore grade identification methods, which typically grapple with
inefficiencies and elevated costs, is a novel ore grade detection tech-
nique that capitalizes on ore spectral data. This method integrates a
powerful combination of Multivariate Singular Value Decomposition
(MTSVD), Tuned-GJO (TGJO), and Extreme Learning Machine (ELM),
known as MTSVD-TGJO-ELM [85]. Instead of relying on traditional
linear modeling techniques, the Extreme Learning Machine effectively
models the ore grade, offering a more dynamic approach. The challenges
posed by the inherently ill-posed nature of ore grade detection are
tackled through the strategic application of TGJO and MTSVD for
parameter optimization. This ensures that the model achieves robust-
ness and maintains high accuracy levels. When subjected to a compar-
ative analysis against other classical machine learning algorithms, the
MTSVD-TGJO-ELM combination is distinguished by its superior accu-
racy, setting a new benchmark in the field. This innovative approach
heralds a significant leap forward in rapidly detecting ore grades within
the mining process, mainly benefiting the mining and beneficiation of
molybdenum ores. It promises to elevate ore recovery rates by facili-
tating more precise beneficiation processes. By introducing a more
efficient and cost-effective method, this advancement plays a crucial
role in optimizingmining operations and enhancing resource utilization,
particularly within the molybdenum mining sector.

A novel hybrid artificial intelligence model has been put forward to
forecast the thermal dynamics of two distinct solar still (SS) designs,
which are environmentally benign desalination apparatuses harnessing
solar power to convert seawater into freshwater [45]. The first of these
solar stills, designated as ALSS, features a basin and absorber plate made
of aluminum, whereas the second, PCSS, is constructed from poly-
carbonate. Both designs incorporate a specialized absorber plate with an
air cavity to enhance efficiency. This hybrid model is characterized by
an Artificial Neural Network (ANN) that has been finely tuned through
applying the GJO algorithm. The efficacy of this enhanced model is
rigorously assessed through comparative analysis against standard ANN
frameworks and two other models that have been optimized using either
the Genetic Algorithm (GA) or the PSO. The findings from this com-
parison highlight the ANN-GJO model’s exceptional precision in fore-
casting critical parameters such as the overall heat transfer coefficient,
energy and exergy efficiencies, and the volume of distillate produced.
Moreover, between the two SS designs, ALSS is shown to possess supe-
rior thermal performance, showcasing higher levels of water produc-
tivity, energy efficiency, and exergy efficiency, in contrast to PCSS. With
its proven capability for accurately predicting the thermal behavior of
solar still designs, this hybrid artificial intelligence model offers
invaluable insights that can be leveraged to refine their performance in
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desalination processes, thereby contributing significantly to optimizing
such sustainable technologies.

A novel approach called Dictionary-based Sparse Regression
Learning with GJO (DSRL-GJO) is proposed for monitoring healthcare
data within an Internet of Things (IoT)-based context-aware architecture
(CAA) [86]. It holds promise for enhancing healthcare monitoring sys-
tems within IoT-based architectures, offering improved accuracy and
efficiency in identifying patients’ conditions.

An innovative reinforcement learning-enhanced GJO algorithm,
dubbed QLGJO, has been developed for the segmentation of CT images
to facilitate the diagnosis of COVID-19 [87]. This method is designed to
overcome the limitations of the original algorithm’s tendency to get
trapped in local optima. To further augment the algorithm’s efficacy, a
hybrid model and three distinct mutation strategies have been inte-
grated into the update mechanism to boost the population’s diversity.
Two different sets of experiments are undertaken to ascertain the
effectiveness of the QLGJO algorithm. In the initial experiment, the
performance of QLGJO is benchmarked against other sophisticated
metaheuristic algorithms using the IEEE CEC2022 benchmark functions.
In the subsequent experiment, the QLGJO algorithm undergoes experi-
mental validation on CT images of COVID-19 cases, employing the Otsu
method for this purpose. Its performance is then juxtaposed with that of
several renowned metaheuristic algorithms. The outcomes from these
experiments underscore the QLGJO algorithm’s competitive edge in
optimizing benchmark functions and the domain of image segmenta-
tion. Such results underscore the QLGJO algorithm’s capability in
effectively segmenting CT images to diagnose COVID-19, mainly when
powered by reinforcement learning. This underscores the algorithm’s
utility and potential in the broader context of medical image analysis,
pointing towards its applicability in enhancing diagnostic processes
through advanced imaging techniques.

The continuous growth of electric vehicles (EVs) and conventional
loads necessitates proper planning for electric vehicle charging stations
and network development. A hybrid method for allocating fast-charging
stations (FCSs) and battery energy storage (BES) systems by integrating
photovoltaic (PV), along with scheduling, is proposed [88]. The results
demonstrate that the proposed approach achieves lower energy loss than
existing methods. Overall, the GJO–RFA technique presents an effective
solution for optimizing the allocation and scheduling of FCSs, PV, and
BES systems in EV charging infrastructure, contributing to the efficient

and sustainable development of electric vehicle networks. Fig. 20 shows
the advantages of the GJO algorithm in machine learning.

4.2.4. OBL
Opposition-Based Learning (OBL), as introduced by Tizhoosh [89],

has proven to be a significant advancement in augmenting the perfor-
mance of various metaheuristic optimization algorithms. This technique
is predicated on generating the opposition of a given solution within the
evaluation phase, thus presenting an alternative pathway to identifying
a solution closer to the global optimum. By simultaneously assessing the
feasibility of a solution and its anti-answer, OBL effectively broadens the
algorithm’s exploratory scope and enriches the diversity within the
population. The methodology entails the selection of superior candi-
dates from both the original and the inverse populations to constitute a
new, enhanced population. This strategy is geared towards retaining
high-caliber solutions while phasing out those of lesser quality, enabling
a more expansive exploration of possible solutions. At its core, OBL is
designed to refine the quality of initial solutions, avert the premature
convergence of the algorithm to suboptimal local minima, and reduce
the likelihood of engaging in ineffectual optimization during successive
iterations. In summary, the introduction of OBL into MH algorithms
serves to elevate their problem-solving efficacy substantially [90]. It
achieves this by encouraging the investigation of a wider array of so-
lution spaces and diminishing the propensity for early convergence, thus
ensuring a more thorough and effective optimization process.

An innovative multi-threshold segmentation technique for breast
cancer imagery is introduced, utilizing a refined variant of the Dande-
lion Optimization (DO) algorithm [91]. Integrating opposition-based
learning principles enriches this technique and employs an enhanced
DO algorithm to optimize the objective function, which maximizes
between-class variance. Additionally, this method is fortified with fall-
back strategies, introducing a memory matrix, and applying the GJO
energy judgment mechanism to determine optimal threshold values. The
optimization endeavor associated with the DO algorithm is fundamen-
tally nonlinear, rendering simple linear correlations inadequate.
Infusing a nonlinear function into the algorithm provides an extended
exploration period, thereby contributing to a broadened diversity of
solutions. Distinct from the conventional DO algorithm that functions
autonomously within the decision space, opposition-based learning en-
genders opposite solutions and facilitates dual-directional exploration.

Fig. 20. The advantages of GJO algorithm in machine learning.
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This dual-faceted approach bolsters solution diversity circumvents local
optima’s pitfalls and propels algorithmic convergence. In essence, this
newly proposed method heralds a sophisticated strategy for the seg-
mentation of breast cancer images, capitalizing on cutting-edge meth-
odologies to elevate the efficacy and precision of optimization processes.

The issue of diminished accuracy in transformer fault diagnosis
through Dissolved Gas Analysis (DGA) is adeptly tackled by the Sto-
chastic Configuration Network (SCN) method, which is refined through
the application of an Improved GJO (IGJO) [92]. This approach in-
troduces a fault diagnosis technique for transformers that leverages an
SCN optimized by IGJO. The initial phase involves using Kernel Prin-
cipal Component Analysis (KPCA) to diminish the gas data’s dimen-
sionality and distill pertinent features. The SCN’s capability is
augmented by integrating an L2 parametric penalty term to bolster its
generalization potential in real-world scenarios. To further elevate the
efficiency of the GJO, elite backward learning, and golden sine algo-
rithms are amalgamated into their structure, thereby amplifying its
stability and the capacity to seek optimal solutions. The efficacy of the
IGJO is corroborated through its application to 13 quintessential test
functions, showcasing enhanced stability and an improved ability to
identify optimal solutions. Additionally, the coefficient C of the penalty
term within the SCN is optimized using the IGJO, resulting in the
development of the IGJO-SCN model designed explicitly for diagnosing
faults in transformers. The variables extracted through KPCA are then
employed as inputs for this model, which undergoes simulation and
validation across a spectrum of transformer fault diagnosis contexts. The
findings reveal that the IGJO-SCN model surpasses other models in
terms of diagnostic accuracy, underscoring the potency of this novel
methodology in refining the precision of DGA-based transformer fault
diagnostics. This advancement is instrumental in bolstering power sys-
tems’ reliability and operational efficiency, marking a significant
contribution to the field.

The Fast Random Opposition-Based Learning GJO (FROBL-GJO) al-
gorithm has been developed to tackle optimization challenges, drawing
inspiration from OBL and RandomOBL (ROBL) strategies [46]. This new
approach aims to enhance the accuracy and the GJO algorithm’s
convergence rate. Alongside FROBL-GJO, two additional variants,
OBL-GJO and ROBL-GJO, are introduced for comparative evaluation.
The efficacy of FROBL-GJO is rigorously tested against a suite of
established metaheuristic algorithms by applying it to a range of
benchmark test functions from CEC-2005 and CEC-2019, as well as to
various real-world engineering problems. The outcomes of these ex-
periments, supported by statistical analyses, highlight FROBL-GJO’s
enhanced performance in addressing a broad spectrum of global opti-
mization and engineering design issues. Thus, the results derived from
these benchmark tests and real-life engineering challenges affirm the
effectiveness of the FROBL-GJO algorithm, positioning it as a viable and
promising solution for addressing complex optimization tasks.

For the optimization of intricate Composite Shape-Adjustable
Generalized Cubic Ball (CSGC-Ball) surfaces, an advanced rendition of
the EGJO is employed [93]. Designing CSGC-Ball surfaces encapsulates a
mathematical optimization challenge adeptly navigated through meta-
heuristic algorithms. The construction of CSGC-Ball surfaces leverages
both global and local shape parameters rooted in a spectrum of cubic
generalized Ball basis functions, with the derivation of conditions for G1
and G2 continuity on these surfaces. These shape parameters are pivotal
in swiftly and effectively modifying and optimizing the surfaces’ con-
tours. Models for shape optimization based on minimum energy prin-
ciples, catering to CSGC-Ball surfaces with both 1st-order and 2nd-order
geometric continuity, are conceptualized. EGJO is then harnessed to
navigate these optimization models, culminating in realizing CSGC-Ball
surfaces characterized by minimal energy. Four exemplar cases are
presented to underscore the preeminence and efficacy of EGJO in
addressing the shape optimization quandaries associated with complex
CSGC-Ball surfaces. The EGJO algorithm is portrayed as a potent tool in
meticulously optimizing CSGC-Ball surfaces’ shapes, signifying its broad

applicability and promise in engineering endeavors.
To tailor the GJO for intrusion detection in Software-Defined

Networking (SDN), a specialized adaptation known as the Modified
GJO (MGJO) is introduced [94] to augment its efficacy through two
principal enhancements. An Elite Dynamic Opposite Learning strategy is
initially incorporated at each iteration step. This mechanism focuses on
generating solutions that oppose the prevailing global optimal solutions,
broadening the algorithm’s population diversity and bolstering its
exploratory capabilities. Subsequently, the exploitation phase integrates
an update mechanism inspired by the Golden Sine II Algorithm. This
addition is pivotal in refining the position updates of the golden jackal
pairs, significantly hastening the identification process of the most
optimal feature subset indexes. TheMGJO algorithm undergoes rigorous
testing across various datasets, including four from the UCI repository,
the NSL-KDD dataset for conventional network intrusion detection, and
the InSDN dataset, designed for intrusion detection in SDN frameworks.
The empirical outcomes from these evaluations highlight the MGJO
algorithm’s enhanced performance in classification accuracy and
feature subset selection for SDN intrusion detection tasks, outpacing
traditional methodologies. TheMGJO algorithm emerges as a robust and
effective tool within the SDN intrusion detection domain, indicating its
capacity to elevate security protocols within network infrastructures
substantially.

An improved version of the GJO algorithm, named Helper Mecha-
nism Based GJO (HGJO), is proposed to facilitate multilevel threshold
segmentation of aerial images [95]. This enhanced approach in-
corporates several key modifications to the original GJO algorithm: 1)
OBL is employed to enhance population diversity, aiding in exploring
the solution space. 2) A novel approach to compute prey escape energy is
introduced to accelerate convergence speed. 3) The Cauchy distribution
is integrated to adjust the original update scheme, improving the algo-
rithm’s exploration capability. 4) A novel "helper mechanism" is devised
to aid in escaping local optima, enhancing algorithm performance. In
summary, HGJO exhibits promising performance in benchmark function
optimization and aerial image segmentation tasks, underscoring its po-
tential for various optimization and image processing applications.

An advanced iteration of the GJO termed the Opposition-Based
Learning Golden Jackal Optimizer (OGJO) is introduced for optimiza-
tion problems [96]. This incorporation is strategically designed to help
the algorithm avoid local optima traps. Frequently, the prey’s updated
position largely depends on the male golden jackal’s input, which may
reduce diversity among the golden jackals. Such a scenario can lead to
the algorithm’s entrapment in local optima, especially when dealing
with conventional and intricate issues. To counteract this tendency and
foster a broader exploration within the search area, OBL is synergized
with GJO, aiming to alleviate the stagnation issue of the solutions. The
efficacy of OGJO undergoes scrutiny through a comparative analysis
with leading search algorithms, utilizing 23 standard functions, 10
cutting-edge CEC2019 test functions, and a selection of six real-world
engineering challenges. The empirical findings underscore OGJO’s su-
perior performance in terms of efficiency over both the original GJO and
other algorithms under comparison. Fig. 21 illustrates the procedural
flowchart of the OGJO algorithm, outlining its operational framework.
In essence, OGJO emerges as a robust method for optimization en-
deavors, capitalizing on the OBLmethodology to broaden its exploratory
reach and reduce the likelihood of succumbing to local optima, affirm-
ing its utility and effectiveness across diverse problem settings.

The Enhanced GJO (EGJO), devised for adaptive infinite impulse
response (IIR) system identification, integrates the sophisticated Elite
OBL strategy with the simplex technique to elevate its search and opti-
mization prowess [50]. The overarching goal of this method is to reduce
error fitness values and pinpoint the most favorable control parameters
for the system in question. Incorporating the elite OBL strategy not only
broadens the diversity within the population but also amplifies the al-
gorithm’s capacity for exploration, broadens the search scope, and
prevents the stagnation of the search process. On the other hand, the
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simplex technique contributes to speeding up the search mechanism,
boosting the ability to exploit the search space, refining computational
accuracy, and deepening the optimization level. By harmoniously
melding these two approaches, EGJO achieves a synergy that encom-
passes the strengths of both, effectively circumventing the pitfalls of
search stagnation. This balanced approach ensures an equilibrium be-
tween exploration and exploitation, facilitating the attainment of
optimal solutions. Through a series of three distinct experimental setups,
EGJO has been shown to outpace traditional methods in terms of
convergence speed, computational precision, the robustness of control
parameters, and the quality of fitness values achieved. Additionally, it
demonstrates remarkable stability and adaptability in addressing the
challenges inherent in the IIR system identification problem. Ultimately,
EGJO stands out as a viable and efficient solution for system identifi-
cation tasks, exhibiting an enhanced performance profile surpassing
traditional methodologies. This performance boost is mainly attribut-
able to the strategic amalgamation of the OBL and simplex techniques,
marking a significant advancement in system optimization.

The logical relationships of Aristotle’s square of opposition con-
cerning four fundamental categorical propositions—contrary, contra-
dictory, subcontrary, and subaltern—are explored within the framework
of Joint Opposite Selection (JOS)[97]. JOS integrates two opposition
strategies, Dynamic Opposite (DO) and Selective Leading Opposition

(SLO), in a mutually reinforcing manner. DO and SLO aim to enhance
the balance of exploration and exploitation within a given search space.
An improved version of the GJO algorithm, termed GJO-JOS, is pro-
posed, incorporating Joint Opposite Selection. During the optimization
process, JOS aids GJO by swiftly targeting prey using SLO, while DO
assists in identifying optimal opportunities to locate the fittest prey.
Through the integration of JOS, GJO achieves improved performance.
The experimental findings validate the effectiveness of the GJO-JOS
model in achieving equilibrium in the balance mechanism between
exploration and exploitation, showcasing its potential as an enhanced
optimization technique.

Skin cancer poses a serious health risk, necessitating the need for
effective classification and prompt diagnosis to ensure the health and
safety of individuals. A crucial step in this process is multilevel thresh-
olding image segmentation, which plays a vital role in isolating regions
of interest from images of skin cancer, thereby aiding in the classifica-
tion task. To meet this requirement, a sophisticated version of the GJO
algorithm, known as the opposition-based GJO (IGJO), has been intro-
duced [41]. The IGJO algorithm incorporates OBL right at the GJO al-
gorithm’s initialization stage, aiming to boost the diversity of the
population throughout the search phase. OBL, recognized for its prowess
in local search, effectively counteracts the limitations associated with
initializing populations at random, thereby promoting algorithmic

Fig. 21. The flowchart of OBL-GOJ algorithm.
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convergence through enriching solution diversity. Through the inte-
gration of OBL, IGJO enhances the initial search phase, thereby aug-
menting the overall efficacy of the GJO algorithm during its inception
phase. The application of IGJO is specifically directed towards
addressing the multilevel thresholding challenge, employing Otsu’s
method as the guiding objective function. The efficacy of this algorithm
is assessed based on four principal metrics: peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), mean square error (MSE),
and feature similarity index (FSIM). The outcomes from these experi-
ments highlight IGJO’s superior performance over competing algo-
rithms across all evaluated segmentation metrics, showcasing its ability
to tackle the segmentation issue at hand. In essence, the IGJO algorithm
emerges as a powerful tool for the segmentation of skin cancer images,
outshining other methodologies in terms of performance. The systematic
method adopted by the IGJO algorithm for image segmentation is
graphically represented in Fig. 22, elucidating its structured approach
towards overcoming segmentation hurdles.

Table 3 shows the advantages and disadvantages of improving the
GJO algorithm by OBL.

4.2.5. Parallel
The Parallel Search-based GJO (PGJO) algorithm is introduced as a

novel approach to optimization problems[98]. This algorithm in-
corporates parallel search strategies into its initialization, updating, and
selection mechanisms to enhance convergence accuracy and reduce the
required number of iterations. The PGJO algorithm introduces several
key enhancements to address specific challenges encountered in opti-
mization processes. Firstly, recognizing the significant impact of the
initial population on optimization outcomes, a parallel chaotic
pre-selection sequence is integrated into the initialization phase to
ensure the generation of a superior initial population. The evaluations
confirm the algorithm’s ability to achieve enhanced convergence accu-
racy and effectiveness across various optimization scenarios.

Certain deficiencies in the original GJO were identified during the
optimization process, particularly concerning the assignment of E0, a
random number ranging from − 1 to 1, for each individual in the pro-

gram. This approach, where E0 is uniquely assigned to everyone within
the same population, lacks coherence and logic. E0 plays a crucial role in
determining E, which signifies how closely an individual approaches
optimal or suboptimal conditions. However, assigning a random E0 to
each population member may lead to a chaotic optimization scenario.
Individuals with unfavorable properties might undergo minimal muta-
tion, while those with advantageous properties could experience sig-
nificant changes, resulting in an imbalanced optimization process. To
rectify this issue, a pre-optimization determination of E0 is proposed.
Furthermore, an adaptive E2 operator is introduced according to Eq. (38)
[98] to ensure that individuals with varying properties undergo different
levels of mutation. By implementing these adjustments, the optimization
process aims to achieve a more balanced and effective solution for space
exploration, mitigating the original algorithm’s chaotic behavior.

E2 =
fi − fmin
fmax − fmin

(38)

In Eq. (38), fmin represents the fitness value of the male individual
while fmax corresponds to the fitness value of the worst individuals
within the population. It is crucial to acknowledge that in specific sce-
narios where the algorithm has successfully identified the optimal value,
fmax and fmin may indeed become equal. In such cases, the value of E2will
consequently be zero. This observation highlights a significant aspect of
the optimization process. When fmax and fmin converge to the same value;
it signifies that the population has reached a state of equilibrium where
the fitness landscape no longer exhibits significant disparities between
the best and worst individuals. As a result, the mutation operator, rep-
resented by E2, becomes inactive, as there is no longer a need for
extensive exploration or mutation within the population. Therefore, in
instances where fmax and fmin coincide, indicating the optimal solution,
the mutation factor E2 effectively ceases to influence the population,
facilitating a stable and balanced state within the optimization process.

4.2.6. Sine and cosine
Frequency control in small inertia microgrids (MGs), especially those

incorporating renewable energies like wind and solar power, presents

Fig. 22. Flowchart of the proposed IGJO algorithm for image segmentation.
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significant challenges. Virtual Inertia Control (VIC) aims to address
these challenges by enhancing the inertia of MGs by utilizing storage
elements. A novel approach called the Optimized Fuzzy Adaptive Virtual
Inertia Control Strategy is proposed to optimize the allocation of virtual
inertia constants within the VIC scheme. This strategy involves the
development of an Improved GJO (I-GJO)method tailored for tuning the
suggested controllers [99]. The sensitivity of controllers is evaluated
under conditions of irregular load changes and varying rates of renew-
able energy source (RES) integration. Overall, the proposed I-GJO
method offers enhanced performance in optimizing fuzzy adaptive vir-
tual inertia control strategies within small inertia microgrids, demon-
strating its efficacy in addressing the challenges of frequency control in
renewable energy-integrated MGs.

An advanced approach combining the Improved GJO (IGJO) algo-
rithm with Support Vector Machine (SVM) for power transformer fault
diagnosis is introduced in this study [100]. The proposed method aims
to enhance fault diagnosis accuracy through effective feature selection
and optimization of SVM parameters. Initially, Kernel Principal
Component Analysis (KPCA) is employed to screen data features and
extract those with significant impacts. This step helps reduce the data’s
dimensionality and focus on the most relevant features for fault diag-
nosis. Two techniques are introduced to enhance the original GJO al-
gorithm’s optimization capability: Reverse Learning and Adaptive
T-Distribution Perturbation. These improvements boost the algorithm’s

global optimization ability, enabling it to search for optimal solutions in
complex search spaces effectively. The IGJO algorithm is then utilized to
optimize the main parameters of the SVM model, such as the kernel and
regularization parameters. Incorporating the optimized parameters es-
tablishes an IGJO-optimized SVM model for power transformer fault
diagnosis. Experimental results demonstrate the effectiveness of the
proposed IGJO-SVM model, achieving an accuracy of 91.43 %.
Compared to traditional GJO-SVM and Particle Swarm Optimization
(PSO)-SVM models, the IGJO-SVM model exhibits a significant
improvement in accuracy, with an increase of 4.29 % and 1.43 %,
respectively. These findings highlight the potential of the IGJO-SVM
approach in enhancing the accuracy of power transformer fault
diagnosis.

An enhanced version of the GJO algorithm, termed Improved GJO
(IGJO), is proposed for solving the three-dimensional path planning
problem of unmanned aerial vehicles (UAVs) in complex inspection
environments, particularly within distribution networks [101]. The
IGJO algorithm introduces several improvements to enhance its per-
formance in solving complex path-planning tasks. Firstly, a refined
observation strategy is implemented, which considers the boundary
information of the search space. This enhancement ensures that the al-
gorithm explores the solution space more effectively, leading to
better-quality solutions. Furthermore, a balanced renewal mechanism is
proposed to improve the population’s ability to escape local extremums.
This mechanism helps prevent the algorithm from getting stuck in
suboptimal solutions by promoting diversity within the population. A
fitness function model is developed to apply IGJO to the UAV path
planning problem-based on the specific characteristics of distribution
network inspection tasks. Furthermore, a three-dimensional simulation
map model is constructed to accurately simulate the complex inspection
environment. The effectiveness of IGJO is validated through extensive
simulation experiments. The experimental results demonstrate that
IGJO consistently produces solutions of superior quality, exhibits
robustness across different scenarios, and shows fast convergence
characteristics. These findings underscore the feasibility and superiority
of IGJO in addressing complex three-dimensional path planning prob-
lems, particularly in the context of UAV inspection missions within
distribution networks.

Frequent regulation poses considerable challenges in the context of
low-inertia microgrids, which often incorporate asymmetrical renew-
able energy sources such as solar and wind power. To efficiently fine-
tune the parameters of the Adaptive Fuzzy Proportional-Integral-
Derivative with a Derivative Filter (AFPIDF) controller, the introduc-
tion of a Modified GJO (MGJO) algorithm is proposed [102]. The MGJO
algorithm enhances the foundational GJO algorithm by integrating a
Variable Sine Cosine Adopted Scaling Factor (SCASF), a modification to
improve the algorithm’s efficiency in exploration and exploitation
during optimization. The efficacy of the MGJO algorithm is assessed
through a comparative analysis against the original GJO algorithm and a
variety of other established optimization algorithms across a selection of
standard benchmark test functions. In further developments, the tradi-
tional Proportional-Integral-Derivative (PID) controller and the newly
introduced AFPIDF controller parameters undergo optimization utiliz-
ing the MGJO technique. The MGJO algorithm’s superiority is evident,
particularly in its ability to ascertain optimal controller parameters for
regulating microgrid frequencies, especially in systems integrating
asymmetric renewable energy sources. The resilience of the optimized
controller is then evaluated in scenarios characterized by intermittent
load fluctuations and variable degrees of asymmetric renewable energy
source integration. This extensive analysis confirms the efficiency and
resilience of the MGJO-based optimization strategy in overcoming the
frequency regulation hurdles encountered in low inertia microgrids with
asymmetric renewable energy contributions.

Table 3
The advantages and disadvantages of improving the GJO algorithm by OBL.

Refs Application Advantages Disadvantages

[91] Multi‑threshold
segmentation

Rapid convergence and
identifying the optimal
global value

High execution time

[92] Fault diagnosis method
for power transformers

Find optimal solutions
in a short time

The number of
repetitions is high.

[46] Engineering problems Maintaining an effective
equilibrium between
exploration of and
exploitation and
ensuring problem-
solving.

Getting stuck in
local optima

[93] Energy minimization Rapid convergence and
identifying the optimal
global value

High execution time

[94] intrusion detection Achieving a harmonious
balance between broad,
global search strategies
and focused, local
search tactics to
improve the overall
efficiency of the search
process.

Lack of diversity in
the population of
solutions

[95] multilevel thresholding
image segmentation

Find optimal solutions
in a short time

High execution time

[96] Engineering problems Rapid convergence and
identifying the optimal
global value

The number of
repetitions is high.

[50] infinite impulse
response (IIR) system
identification problem

Maintaining an effective
equilibrium between
exploration of and
exploitation and
ensuring problem-
solving.

Lack of diversity in
the population of
solutions

[97] Optimization Problems Find optimal solutions
in a short time

The rates of problem
parameters are not
optimal

[41] image segmentation Achieving a harmonious
balance between broad,
global search strategies
and focused, local
search tactics to
improve the overall
efficiency of the search
process.

Getting stuck in
local optima
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4.3. Variants of aha

This part of the text explores binary and multi-objective frameworks.
Real-world optimization tasks often involve multiple objectives that
need to be optimized together. Multi-objective problems (MOPs) consist
of several different goals. The primary challenge in addressing multi-
objective issues is the conflicting nature of the objectives, where
enhancing one goal may lead to the deterioration of others. In these
cases, there isn’t a single best solution but rather a set of optimal
compromise solutions referred to as feasible solutions (Pareto).

4.3.1. Binary
Feature selection (FS) is an essential step aimed at eliminating su-

perfluous features from datasets, which is crucial in data mining and
machine learning to mitigate the issues arising from high-dimensional
data. Tackling FS efficiently is challenging due to its inherent combi-
natorial complexity, with computation time escalating as the problem
size increases. In response, a robust metaheuristic approach known as
Binary Enhanced GJO (BEGJO) [49] is introduced, refining the original
GJO algorithm. The GJO algorithm struggles with high-dimensional FS
tasks due to its propensity for getting stuck in local optima. To overcome
this, BEGJO incorporates several improvements, including using Copula
Entropy (CE) for dimensionality reduction while ensuring high classifi-
cation precision with the K-Nearest Neighbor (KNN) classifier.
Furthermore, four enhancement strategies are integrated to boost the
GJO’s exploratory and exploitative functions. BEGJO is adapted to FS
tasks through a binary version, employing the sigmoid transfer function.
Its efficacy is validated on various high-dimensional benchmark data-
sets, showcasing superior classification accuracy and reduced feature
dimensionality and maintaining competitive processing times. CE is
highlighted explicitly for its contribution to the algorithm’s performance
compared to traditional FS methods. Statistical analyses further affirm
BEGJO’s effectiveness and superiority in addressing high-dimensional
FS challenges.

In binary optimization, a Transfer Function (TF) is employed to
modify the position of an agent within the search space, which can be
visualized as a hypercube. This function dictates the probability that an
agent’s position will flip from 0 to 1, or conversely from 1 to 0, essen-
tially enabling the agents, conceptualized as search entities in the Binary
GJO (BGJO) algorithm, to traverse to the extreme points of the hyper-
cube by toggling specific bits. The process begins by setting up a two-
dimensional matrix to represent the initial positions of the agents, fil-
led randomly with zeros and ones, symbolizing the binary nature of the
search space. The positions of the male and female jackal leaders are
updated similarly to the original GJO algorithm’s methodology. Sub-
sequently, the positions of the other agents, referred to as preys, are
updated using a sigmoid function according to specific Eqs labeled 39
and 40 in the referenced material [49]. These equations consider a
randomly generated number between 0 and 1, ensuring the stochastic
nature of the position updates.

X→k = Sigmoid
(

X→k

)

=
1

1+ e− 10(Xk − 0.5)
(39)

Xk =

{
1, if rand < Sigmoid (Xk)

0, Otherwise (40)

The IBGJO algorithm, an advanced version of the standard GJO al-
gorithm, is explicitly introduced for feature selection tasks [55]. It is
designed as a search technique for wrapper-based feature selection and
incorporates three main enhancements: an initial population generation
using a chaotic tent map (CTM) to boost exploitation capabilities and
ensure diversity among the population, an adaptive position update
method that employs cosine similarity to avoid early convergence and a
binary framework that is ideal for dealing with binary feature selection
challenges. The performance of IBGJO was tested on 28 classic datasets
from the UC Irvine Machine Learning Repository. The findings indicate

that integrating the CTM mechanism and the adaptive position update
strategy based on cosine similarity significantly enhances the conver-
gence speed of the traditional GJO algorithm while also providing su-
perior accuracy compared to other existing algorithms. This suggests
that the novel CTM mechanism and the cosine similarity-based position
update strategy effectively accelerate the convergence of the conven-
tional GJO algorithm.

4.3.2. Multi-Objective optimization
In MOO challenges, the complexity escalates with the increase in

objective function clashes [103]. Unlike the single-objective (SO) opti-
mization, which has one solution, MOO results in a group of solutions
due to the competing objectives, referred to as the Pareto optimal set
(POS) within the decision space. Its equivalent in the objective space is
called the Pareto optimal front (POF). A solution is considered part of
the POF when improving any objective necessitates the compromise of
at least one other objective.

An advanced placement strategy utilizing the Improved GJO (IGJO)
algorithm is introduced for optimally positioning multiple capacitor
banks and various types of Distributed Generators (DGs) within distri-
bution networks [104]. This approach addresses both single and mul-
tiple objective scenarios. The model enhances the conventional GJO
algorithm by incorporatingmemory-based equations and a randomwalk
strategy to improve accuracy and hasten convergence. The simulation
outcomes demonstrate that the IGJO approach outperforms its com-
petitors in all tested scenarios, establishing its efficacy for the optimal
integration of DGs within distribution networks amid uncertainties in
generation and demand.

Wind power forecasting is pivotal in effectively integrating large-
scale wind energy into the power grid, which is essential for achieving
a carbon-neutral energy portfolio. A novel forecasting system is intro-
duced, utilizing a two-way deep learning model designed to identify
nonlinear characteristics of wind power generation and fine-tune its
critical meta-parameters through an enhanced GJO algorithm variant
[105]. This modified GJO approach facilitates the derivation of Pareto
optimal solutions, incorporating a conventional statistical method to
distill linear aspects from the error series and apply corrections effec-
tively. It also integrates regression for more accurate interval fore-
casting. The findings from this new multi-objective model demonstrate
its superiority in predicting wind power variations compared to existing
models, indicating its significant applicability in real-world scenarios.

A sophisticated GJO algorithm is introduced for managing energy in
systems with distributed generation, such as battery storage systems
(BSSs) and hybrid energy sources (HESs) [44]. The primary goals of this
method are to reduce operational expenses and address energy man-
agement challenges in microgrids (MGs). Various factors influence the
microgrid energy management system, such as power balance, genera-
tion limits, consumer demand, and the charging-discharging dynamics
of energy storage devices. This approach is implemented and tested
within the MATLAB environment, where its performance is bench-
marked against existing strategies. The outcomes of the simulations
reveal that this method is more cost-effective than the current alterna-
tives. Moreover, compared to other established methods like PSO,
Artificial Bee Colony (ABC), and Tabu Search (TS), the introducedmodel
demonstrates superior efficiency.

A new multi-objective GJO (MOGJO) algorithm is introduced,
designed to enhance both the coverage of solutions and the convergence
towards the actual Pareto optimal front (POF) in MOO problems [106].
The MOGJO algorithm incorporates four distinct reproduction phases
within its search process: Initially, the golden jackal population is
initialized within the defined search space, followed by an update phase.
Then, an opposition-based learning approach is employed to broaden
the range of Pareto optimal solutions. It outshines the top-performing
algorithm from a group of thirteen by >41 % and vastly surpasses the
least effective one, MOALO, by 84 % in ZDT and DTLZ1 test suites.
Moreover, in the DEEPD challenge, MOGJO achieved a 1.89% reduction
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in overall energy cost and a 1.48 % decrease in total emissions compared
to the best existing outcomes, making it a highly recommended solution
for novel applications.

A Multi-objective GJO (MOGJO) [107] algorithm is presented to
tackle the complexities of designing fractional-order controllers for
magnetic levitation systems, which often come with diverse design pa-
rameters and complex tuning processes. The algorithm determines the
positions of both male and female Golden Jackals by considering factors
such as diversity and rapid convergence. This is achieved by assessing
the iteration stage, applying suitable evaluation methods, and
enhancing the position update formula by incorporating the individual’s
past experiences. This adjustment in the update mechanism significantly
refines the original algorithm’s strategy for updating positions. When
applied to the magnetic levitation control system employing fractional
order, the MOGJO algorithm demonstrates a commendable control
performance. This success showcases the algorithm’s capability to
manage the system effectively and provides a solid foundation for
setting parameters within such control systems. This approach ensures
that the fractional-order controllers for magnetic levitation systems can
be fine-tuned more efficiently, addressing the challenges associated with
their design and debugging.

4.4. Optimization problems

Engineering optimization has garnered significant attention in recent
years due to its direct relevance to engineering design. Several optimi-
zation techniques, including gradient-based methods and MH algo-
rithms, have addressed these problems. However, contemporary
engineering optimization challenges are characterized by their
involvement of mixed variables, multiple constraints, and the absence of
a clear functional relationship between objectives and variables.
Gradient-based methods encounter three main shortcomings in this
context: firstly, they rely on gradient information to refine initial solu-
tions, which may not always be readily available or definable; secondly,
they necessitate a continuous design space, limiting their applicability to
problems involving discrete variables; and thirdly, they are prone to
becoming trapped in local optima, thereby failing to identify the global
optimum in complex landscapes. Consequently, these limitations restrict
the effectiveness of gradient-based methods in tackling modern engi-
neering optimization challenges.

Optimization problems are common in engineering domains, and
various optimization methods have been created to handle a wide range
of engineering optimization. Table 4 shows the general review of GJO in
the optimization field.

Constrained integer stochastic optimization problems (CISOP)
represent a challenging subset of optimization tasks where the objective
function’s behavior is stochastic, yet the constraints imposed are
deterministic [115]. These problems are classified as NP-hard, indi-
cating that finding exhaustive solutions within a reasonable timeframe
can be infeasible. The complexity of CISOPs stems from three primary
factors: the vastness of the design space, the requirement for simulta-
neous satisfaction of constraints, and the time-intensive nature of
accurately assessing the cost function. To tackle these challenges, the
theory of ordinal optimization (OO) is introduced. OO is built around
two fundamental concepts: sorting comparison and goal softening.
Sorting comparison relies on relative comparisons between different
solutions to establish an order, without needing precise values. Goal
softening, on the other hand, focuses on identifying solutions that are
’good enough’ rather than pursuing the absolute best solution, which
may be impractical to ascertain.

The OO theory has proven effective in addressing complex optimi-
zation issues across various fields, including routing optimization in
queuing networks, enhancing efficiency in sorting conveyor systems,
job-shop scheduling, and optimizing staffing in emergency department
healthcare, among others. By applying OO, the design space can be
significantly narrowed, and the search process expedited. However, the

Table 4
The general review of GJO in the field of optimization.

Refs Application Advantages Weaknesses Publisher

[108] Color
compensation
and correction

Underwater image
enhancement

The number of
repetitions is
high.

Elsevier

[60] Detection of
wave modes

recognition and
acoustic emission
source localization

The population
in the problem
space is not
coherent.

Elsevier

[109] Energy
management

improved
convergence speed
and robustness to
diverse search space
characteristics

High execution
time

Elsevier

[110] image
segmentation

This model balances
exploration and
exploitation to
obtain the best
segmentation effect.

High execution
time

Elsevier

[111] Optimization
problems

quicker
convergence rate
and greater
computation
precision

Slow
convergence
rate

Springer

[112] Optimization
problems

Optimizing the laser
drilling process and
reducing errors in
the production
process

The number of
repetitions is
high.

Springer

[113] Load Dispatch
and Power
Flow

This technique
ensures rapid
convergence and
boosts the
effectiveness of the
search, leading to
faster and more
reliable results.

Lack of
diversity in the
population

MDPI

[114] Voltage
fluctuations

The GJO algorithm
is utilized to fine-
tune the PI control
parameters within
the phase difference
control loop,
optimizing
performance during
the pre-
synchronization
phase across various
phase differences.

Slow
convergence
rate

MDPI

[115] Optimization
problems

The GJO algorithm
is crafted to
efficiently identify
an exceptional
solution to the
CISOP, achieving
this within a
practical timeframe.

Slow
convergence
rate

Elsevier

[116] image
segmentation

Optimal
convergence and
finding optimal
solutions

The population
in the problem
space is not
coherent.

Elsevier

[117] Renewable
energy

Maintaining
equilibrium
between exploring
new possibilities
and exploiting
known strategies to
discover the optimal
value for complex
mathematical
functions.

Lack of
diversity in the
population

Elsevier

[118] Unmanned
Aerial Vehicle

Enhancing the
algorithm’s global
search capability.

Slow
convergence
rate

Springer

(continued on next page)
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stochastic nature of the cost function in CISOPs still poses a substantial
impact on computational efficiency. To mitigate this, the GJO approach
is suggested. Utilizing OO, a rough evaluation is conducted to identify a
promising subset of solutions. This subset is then subjected to more
detailed simulations, which are both necessary and justifiable, to
pinpoint standout solutions. This approach significantly lessens the
computational load, making it a viable strategy for tackling the com-
plexities of CISOPs.

Robot manipulator control is a fascinating area due to its intricate
dynamical characteristics. The analysis of a robotic model’s dynamics
delves into the relationship between the positions of the robotic arm and
the joint torques produced by its actuators. The complexity of achieving
accurate and reliable control is heightened by the system’s coupled re-
lationships and nonlinear dynamics. Consequently, developing a control
strategy based on the system’s dynamics using traditional control
methodologies presents significant challenges. The Proportional-
Integral-Derivative (PID) controller is renowned for its straightforward
mathematical framework and ease of use, which has led to its wide-
spread adoption in both industrial and academic settings. Its effective-
ness across a wide array of control tasks is well-documented,
highlighting its capability to manage systems efficiently. A critical
aspect of enhancing a system’s performance and efficiency lies in the
fine-tuning of the PID controller, as optimal tuning ensures the feedback

Table 4 (continued )

Refs Application Advantages Weaknesses Publisher

[119] Unmanned
Aerial Vehicle

The findings suggest
that the suggested
model can boost
global convergence
and durability,
decrease the time
needed for
convergence,
enhance the
operational
coverage of UAVs,
and cut down on
energy usage.

Lack of
diversity in the
population

MDPI

[120] optimization
problems

Finding the best
optimal value for
multivariate
problems

High execution
time

IEEE

[121] photovoltaic
system
placement

Discover optimal
solutions

Lack of
diversity in the
population

Springer

[122] Photovoltaic
(PV)

Accurate parameter
estimation and error
reduction

High execution
time

Others

[123] renewable
energies

Precise
determination of
parameters and the
enhancement of
electrical circuit
efficiency for
electric current flow

The population
in the problem
space is not
coherent.

MDPI

[124] robotic Finding the shortest
path and reducing
the energy
consumption of
robots

Lack of
diversity in the
population

Elsevier

[125] Photovoltaic
system

Accurate parameter
estimation and error
reduction

High execution
time

Elsevier

[126] Internet of
Things

Allocating tasks to
resources and
reducing energy
consumption of
smart devices

Lack of
diversity in the
population

IEEE

[127] Optimization
problems

Finding global
optimal points and
fast convergence

The number of
repetitions is
high.

IEEE

[128] Distributed
generation
(DG)

The GJO algorithm
is used to find the
ideal location and
sizing of DGs.

The population
in the problem
space is not
coherent.

Others

[129] Feature
selection

Selecting the best
feature in the least
amount of time
while also elevating
the accuracy rate.

Lack of
diversity in the
population

MDPI

[130] wireless sensor
networks

Reducing energy
consumption and
optimal clustering

The population
in the problem
space is not
coherent.

IEEE

[131] flow shop
scheduling

Efficient allocation
of tasks to resources
while minimizing
energy usage.

High execution
time

Tandfonline

[132] flow shop
scheduling

Optimal assignment
of tasks to resources
and reduction of
energy
consumption.

High execution
time

IEEE

[133] Optimization
problems

Speeding up
convergence and
finding the best
value for
polynomial
mathematical
functions

Slow
convergence
rate

Springer

Table 4 (continued )

Refs Application Advantages Weaknesses Publisher

[134] Optimization
problems

Maintaining
equilibrium
between the
exploration of new
possibilities and the
exploitation of
known strategies to
discover the optimal
value for complex
mathematical
functions with
multiple variables.

The number of
repetitions is
high.

Springer

[135] Optimization
problems

Balancing
exploration and
exploitation phases
and finding the best
value for
multivariate
mathematical
functions

High execution
time

Springer

[136] Optimization
problems

Accelerating the
convergence
process and
identifying the
optimal value for
polynomial
mathematical
functions.

Lack of
diversity in the
population

Springer

[137] Optimization
problems

Striking a balance
between the phases
of exploration and
exploitation to
identify the optimal
value for
multivariate
mathematical
functions.

The population
in the problem
space is not
coherent.

IEEE

[138] radio
environment
map

Finding the optimal
answer at the
optimal time

High execution
time

IEEE

[139] Power
distribution
systems

Increasing the speed
of convergence

The number of
repetitions is
high.

IEEE

[140] Distributed
generation
(DG)

The GJO algorithm
is used to find the
ideal location and
sizing of DGs.

Lack of
diversity in the
population

IEEE
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loop of the PID controller offers optimal disturbance rejection. However,
traditional optimization methods for tuning PID gains, such as the
Ziegler-Nichols method, often fall short of achieving satisfactory out-
comes. To address this, the GJO algorithm was proposed as a method to
optimize parameter selection for the three degrees of freedom (3DOF)
robotic manipulator system [124]. Beyond robotic manipulators, the
GJO algorithm has been successfully applied to optimize parameters in
various engineering designs showcasing its versatility and effectiveness
in a broad spectrum of engineering optimization problems.

Liver image segmentation encompasses a variety of challenges such
as segmenting the liver itself, the bile ducts, estimating liver volume,
segmenting vessels, and identifying lesions [116]. Due to the complexity
of these tasks, enhancing the accuracy of liver segmentation requires
considerable effort. While deep learning-based approaches are currently
the most prevalent for image segmentation, their limitations are
well-recognized. These include a reliance on large volumes of data, slow
training speeds, and intricate architectures, all of which require careful
consideration and balancing by researchers. On the other hand,
threshold-based image segmentation methods are widely favored for
their stability, simplicity, ease of implementation, and ability to produce
accurate segmentation results. This method provides a quick and
straightforward way to extract precise image data, fulfilling critical
needs such as speed, accuracy, and minimal storage requirements. Ac-
curate segmentation of liver conditions from CT scans is crucial for early
diagnosis and determining the appropriate treatment, especially within
computer-aided diagnosis (CAD) systems. To overcome the issues of
inconsistent liver visibility and indistinct boundaries in imaging, the
GJO algorithm has been proposed as a novel solution.

5. Convergence behavior analysis

This section performs a general analysis based on convergence on
different algorithms. The GJO algorithm is compared with three other
algorithms regarding convergence and complexity. The Elk Herd Opti-
mizer (EHO) [141] algorithm features strong convergence and scal-
ability in optimization problems. Convergence analysis is performed
with various test functions from CEC-2017. The convergence behavior of
EHO is compared with several other optimization methods. The results
show that EHO converges quickly in the early stages of the search pro-
cess and maintains stability. The complexity of the EHO algorithm de-
pends on the number of iterations and the size of the problem search
space. In particular, the complexity increases with the problem dimen-
sion, because higher dimensions require more iterations to explore a
more extensive search space. The EHO algorithm maintains competitive
performance due to its effective balance between exploration and
exploitation. Therefore, EHO is a strong choice for solving complex
engineering optimization tasks in the real world. In some situations, the
EHO algorithm may encounter difficulties in local exploration, espe-
cially when the optimization must achieve high accuracy in certain re-
gions of the search space. This problemmay lead to getting stuck in local
optima.

TheWhite Shark Optimizer (WSO) [142] algorithm is based on white
sharks’ behavior designed to solve optimization problems. This algo-
rithm generally has a high convergence ability and can move well to-
wards optimal solutions in the search space. The WSO algorithm uses
two stages of exploration and exploitation. This algorithm can search in
different regions of the search space and can effectively avoid local
optima. The convergence time of the algorithm depends on the number
of iterations and the population size. The convergence analysis of the
algorithm shows that it can reach optimal solutions with a reasonable
speed, especially when its parameters are set correctly. The time
complexity of the WSO algorithm depends on the number of sharks (n),
the dimensions of the search space (d), the number of iterations (K), and
the cost of evaluating the function. The time complexity of the entire
WSO algorithm is expressed according to Eq. (41).

O (WSO) = O (1+ nd+Kcn+Knd) (41)

This formula shows that the time complexity of WSO depends mainly
on the number of iterations and the problem dimension. This algorithm
generally has polynomial time complexity and is suitable for large-
dimensional problems. As a result, this algorithm is efficient in terms
of time complexity. Although WSO has good convergence and time
complexity performance, it also has some challenges. One of the main
problems of this algorithm is the need for fine-tuning of parameters,
which requires a lot of time. Also, the algorithm may encounter prob-
lems such as reduced population diversity and getting stuck in local
optima in very large-dimensional problems. These problems are espe-
cially observed in complex search spaces with a large number of
variables.

The Walrus Optimizer (WO) [143] algorithm is designed based on
the social behavior of walruses and is able to effectively guide the
exploration and exploitation phases of optimization problems. The
convergence analysis of this algorithm shows that the convergence
speed is very fast in the early stages and it performs well especially in
solving single-dimensional problems. Due to the combination of local
and global search phases, the WO algorithm effectively avoids
high-dimensional optimization problems and local optimums. The
convergence curves show that WO has the fastest convergence speed
compared to many other algorithms and has the ability to consistently
reach the best solutions compared to other algorithms. The time
complexity of the WO algorithm depends on three main processes:
initialization, objective function evaluation and updating of new posi-
tions. The overall time complexity of the algorithm is O(N × (T + T ×

D + 1)), where N is the population size, T is the number of iterations and
D is the problem dimensions. This complexity shows that the execution
time of the algorithm is directly dependent on the problem size and the
number of iterations. Although the WO algorithm generally avoids local
optima, in some problems it may not be able to avoid this state in the
exploitation phases.

The WO, WSO, and EHO optimization algorithms are powerful tools
for solving complex optimization problems. All three algorithms are
designed with a focus on the balance between exploration and exploi-
tation phases and have a remarkable ability to avoid getting stuck in
local optima and efficiently search the solution space. All three algo-
rithms have remarkable performance, but they have challenges such as
sensitivity to parameter tuning and increased computational complexity
in very high-dimensional problems. However, these algorithms are
flexible tools that can be adapted to appropriate settings for different
problems. Along with these three algorithms, the GJO is an efficient
algorithm for optimization problems, and there is a solution enhance-
ment in this algorithm based on combinatorial or adaptive methods.

6. Discussion

In the PSO algorithm, achieving a balance between the solution
quality and the computational time is a critical challenge. The fine-
tuning of parameters and managing various constraints add to the
complexity of using PSO effectively. Selecting the optimal values for
parameters is a tricky process that significantly impacts the results’
quality. A persistent issue with PSO is the difficulty in distinguishing
whether the obtained solution represents a local or a global optimum.
Moreover, PSO is known to struggle with local optima stagnation,
leading to a slower convergence rate toward the optimal solution. In
contrast, the GJO algorithm exhibits remarkable capabilities in both
exploitation and exploration. This feature enables the algorithm to guide
search agents more efficiently towards the global optimum, reducing the
required computational time. The GJO algorithm has demonstrated
promising results across various engineering problems. The effective-
ness of GJO has been rigorously evaluated using multi-modal test
functions and in the context of structural optimization challenges. Multi-
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modal functions, characterized by their numerous local optima, serve as
a robust testbed for assessing an algorithm’s ability to navigate the
search space effectively and to circumvent local optima. GJO has
consistently emerged as either the most efficient or the second-best al-
gorithm in these tests, showcasing its superior performance in most
multi-modal test scenarios. To overcome possible errors in the GJO al-
gorithm, the following solutions and suggestions can be considered:
Choosing fixed steps in GJOmay create instability in some problems and
cause large or small jumps in the convergence path. To overcome this
problem, the correction steps should be adjusted dynamically. Adaptive
step approaches can change the step size dynamically and according to
the current state of the algorithm. The GJO algorithm may struggle in
complex or nonlinear environments and cannot achieve the global op-
timum effectively. Using grouping techniques such as adaptive clus-
tering algorithms can effectively improve the search in such
environments.

MH algorithms often encounter performance limitations and critical
challenges when tackling complex problems. They may become
ensnared in local optima, which impedes global optimization, especially
in scenarios characterized by high-dimensional spaces and complex
inter-variable relationships. [144]. Furthermore, suboptimal parameter
configurations can significantly impair the algorithms’ convergence
rates, especially as problem complexity escalates, leading to diminished
scalability. Strategies focused on algorithm enhancement and hybridi-
zation have been developed to overcome these hurdles. Hybrid meth-
odologies meld various techniques to strike a balance between
exploration (searching through the entire solution space) and exploita-
tion (refining solutions within promising regions) [145]. On the other
hand, adaptive strategies aim to automate the parameter adjustment
process, thereby improving the algorithms’ adaptability to different
problems. These innovations enhance the efficiency, effectiveness, and
robustness of MH algorithms by leveraging the strengths of diverse ap-
proaches. The introduction of novel algorithms with unique exploration
and exploitation mechanisms further expands the capabilities of MH
methodologies. Integrating the inherent advantages of the GJO algo-
rithm with other algorithms results in a more effective exploration of the
search space and enhanced fine-tuning of potential solutions. This
amalgamation extends the optimization capabilities and fosters the
development of adaptable and robust algorithms capable of addressing
complex optimization challenges with increased proficiency.

The Sine Cosine Algorithm-GJO (SCA-GJO) [63] hybrid demon-
strates exceptional robustness and stability, efficiently toggling between
exploration and exploitation phases to prevent search stagnation and
secure the optimal solution. Experimental findings reveal that SCA-GJO
maintains remarkable stability and resilience in attaining precise,
feasible solutions and effectively marries the aspects of exploration and
exploitation. This synergy enhances the convergence rate and compu-
tational accuracy, rendering SCA-GJO a viable and practical approach
for optimization tasks.

Optimization is a widespreadmathematical challenge to find the best
possible solution from a large set of feasible options while adhering to
certain restrictions. Traditional optimization methods often struggle
with complex, large-scale, and combinatorial problems, leading to issues
like inefficient computing, excessive time consumption, premature
convergence, and combinatorial explosion [146]. In contrast, evolu-
tionary algorithms, inspired by the behavioral traits of various biological
entities in nature, exhibit significant stability and robustness, effectively
mitigating these issues. They adeptly balance the processes of explora-
tion (searching through the solution space) and exploitation (refining
promising solutions) to pinpoint the optimal solution. The GJO algo-
rithm stands out for its simple structure, minimal parameter re-
quirements, robustness, high computational precision, quick
convergence, and ease of application, making it a popular choice across
various fields.

When addressing optimization challenges, the GJO algorithm offers
multiple advantages over contemporary optimization techniques like

PSO, Tabu Search (TS), and ABC. GJO stands out for its computational
efficiency and rapid convergence rates, effectively facilitating the dis-
covery of superior solutions to optimization issues. It is known for
maintaining various solutions, enhancing the algorithm’s ability to
explore the solution space thoroughly. Unlike some methods that rely
heavily on memory mechanisms, GJO’s more flexible approach avoids
local optima traps. Its robustness makes it suitable for many problems,
including those with complex nonlinear constraints and objective
functions, thus expediting the optimization process. Furthermore, GJO
is adept at MOO, efficiently handling scenarios with multiple, often
conflicting, objectives that need to be optimized concurrently.

The Sine Cosine GJO (SCGJO) [63] algorithm consists of three main
steps: initialization of the population, evaluation of the objective value,
and updating the positions of the golden jackal agents based on explo-
ration and exploitation mechanisms. In the context of SCGJO, N repre-
sents the size of the population, T stands for the maximum number of
iterations, and D indicates the problem’s dimensionality. The compu-
tational effort required for initializing the population is represented as O
(N), signifying that it scales linearly with the size of the population. The
process of evaluating the objective value and updating the positions of
the golden jackals involves a computational complexity of O(T×N) for
each iteration, plus an additional O(T×N×D) for updating each agent’s
position across all dimensions and iterations. SCGJO is distinguished by
its adaptability and reliability, effectively leveraging the synergies be-
tween exploration and exploitation to enhance convergence precision. It
also successfully addresses the issue of search stagnation, guiding the
algorithm towards the optimal solution. Consequently, the total
computational complexity of SCGJO can be summarized as O(N × (T +

T × D + 1)), showcasing SCGJO as an efficient and dependable method
for tackling optimization challenges.

The complexity of the GJO-GWO [64] algorithm is primarily deter-
mined by three principal activities: initialization, fitness evaluation, and
individual updating. The initialization phase of GJO-GWO involves
setting up both jackal and wolf populations, leading to an initialization
complexity of O(2N), considering both sub-processes. Male and female
jackals and wolves are updated based on different constraint conditions
during the updating phase. The updating complexity for both male and
female jackals is O(T × N) for the iterations, plus O(T×N×d) for
adjusting each individual’s position across all dimensions. Similarly, the
update process for wolves also incurs a complexity of O(T × N × d).
Therefore, the cumulative complexity of updating individuals within the
GJO-GWO algorithm is O(T × N) + O(T × N × d) + O(T × N × d).
Consequently, the overall computational complexity of the GJO-GWO
algorithm can be expressed as O(N(T + 2Td + 2)), where N is the
population size, T is the maximum iteration count, and d represents the
problem’s dimensionality. This formulation captures the algorithm’s
combined complexities of initialization, fitness evaluation, and indi-
vidual updating processes.

In multi-dimensional optimization challenges, updating a single
dimension within a solution can be adversely affected by the in-
teractions with other dimensions, leading to slower convergence rates
and less precise optimization outcomes [69]. To address this issue of
inter-dimensional interference, a strategy known as the
dimension-by-dimension reverse learning approach is suggested. This
technique involves applying reverse learning to each dimension of the
candidate solution sequentially after every update. During this reverse
learning process, the dimension currently under consideration is modi-
fied, forming a new potential solution along with the unchanged di-
mensions. The fitness value of this new solution is then calculated and
compared with the fitness value before the reverse learning. If the new
fitness value shows improvement, the updated candidate solution is
kept; otherwise, it is discarded in favor of the original solution before the
reverse learning. By adopting this elitist strategy of selectively retaining
only those updates that result in a fitness improvement, the algorithm
sequentially progresses through each dimension, updating them one at a
time. This method effectively reduces the negative impact of
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inter-dimensional interference, leading to enhanced accuracy in the al-
gorithm’s output.

The standard GJO algorithm begins with a randomly initialized
population lacking any prior information [92]. This approach can lead
to a lack of diversity within the initial golden jackal population,
potentially hindering the algorithm’s ability to explore the search space
effectively. The quality of the initial population is crucial for the algo-
rithm’s overall performance in navigating the optimization landscape,
with a well-diversified initial population being advantageous for global
search efforts. This method significantly improves the convergence ac-
curacy and speed of the GJO algorithm, making it more efficient and
effective in finding optimal solutions.

Fig. 23 shows the percentage of GJO methods based on four different
areas.

Table 5 shows the general advantages and disadvantages of the GJO
algorithm.

Table 6 summarizes different versions of the GJO algorithm based on
various factors.

MH algorithms are characterized by two fundamental phases:
exploration and exploitation. Exploration involves scanning the entire
search space, highlighting the algorithm’s ability to conduct a global
search and discover diverse potential solutions. Conversely, exploitation
focuses on refining the search around promising solutions to identify
local optima [147]. A common observation in optimization algorithms is
a trade-off between these two phases. An algorithm with strong explo-
ration capabilities may struggle with efficient exploitation, while an
algorithm proficient in exploitation may not explore the search space as
thoroughly. Historically, techniques such as random walks were
employed to enhance exploration, allowing the algorithm to traverse
various regions of the search space. Gradient descent methods were
utilized to improve exploitation by methodically navigating toward the
optimum solution within a local area. To overcome the limitations of
these methods and reduce the overall computational burden, re-
searchers are now integrating chaotic maps into MH algorithms. Chaotic
maps are known for their unpredictable yet deterministic nature, which
can significantly enhance the diversification and depth of search within
global and local contexts [148]. This integration aims to strike a better
balance between exploration and exploitation, facilitating the discovery

of optimal solutions without excessively increasing computational costs.
The GJO algorithm typically starts with a randomly generated initial

population, which may not ensure optimal diversity or a logical distri-
bution within the search space. This lack of strategic initialization can
affect the algorithm’s efficiency and effectiveness in finding optimal
solutions. To enhance the optimization process, chaotic sequences,
known for their randomness, ergodicity, and sensitivity to initial con-
ditions, are employed to improve the exploration of the search space
[67]. Among the various chaotic maps available, the Tent map is
particularly favored for its straightforward design and proficiency in
producing uniformly distributed outcomes. Its excellent ergodicity en-
sures that initial solutions are spread uniformly across the solution
space, allowing for a more exhaustive search space exploration.

Fig. 23. Percentage of GJO methods based on four different areas.

Table 5
Advantages and disadvantages of the GJO algorithm.

Factors Criteria

Advantages ✓ The GJO algorithm is straightforward, adaptable, and easy to
execute.

✓ Excellent performance for optimization problems
✓ The GJO algorithm addresses many optimization challenges in

real-world scenarios.
✓ The GJO algorithm is suitable for enhancing solution quality

and speeding up the convergence process.
✓ The GJO algorithm maintains an equilibrium between its

exploratory and exploitative functions.
✓ Low computational time
✓ GJO with sustainable diversity in the population avoids getting

stuck in local optima too early. Furthermore, monitoring
convergence metrics and adjusting optimization parameters
can help improve the algorithm’s overall convergence
behavior.

✓ Achieving high-quality outcomes efficiently within a shorter
computational timeframe.

✓ Diversity of the population
✓ Maintaining equilibrium between local and global search

efforts.
✓ The GJO algorithm is strong for solving other combinatorial

optimization problems.
Disadvantages ✓ Incomplete exploitation in the solution of complex problems

✓ GJO does not guarantee to find the global optimal solution
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Integrating the Tent map with the GJO algorithm enhances the initial
population’s quality, improving convergence accuracy and overall
optimization performance by ensuring a more systematic and compre-
hensive search.

Like many optimization algorithms, GJO seeks to minimize (or
maximize) a specific objective function. The objective function repre-
sents a model or system behavior used to reduce costs and maximize
efficiency. One of the main strengths of the GJO algorithm is its ability to
handle nonlinear systems and constraints. The GJO algorithm is
designed for systems where the relationships between variables are not
perfectly linear or cannot be easily handled by linear programming.

The OBL method increases the algorithm’s convergence speed and
accuracy by examining the search space’s opposite points and bypassing

local optima. However, it increases the computational overhead, espe-
cially in large search spaces. The main reason for using OBL is its ability
to improve the performance of the GJO algorithm in complex problems.
The Deep Learning method allows the GJO algorithm to process complex
and nonlinear data. Its main advantage is increased accuracy and effi-
ciency in time-consuming issues, but it requires high computational
resources and complex settings. The Machine Learning method predicts
the algorithm’s behavior and optimally adjusts parameters. Its advan-
tage is high flexibility and adaptability to diverse data. The reason for
using this method is to increase the algorithm’s accuracy when faced
with different data. The Adaptive Strategymethod improves the stability
and speed of the GJO algorithm by dynamically and adaptively adjust-
ing its parameters. This method is effective by adapting important pa-
rameters to changes in the search space.

This paper’s potential limitations and biases are as follows: 1) In
some optimization problems, the choice of initial conditions signifi-
cantly affects the performance of the GJO algorithm. In this study, the
initial settings may have been chosen to give the best performance to the
GJO algorithm. Still, in the real world, these conditions may vary, and
the performance of the GJO algorithm under different initial conditions
should be investigated. 2) In the studies conducted by GJO, the effect of
interactions between different parameters and problem characteristics
has not been comprehensively investigated. In many optimization
problems, complex interactions between input parameters and optimi-
zation objectives may affect the performance of the GJO algorithm.
These interactions may reduce the accuracy of the GJO algorithm in
some scenarios. 3) The GJO algorithm has been compared with several
popular metaheuristic techniques. Still, the variety of benchmark func-
tions and application scenarios may not fully reflect the wide range of
challenges in real-world scenarios. 4) In some optimization problems,
especially in situations where the data is noisy or uncertain, the GJO
algorithm should have the ability to withstand changes and be more
stable. In these studies, insufficient attention has been paid to issues
such as the robustness of results to data changes or unstable
environments.

7. Conclusion and future works

MH algorithms are potent and effective for solving optimization
problems in a reasonable amount of time. Metaheuristic algorithms aim
to generate optimal and practical solutions to challenging optimization
problems in the real world. In this paper, a comprehensive review of the
GJO algorithm and its applications in engineering sciences and complex
issues was done. The search procedures were carried out systematically
through search engines and reliable databases such as Google Scholar,
IEEE, Elsevier, Springer, MDPI, Tandfonline, etc. The advantages, limi-
tations, and challenges of the GJO algorithm were investigated in
various practical problems. The GJO algorithm was analyzed in hybrid,
improved, binary, multi-objective, and optimization domains. Accord-
ing to studies, GJO has been successfully used to solve a wide range of
optimization problems in engineering science, including continuous
functions, image processing, power and transmission networks, param-
eter tuning, feature selection, clustering, classification, scheduling, etc.
The results showed that the improved domain for machine learning and
deep learning algorithms used the GJO algorithm to solve optimization
problems. The GJO algorithm has been used to solve complex problems
by exploiting the balance between exploration and exploitation. Of
course, in some cases, strategies such as opposition-based learning,
weighted methods, and sine and cosine functions have been used to
solve the problem of getting stuck in the local optimum and fast
convergence.

The studies showed that this algorithm performs optimally in solving
complex problems, especially in areas that require a balance between
exploration and exploitation. For example, in machine learning prob-
lems, GJO tuned parameters and improved prediction accuracy. Also, in
deep learning, using GJO to tune hyperparameters has led to increased

Table 6
A summary of different versions of the GJO algorithm based on various factors.

GJO versions Features Applications

Hybrid GJO hybrid models can optimize
search in complex spaces by utilizing
extensive exploration.

• Image segmentation
• Robot path planning
• Feature selection
• Proportional integral
derivative (PID)

• Bone metastasis
detection

• Global optimization
problems

• Proton exchange
membrane fuel cell

Improved Improved GJO models focus on
reducing the weaknesses of the
original version, using features such
as dynamic and adaptive step
adjustment and methods resistant to
getting stuck in local optima to
increase the accuracy and speed of
convergence.

• Solving engineering
optimization problems

• Fault diagnosis
• Identification of
abnormal user behavior

• Optimal allocation and
scheduling

• Wind power generation
• Traffic data prediction
• Intrusion detection
• Road Traffic Safety
• Industrial Internet of
Things Systems

• Crude oil futures prices
• Water quality prediction
• Network security
• Clustering
• Crime detection
• Image segmentation
• Electric Vehicles
• Dissolved Gas Analysis
(DGA)

• Global optimization and
engineering problems

• Optimization-based 3D
path planning

Binary These methods define the search
space based on bits, and binary
vectors are defined instead of
continuous values.

• Feature selection

Multi-
objective

Multi-objective methods seek
solutions where none is superior to
the other in all objectives.

• Voltage stability
• Wind power prediction
• Microgrid energy
management

• Multi-objective
engineering problems

• Magnetic levitation
system

Optimization Focus on optimizing a specific metric
(such as minimizing cost or
maximizing profit).

• Optimization problems
• Load dispatch and
power flow

• Voltage fluctuations
• Image segmentation
• Renewable energy
• Wireless sensor
networks

• Flow shop scheduling
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efficiency of neural networks. However, some research gaps were also
observed. Firstly, the algorithm’s performance on high-dimensional
problems or accurate data has not been thoroughly investigated. Sec-
ondly, investigating the impact of noise or unbalanced data on algorithm
performance in machine learning and deep learning applications can
have a negative effect. Future research directions to overcome the lim-
itations and improve the GJO algorithm are as follows: Developing al-
gorithms and approaches that can make optimization problems more
optimal and reduce time and processing costs. Tuning parameters to
increase the stability of results and reduce errors in real applications that
are more complex. Applying the GJO algorithm to optimization prob-
lems such as interference detection in mobile networks, drought pre-
diction, automated aircraft management, and stock forecasting.
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