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A B S T R A C T

Parameter identification for a proton exchange membrane fuel cell (PEMFC) entails employing optimisation
techniques to discover the best unknown parameter values required to generate an accurate fuel cell performance
prediction model. This technique, known as parameter identification, is important since manufacturers’ data-
sheets do not usually disclose these values. To address this, the manuscript examines five optimisation strategies,
including the suggested algorithm, Enhanced Tunicate Swarm Optimizer (ETSO), for predicting these parameters
in PEMFCs. Each technique uses the six unknown parameters as decision variables, aiming to reduce the sum
squared error (SSE) between anticipated and observed cell voltages. The data reveal that the suggested strategy
outperforms existing approaches and cutting-edge optimizers. The two models are used to assess the depend-
ability and performance of the PEMFC. The results are also compared to the non-parametric tests, and it is found
that the suggested method outperforms the other algorithms in both suggested models.

1. Introduction

The future of energy distribution is increasingly focused on DC
microgrids, thanks to their efficiency and stability. This shift is driven by
the growing use of DC sources like renewable energy, battery storage,
and fuel cells (FCs) in these microgrids (Hachana, 2022; El-Sharkh et al.,
2006). Among these sources, FCs are particularly important. A key
advancement is the integration of hydrogen and solar energy to create a
reliable and eco-friendly storage system known as hydrogen energy.
Hydrogen is abundant, existing in fossil fuels, water, and even microbes
(Kirubakaran et al., 2009; Akinyele et al., 2020). However, despite its
prevalence, free hydrogen gas is rarely found in large quantities natu-
rally. The potential of hydrogen energy has sparked significant global
interest. FCs are electrochemical devices that directly convert hydro-
gen’s chemical energy into electricity. Their growing popularity in

transportation, portable devices, and stationary applications is a testa-
ment to their benefits: high efficiency, quiet operation, and impressive
power and energy densities. Various types of FCs exist (Mitra et al.,
2023a), including microbial fuel cells, phosphoric acid fuel cells, and
solid oxide FCs. However, Proton Exchange Membrane Fuel Cells
(PEMFCs) stand out due to their advanced technology and widespread
use. While PEMFCs offer a compelling solution, their high cost neces-
sitates a closer look at their operational conditions. Mathematical
modeling is crucial for optimizing PEMFC performance and reducing
costs through improved modeling techniques. PEMFCs are complex
systems influenced by multiple factors, exhibiting dynamic and
non-linear behavior. Their operation is governed by a combination of
ordinary and/or partial differential equations (Mitra et al., 2023b; Fathy
et al., 2022; Wu et al., 2021).

Accurately modelling Proton Exchange Membrane Fuel Cells
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(PEMFCs) is key to unlocking their inner workings. These models not
only save time and effort but also optimize how fuel cells operate. A vital
part of PEMFC modelling is the polarization curve. It shows the rela-
tionship between voltage output and current, essentially summarizing
how the fuel cell behaves under various conditions (Shaheen et al.,
2023; Wang, 2018). Despite ongoing research on creating accurate
models for extracting PEMFC parameters, challenges remain. Manu-
facturer datasheets often lack sufficient information, leading to dis-
crepancies between predicted and actual data (Rezk et al., 2022;
Razmjooy, 2023). Estimating these parameters is a dynamic process,
with the best solution found through specialized methods. Traditional
optimization algorithms struggle with the non-linear nature of PEMFCs,
resulting in lower accuracy and precision. Metaheuristic algorithms, in
contrast, start with an initial guess and can converge towards a globally
optimal solution, effectively tackling complex optimization problems
(Yadav et al., 2024; Pandey et al., 2024; El-Fergany et al., 2019; Zaki
Diab et al., 2020). Their adaptability allows them to handle the com-
plexities of PEMFC parameter estimation. Researchers have developed a
model using these algorithms to achieve high accuracy and efficiency.
This model acts as a foundation for designing and integrating fuel cells,
while also providing insights into the underlying physical phenomena.
However, current PEMFC electrochemical models rely heavily on
experimental data and empirical formulas. This highlights the need for
more versatile modelling approaches that can accurately represent the
dynamic nature of fuel cell operation (El-Fergany, 2018; Chen and
Wang, 2019; Jia et al., 2009).

Modern advancements in optimization techniques are leading to
more accurate and efficient PEMFC models. Researchers are increasingly
using metaheuristic algorithms, which are powerful tools for finding
good solutions to complex problems, to estimate the unknown param-
eters within these models (Zhang et al., 2023; Singla et al., 2021; Li
et al., 2020). These algorithms offer significant advantages over tradi-
tional methods like genetic algorithms (GA) and particle swarm opti-
mization (PSO) (Kandidayeni et al., 2019; Pratap Chandran et al., 2021;
Holland, 1992; Shi and Eberhart, 1998). Traditional methods can be
slow and struggle to find the absolute best solution, especially when
starting conditions are unpredictable. A wide variety of metaheuristic
algorithms have been applied to PEMFC parameter estimation. This
includes bio-inspired algorithms like the shark smell algorithm, coyote
optimization algorithm, and beluga whale optimization algorithm
(Mohammad-Azari et al., 2018; Yuan et al., 2020; Premkumar et al.,
2024a, 2024b; Mirjalili et al., 2014a; Mirjalili and Lewis, 2016). Other
successful algorithms include the grey wolf optimizer, whale optimiza-
tion algorithm, grasshopper optimization algorithm, moth flame opti-
mizer, bald eagle search optimizer, and many more (Mirjalili and Lewis,
2016; Premkumar et al., 2024b; Meraihi et al., 2021a; Mirjalili, 2015;
Alsaidan et al., 2022; Das and Pratihar, 2019; Sowmya et al., 2024;
Chopra and Ansari, 2022; Hayyolalam and Pourhaji Kazem, 2020;
Yousri et al., 2020). Researchers are constantly developing and

improving these algorithms. Some studies combine multiple ap-
proaches, such as teaching-learning-based optimization with differential
evolution (Abdel-Basset et al., 2023; Abdullah et al., 2021). Others focus
on improving existing algorithms, like the work on enhanced differential
evolution with better search efficiency (Singla et al., 2023). Even ma-
chine learning techniques are being explored. Some studies use a
Bayesian regularized neural network alongside optimization algorithms
for parameter estimation (Yang et al., 2020, 2021).

This continuous development in optimization techniques un-
derscores the growing importance of optimizing PEMFC performance for
real-world applications. From the literature survey, it is observed that
world researchers are working on achieving the optimal optimization
technique as well as algorithm in order to decreases the error and as well
as small step towards increasing efficiency. It can also be deduced from
the literature analysis that the researchers are keen in simplifying the
algorithm to reduce the complexity as well as sufficient decrease in
computational time. The key contributions of this work are:

• Tunicate Swarm Optimizer (ETSO) is enhanced to make it better at
finding unknown settings (parameters) within PEMFC fuel cell stacks
used in real-life situations.

• Validating the effectiveness of the ETSO on real-world PEMFC units
by applying it to two specific models: Ballard Mark V and AVISTA SR-
12.

• To demonstrate the superiority of the ETSO, it will be compared to
established methods like Particle Swarm Optimizer (PSO), Grass-
hopper Optimization Algorithm (GOA), Political Optimizer (PO),
Grey Wolf Optimizer (GWO), Tunicate Swarm Optimizer (TSO), and
parental algorithm (ETSO).

• Ten Benchmark test function is also tested to verify the algorithm.

2. PEMFCs’ modelling and problem formulation

PEMFC modeling uses mathematical equations and computer simu-
lations to understand the chemical and electrical processes within the
fuel cell. The PEMFC schematic representation is shown in Fig. 1.

PEMFCs experience voltage drops due to several factors:

• Activation losses: When the fuel cell starts operating (low load), slow
initial reactions cause a rapid voltage drop.

• Ohmic losses: As the current increases, resistance to the flow of
protons and electrons leads to a gradual voltage decline.

• Concentration losses: High power demands (heavy load) cause water
buildup, reducing reactant concentration and leading to a significant
voltage drop.

These voltage drops, collectively contributing to the overall voltage
loss in the fuel cell, significantly impact the performance and efficiency
of the system. Therefore, it is crucial to understand and minimize these
voltage losses to enhance the performance of PEMFCs. Scientists and
engineers employ various techniques to achieve this goal, such as
catalyst development, improvements in flow field designs, and en-
hancements in reactant gas management.

Accordingly, Eq. 1 may be used to represent the PEMFC terminal
voltage:

VFC = ENernest − vact − vohm − vconc (1)

For temperatures that operate below 100 ◦C, the reversible open-
circuit voltage is represented by ENernest, which may be computed from
Eq. 2.

ENernest = 1.229 − 8.5 × 10− 4 × (TFC − 298.15)+4.3085 × 10− 5 × TFC
× ln

(
PH2

̅̅̅̅̅̅̅
PO2

√ )

(2)

where TFC is the cell temperature (K) and PH2 and PO2 denote the partial

Fig. 1. Schematic representation of PEMFC.
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pressures of H2 and O2, correspondingly.
According to Eq. 3, the activation voltage loss (vact) is approximated.

vact = −
[
ξ1 +(ξ2 × TFC)+ (ξ3 × TFC × ln(CO2 ))+

(
ξ4 × TFC × ln

(
Ifc
))]

(3)

Where the FC current is defined as IFC, and make use of the coefficients ξ1
to ξ4. CO2 and CH2 and indicate the oxygen concentration (mol/cm3),
which has the following definitions as shown in Eq. 4 and Eq. 5:

CO2 =
PO2

5.08 × 106 × exp

(
498
TFC

)

(4)

CH2 =
PH2

1.09 × 106 × exp

(
− 77
TFC

)

(5)

The vohm is defined as follows and is calculated using the FC’s
equivalent resistance as shown in Eq. 6:

vohm = IFC × (Rm +Rc) (6)

Where Rm and Rc stand for the membrane resistance and the contact
resistance, accordingly. Eq. 7 and Eq. 8 can be used to determine the Rm.

Rm =
ρm × l
MA

(7)

ρm =
181.6 ×

[
1 + 0.03 × J+ 0.062 × J2.5 × (TFC/303)2

]

[λ − 0.634 − 3 × J] × exp(4.18×(TFC − 303)/Tfc)
(8)

Where ρm, l, Am, J and λ indicate, accordingly, the membrane’s re-
sistivity (Ω.cm), membrane thickness (cm), active area of the cell (cm2),
real current density (A/cm2), and membrane water content.

The formula Eq. 9 can be utilized for estimating the vconc.

vconc = − β × ln(1 − J/Jmax) (9)

Where β indicates the maximum current density (A/cm2) and Jmax sig-
nifies a constant coefficient.

The PEMFC stack is often made up of a series of cells (Ncells), and the
stack voltage is determined (Vstack) as shown in Eq. 10:

Vstack = Ncells × VFC = Ncells × (ENernest − vact − vohm − vconc) (10)

By using the previously described equation while assuming that all of
the cells behave uniformly and that the resistors that link them are
disregarded.

Seven unknown variables (ξ1 to ξ4, λ, and β) need to be determined
to fully define the mathematical model based on electrochemistry. An
iterative process involving refinement, optimization, and validation is
used to estimate these parameters in Mann’s model (Kaur et al., 2020).
To achieve accurate and dependable parameter values that reflect
real-world PEMFC behavior, a combination of experimental data, com-
puter modeling, and optimization techniques is crucial. This applies not
only to Mann’s model but also to any mathematical model. In essence,
parameter optimization aims to find the values that minimize the gap
between the model’s predictions and actual experimental results.

2.1. Problem formulation

This paper proposes a method to improve the accuracy of a PEMFC
model by aligning its predicted output voltage with real-world mea-
surements. The model uses mathematical formulas and known param-
eters to predict the voltage for any given current density. To achieve
better alignment, a proposed algorithm is employed. The effectiveness of
this approach is evaluated by comparing the predicted voltage with
measured voltage data using the Sum of Squared Error (SSE) metric. Eq.
11 details the objective function used in this evaluation.

SSE = MIN

(

F =
∑N

i=1
(Vactual − Vi)

2

)

(11)

Where, actual experiment voltage is denoted by Vactual, computed model
voltage is denoted by Vi, and N is denoted as the number of data points.

3. Proposed algorithm

3.1. Tunicate Swarm Optimization (TSO): A bio-inspired approach

This section introduces Tunicate Swarm Optimization (TSO), a
nature-inspired technique for solving optimization problems
(Gharehchopogh, 2022; Wang et al., 2018). TSO draws inspiration from
the behavior of tunicates, marine animals known for their efficient food
searching strategies.

Tunicates exhibit two key behaviors during food discovery:

• Jet Propulsion (JP): This behavior helps individual tunicates avoid
crowding and move towards areas with potentially better food
sources. Mathematically modeled equations ensure these movements
minimize congestion and propel individuals towards promising
locations.

• Swarm Intelligence (SI): Here, the entire group collectively adjusts
the positions of individual members based on the location of the best
food source found so far. Specific formulas govern how these ad-
justments occur, guiding the swarm towards the optimal solution.
The following section will delve deeper into the mathematical for-
mulas that model these behaviors in detail.

3.1.1. Preventing crowding during search
The Tunicate Swarm Optimization (TSO) algorithm uses a specific

vector T→ to calculate the new position of each search element. This
vector plays a crucial role in preventing overcrowding among search
elements during the optimization process.

T→=
Gh
̅→

G→o

(12)

Gh
̅→

= l2 + l3 − g→ (13)

g→= 2l1 (14)

The movement of search elements in Tunicate Swarm Optimization
(TSO) is influenced by several factors:

• Horizontal water flow ( g→): This term simulates the effect of currents
on the movement of individual search elements.

• Randomness (l1, l2, l3): These random values between zero and one
introduce an element of chance, preventing the swarm from getting
stuck in suboptimal solutions.

• Gravity (Gh
̅→, G→o): This term accounts for the gravitational pull

acting on the search elements within the underwater environment.
• Interaction forces (Eq. 1): This component, defined in detail by Eq.

(4), captures the attractive or repulsive forces between search ele-
ments. These forces guide the swarm towards promising areas and
prevent crowding.

Go
̅→

= |l1Qi +Qm − Qm| (15)

Here, Qi =4 and Qm = 1 illustrate the highest and lowest velocities
for providing interactions.

3.1.2. Following the path of the nearest neighbor
In Tunicate Swarm Optimization (TSO), when the crowding among

M.K. Singla et al.
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search elements is minimized, the movement of each element is influ-
enced by the location of its best neighbor. This means individual ele-
ments tend to move closer to the element that has currently found the
most promising solution.

Em
̅→

=

⃒
⃒
⃒GT
̅→

− L× Qq(y)
̅̅̅→⃒⃒

⃒ (16)

In the above equation, y signifies the number of the current epoch,
and Em

̅→ illustrates the search individuals’ gap with the sources of food.

The food and tunicate situation are demonstrated by GT̅→ and Qq(y)
̅̅̅→

,

respectively, and L depicts a random amount from the interval of [0,1].

3.1.3. Convergence towards the best search candidate
Tunicate Swarm Optimization (TSO) leverages an "attraction

behavior" where each element strives to be closer to the "best" element in
the swarm. This behavior, akin to seeking the best food source, guides
the swarm towards optimal solutions.

Qq(y)
̅̅̅→

=

⎧
⎪⎨

⎪⎩

GT̅→+ T→• Em,
̅→

GT̅→ − T→• Em,
̅̅̅→L <

1
2

L ≥
1
2

(17)

Here Qq(y)
̅̅̅→

does represent the adjusted position of tunicate with re-

gard to the GT̅→.

3.1.4. Key aspects of swarm intelligence
Swarm Intelligence (SI) in Tunicate Swarm Optimization (TSO), the

algorithm keeps track of the two best solutions found so far (often
referred to as "epoch" in optimization problems). This information is
then used to adjust the positions of other search elements, guiding them
towards the locations of these top performers. This behavior can be
mathematically expressed as:

Qq( y→+ 1) =
1

l1 + 2

(
Qq( y→+1)+Qq(y)

̅̅̅→)
(18)

Fig. 2 illustrates how the position of a search element is adjusted

based on the best location found so far (represented by Qq(y)
̅̅̅→

). Initially,
the element occupies a random position within a cone-shaped or cylin-
drical area, determined by the current location of the tunicate.

Key Principles of TSO:

• Diversity: The random contributions of T→ and g→ within the search
space help prevent crowding and maintain a diverse pool of potential
solutions.

• Balance between Exploration and Exploitation: By adjusting the
vectors T→, g→, and Gh

̅→, TSO can strike a balance between exploring
new areas and exploiting promising regions, leading to better overall
performance.

• JP and SI: The combined behaviors of Jet Propulsion (JP) and Swarm
Intelligence (SI) enable TSO to effectively navigate the search space
and find optimal solutions.

3.2. Enhanced Tunicate Swarm Optimizer (ETSO)

Tunicate Swarm Optimization (TSO) is a powerful bio-inspired al-
gorithm used for various optimization problems. However, research
suggests that TSO can sometimes get stuck in suboptimal solutions (local
optima) that aren’t necessarily the best. This study addresses this limi-
tation by introducing modifications to improve TSO’s performance. The
key issue lies in striking a balance between exploration (searching new
areas) and exploitation (focusing on promising regions). To achieve this,
we introduce a concept called "search mode." This technique leverages
the core operators of TSO and combines them with a mutation operator
from another well-known algorithm, Differential Evolution (DE) (Sun
et al., 2021). TSO relies on two key components: exploration and
exploitation. If L < λ, the exploring phase shifts the position of the
predators. The term λ is achieved as follows:

λ = 1 −
ju
jumax

(19)

The "search mode" concept promotes thorough exploration in the
initial stages of the optimization process. As the algorithm progresses
(time goes on), it gradually shifts towards exploitation, focusing on
promising areas identified during exploration. This transition is facili-
tated by an "elitist" technique which prioritizes retaining the best

Fig. 2. Tunicate location vector.

Fig. 3. flow chart of ETSO.
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solutions found so far.
A crucial aspect is ensuring all solutions remain feasible, meaning

they adhere to the problem’s constraints. When a proposed adjustment
would cause a solution to fall outside these constraints (boundaries), the
algorithm implements a specific correction mechanism. This mechanism
involves:

Qq( y→+ 1)new =

{
δo + τ × (μo − δo)ifQq( y→)

new
< δo

μo − τ × (μo − δo)ifQq( y→)
new

< μo
(20)

where, τ defines a random amount varied from zero to one, δn and μn
denote, in turn, the inferior and the superior limits of the dimension n.

Table 1
Benchmark Test Function.

Name of Function Function Range Dimension

f1= Sphere f1(y) =
∑m

j=1yj2 [− 100,100] m=50
f2= Schwefel 2.22

f2(y) =
∑m

j=1

⃒
⃒
⃒yj
⃒
⃒
⃒ +

∏m

j=1

⃒
⃒
⃒yj
⃒
⃒
⃒

[− 10,10] m=50

f3= Schwefel 1.2
f3(y) =

∑m
j=1

(
∑j

i=1yi

)2 [− 100,100] m=50

f4= Schwefel 2.21 f4(y) = maxj
{⃒
⃒
⃒yj
⃒
⃒
⃒, 1 ≤ j ≤ m

}
[− 100,100] m=50

f5= Rosen-brock f5(y) =
∑m

j=1100
(
yj + 1 − yj2

)2
+
(
yj − 1

)2 [− 30,30] m=50

f6= Step f6(y) =
∑m

j=1

([
yj + 0.5

] )2 [− 100,100] m=50

f7= Quartic f7(y) =
∑m

j=1jyj
4 + randm[0,1] [− 128,128] m=50

f8= Schwefel
f8(y) =

∑m
j=1 − yjSin

( ⃒̅̅̅̅̅̅̅
⃒
⃒yj
⃒
⃒
⃒

√ ) [− 500,500] m=50

f9= Rastrigin f9(y) =
∑m

j=1

[
yj2 − 10Cos

(
2πyj

)
+10

]
[− 5.12,5.12] m=50

f10= Ackley
f10(y) = − 20exp

⎛

⎝ − 0.2

(
1
m
∑m

j=1
yj2
)Λ

0.5

⎞

⎠ − exp

(
1
m
∑m

j=1
Cos
(

2πyj
)
)

+ 20 + e
[− 32,32] m=50

Table 2
(a) Statistical Results of Benchmark Test Functions.

Algorithms f1 f2 f3 f4 f5

PSO MEAN 5.96E+00 1.76E+01 1.94E+04 2.96E+01 4.74E +04
SD 4.42E+00 3.26E+01 1.00E+04 1.67E+01 2.92E+04

GOA MEAN 2.24E− 03 2.86E− 15 4.44E+03 1.19E+02 1.91E+03
SD 7.57E− 04 3.35E− 15 4.27E+02 7.43E+01 1.95E+03

PO MEAN 4.77E− 23 2.69E− 30 4.34E− 21 2.10E− 01 1.99E+00
SD 3.08E− 23 1.38E− 30 3.35E− 21 4.84E− 01 7.19E− 01

GWO MEAN 3.76E− 60 4.03E− 50 3.47E− 35 3.73E− 21 2.12E+01
SD 2.03E− 60 2.29E− 50 2.56E− 35 2.26E− 21 1.30E+01

TSO MEAN 5.01E− 180 2.81E− 110 6.68E− 155 3.13E− 95 1.68E+01
SD 0 2.7E− 110 0 1.69E− 95 3.77E− 15

Proposed Algorithm MEAN 0 6.61E− 140 0 3.74E− 127 4.64E− 06
SD 0 3.3E− 140 0 0 2.40E− 06

(b) Statistical Results of Benchmark Test Functions
Algorithms f6 f7 f8 f9 f10

PSO MEAN 2.07E+01 4.34E− 03 − 4.23E+02 1.51E+02 1.27E+01
SD 1.07E+01 2.42E− 03 8.55E+01 1.10E+02 1.10E+01

GOA MEAN 3.37E− 03 4.69E− 04 − 3.85E+03 2.31E+02 2.17E+00
SD 1.86E− 03 2.44E− 04 6.24E+02 2.92E+02 1.55E+00

PO MEAN 5.30E− 05 4.93E− 05 − 2.95E+04 1.18E+02 5.21E− 15
SD 2.83E− 05 2.18E− 05 9.37E+03 1.55E+02 2.16E− 15

GWO MEAN 3.32E− 07 2.81E− 06 − 4.55E+03 2.65E+01 1.51E− 17
SD 2.72E− 07 1.95E− 06 2.38E+02 2.19E+00 0

TSO MEAN 3.09E− 10 4.70E− 08 − 3.73E+03 5.97E+00 8.88E− 20
SD 2.99E− 10 2.08E− 08 5.71E+02 7.31E− 03 1.27E− 35

Proposed Algorithm MEAN 3.06E− 40 4.70E− 10 − 1.36E+04 0 8.88E− 24
SD 1.44E− 40 2.62E− 10 6.07E− 02 0 1.55E− 39

Table 3
Parameter Search Range.

Parameter Lower bound Upper bound

ξ1 − 1.1997 − 0.08532
ξ2*10¡3 0.8 6.00
ξ3*10¡5 3.60 9.80
ξ4*10¡4 − 2.60 − 0.954
λ 10.00 24.00
RC*10¡4 1.00 8.00
b 0.0136 0.5

Table 4
Data sheet for the parameter estimation.

Model Ballard Mark V Avista SR-12

n 35 48
A [cm2] 50.6 62.5
l [um] 178 25
Jmax [A/cm2] 1.5 0.672
PH2 [bar] 1 1.47628
PO2 [bar] 1 0.2095
Power [W] 1000 500
T [K] 343.15 323.15

M.K. Singla et al.
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Table 5
Parameter Estimation of PEMFC Model of Ballard Mark V.

Parameter/Algorithms ξ1 ξ2 ξ3 ξ4 λ RC b SSE

PSO − 1.177 0.001 3.60E− 05 − 2.60E− 04 11.589 0.0001 0.0136 1.69E− 03
GOA − 1.066 0.001 2.63E− 05 − 2.02E− 04 10 0.0001 0.0631 1.16E− 04
PO − 1.197 0.001 2.60E− 05 − 2.03E− 04 10.268 0.0002 0.0379 1.14E− 05
GWO − 1.159 0.002 3.29E− 05 − 2.49E− 04 10.353 0.0001 0.0587 1.06E− 07
TSO − 1.129 0.0001 3.22E− 05 − 2.09E− 04 9.285 0.0001 0.0121 1.18E− 11
Proposed Algorithm − 1.086 0.0011 2.41E− 05 − 2.25E− 04 10.540 0.0001 0.0418 2.56E− 15

Table 6
Parameter Estimation of PEMFC Model of Avista SR-12.

Parameter/Algorithms ξ1 ξ2 ξ3 ξ4 λ RC b SSE

PSO − 0.853 0.001 8.80E− 05 − 2.60E− 04 9.854 0.0001 0.013 3.06E− 03
GOA − 1.170 0.003 8.02E− 05 − 1.53E− 04 11.420 0.0001 0.041 3.25E− 04
PO − 0.988 0.001 9.02E− 05 − 2.22E− 04 10.326 0.0001 0.141 8.97E− 05
GWO − 0.971 0.001 9.14E− 05 − 1.19E− 04 10.049 0.0001 0.018 8.32E− 07
TSO − 0.894 0.001 8.70E− 05 − 2.60E− 04 8.433 0.0001 0.217 5.15E− 12
Proposed Algorithm − 1.114 0.0008 4.18E− 05 − 1.54E− 04 11.547 0.0002 0.124 2.89E− 14

Table 7
Statistical results of PEMFC Model of Ballard Mark V.

Algorithms Minimum Average Maximum Mean S.D Error

PSO 1.69E− 03 1.91E− 03 2.17E− 03 1.69E− 03 1.93E− 04 SSE
GOA 1.16E− 04 1.32E− 04 1.62E− 04 1.16E− 04 1.86E− 05
PO 1.14E− 05 5.38E− 05 1.47E− 04 1.14E− 05 6.02E− 05
GWO 1.06E− 07 1.69E− 07 2.85E− 07 1.06E− 07 6.88E− 08
TSO 1.18E− 11 1.7E− 11 2.49E− 11 1.18E− 11 4.93E− 12
Proposed Algorithm 2.56E− 15 4.56E− 15 9.44E− 15 2.56E− 15 2.84E− 15

Table 8
Statistical results of PEMFC Model of Avista SR-12.

Algorithms Minimum Average Maximum Mean S.D Error

PSO 3.06E− 03 3.38E− 03 3.76E− 03 3.06E− 03 2.83E− 04 SSE
GOA 3.25E− 04 3.54E− 04 3.68E− 04 3.25E− 04 1.98E− 05
PO 8.97E− 05 9.37E− 05 9.95E− 05 8.97E− 05 4.59E− 06
GWO 8.32E− 07 9.24E− 07 9.85E− 07 8.32E− 07 6.48E− 08
TSO 5.15E− 12 6.26E− 12 7.02E− 12 5.15E− 12 7.84E− 13
Proposed Algorithm 2.89E− 14 3.76E− 14 4.02E− 14 2.89E− 14 4.85E− 15

Fig. 4. SSE of both models.
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To effectively navigate the search space and find optimal solutions,
Tunicate Swarm Optimization (TSO) utilizes a dynamic "search mode"
mechanism. This mechanism adjusts the balance between exploration
(searching new areas) and exploitation (focusing on promising regions)
based on the current results and population. Initially, Search Mode 1
prioritizes exploration, ensuring a thorough search even if the best so-
lution (the "greatest predator") hasn’t improved for a while. Once the
solution quality starts to show improvement, the algorithm transitions to
Search Mode 2. This mode emphasizes exploitation, leveraging the in-
sights gained from exploration to refine promising regions and ulti-
mately converge on the best solution. Fig. 3 shows the flow chart of
ETSO.

4. Results and discussion

In this two section are there, in the first section benchmark test
functions are tested and in the second section an engineering problem is
tested. Both the sections are explained below:

4.1. Benchmark test functions

Ten benchmark functions were selected to evaluate the effectiveness
of the new algorithm. These functions are detailed in Table 1. The first
seven functions (f1-f7) represent problems with a single optimal solution
(uni-modal), while the last three (f8-f10) are more challenging with
multiple optimal solutions (multi-modal). All functions have 40 vari-
ables. To assess the new algorithm’s performance, it was compared
against established optimization algorithms: Particle Swarm

Fig. 5. Multi-Axis Radar of Ballard Mark V.
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Optimization (PSO) (Meraihi et al., 2021b), Grasshopper Optimization
Algorithm (GOA) (Askari et al., 2020), Political Optimizer (PO) (Mir-
jalili et al., 2014b), Tunicate Swarm Optimizer (TSO) (Gharehchopogh,
2022; Wang et al., 2018), and Grey Wolf Optimizer (GWO) (Mahato
et al., 2020). All algorithms were run 50 times independently using the
same number of function evaluations (Max NFEs = 1000) across the ten
benchmark functions. For consistency, all codes were implemented in
MATLAB 2018b.

The average performance (mean) and standard deviation (SD) of
each algorithm on the ten benchmark functions are summarized in
Table 2(a) and (b). These tables suggest that the proposed algorithm
achieves superior performance compared to the established algorithms.
This is because the proposed algorithm has consistently lower mean and
standard deviation values across all ten test functions. Benchmark

Fig. 6. Multi-Axis Radar of Avista SR-12.

Table 9
Computational time (Sec’s) of both models.

Algorithms Ballard Mark
V

Avista SR-
12

Statistical Analysis

PSO 3.187 3.245 Computational Time
(Sec)GOA 3.120 3.124

PO 2.987 2.997
GWO 2.187 2.547
TSO 1.645 1.874
Proposed
Algorithm

1.011 1.015
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Fig. 7. Computational time of both models.

Table 10
Calculated Values of Voltage, Power and Absolute Error of Model Ballard Mark V.

Current Measured
(A)

Voltage Measured
(V)

Voltage Calculated
(V)

Absolute Error
(Voltage)

Power Measured
(W)

Power Calculated
(W)

Absolute Error
(Power)

5.4 0.92 0.9203 3.00E− 04 4.97 4.9696 3.80E− 04
10.8 0.88 0.8797 3.00E− 04 9.50 9.5007 7.60E− 04
16.2 0.85 0.8497 3.00E− 04 13.77 13.7651 4.86E− 03
21.6 0.82 0.8202 2.00E− 04 17.71 17.7163 6.32E− 03
27.0 0.79 0.7897 3.00E− 04 21.96 21.3219 6.38E− 01
32.4 0.77 0.7695 5.00E− 04 24.95 24.9318 1.82E− 02
37.8 0.74 0.7402 2.00E− 04 27.97 27.9795 9.56E− 03
43.2 0.72 0.7180 2.00E− 03 31.10 31.0176 8.24E− 02
48.6 0.69 0.6899 1.00E− 04 33.53 33.5291 8.60E− 04
54.0 0.66 0.6601 1.00E− 04 35.64 35.6454 5.40E− 03
59.4 0.62 0.6199 1.00E− 04 36.83 36.8220 7.94E− 03
64.8 0.60 0.6205 2.05E− 02 38.88 40.2084 1.33E+00
70.2 0.55 0.5502 2.00E− 04 38.61 38.6240 1.40E− 02
Sum of AE 2.51E− 02 2.12Eþ00

Table 11
Calculated Values of Voltage, Power and Absolute Error of Model Avista SR-12.

Current Measured
(A)

Voltage Measured
(V)

Voltage Calculated
(V)

Absolute Error
(Voltage)

Power Measured
(W)

Power Calculated
(W)

Absolute Error
(Power)

1.004 43.17 43.1699 1.00E− 04 43.36 43.3425 1.74E− 02
3.166 41.14 41.1399 1.00E− 04 130.25 130.2489 1.08E− 03
5.019 40.09 39.9995 9.05E− 02 201.21 200.7574 4.53E− 01
7.027 39.04 38.9999 4.01E− 02 274.33 274.0523 2.78E− 01
8.958 37.99 37.9795 1.05E− 02 340.31 340.2203 8.96E− 02
10.97 37.08 37.0745 5.50E− 03 406.77 406.7072 6.27E− 02
13.05 36.03 36.0298 2.00E− 04 470.19 470.1888 1.11E− 03
15.06 35.19 35.1897 3.00E− 04 529.96 529.9568 3.12E− 03
17.07 34.07 34.0654 4.60E− 03 581.57 581.4963 7.36E− 02
19.07 33.02 33.0154 4.60E− 03 629.69 629.6036 8.63E− 02
21.08 32.04 31.9999 4.01E− 02 675.40 674.5578 8.42E− 01
23.01 31.20 31.1984 1.60E− 03 717.91 717.8751 3.48E− 02
24.94 29.80 29.7899 1.01E− 02 743.21 742.9601 2.50E− 01
26.87 28.96 28.9587 1.30E− 03 778.16 778.1202 3.97E− 02
28.96 28.12 28.1189 1.10E− 03 814.36 814.3233 3.67E− 02
30.81 26.3 26.2996 4.00E− 04 810.30 810.2906 9.32E− 03
32.97 24.06 24.0599 1.00E− 04 793.26 793.2549 5.10E− 03
34.90 21.40 21.3989 1.10E− 03 746.86 746.8216 3.84E− 02
Sum of AE 2.12E− 01 2.32
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functions provide a standardized way to compare algorithms. In this
case, the results imply that the proposed algorithm likely converges
faster, is more robust, and achieves higher precision than the compared
algorithms, leading to its overall better performance.

4.2. Engineering problem

4.2.1. Parameter extraction of PEMFC
The proposed algorithm’s performance is further examined by

applying it to extract parameters for two distinct PEMFC models (details
on allowed parameter ranges in Table 3). The data used for this
parameter estimation is provided in Table 4. To assess its effectiveness,
the proposed algorithm is compared against established methods like
Particle Swarm Optimization (PSO), Grasshopper Optimization Algo-
rithm (GOA), Political Optimizer (PO), Tunicate Swarm Optimizer
(TSO), and Grey Wolf Optimizer (GWO). To ensure a fair comparison, all
algorithms were subjected to identical settings: a maximum of 1000
function evaluations (Max NFEs) for both models, a population size of
50, and 50 independent runs. All code implementations were done in
MATLAB 2018b.

4.2.2. Analysis of solution accuracy
The best-found parameters and their corresponding Sum of Squared

Errors (SSE) for the Ballard Mark V and Avista SR-12 PEMFC models are

Fig. 8. Ballard Mark V V-I Characteristics Curve.

Fig. 9. Ballard Mark V P-I Characteristics Curve.

Fig. 10. Avista SR-12 V-I Characteristics Curve.

Fig. 11. Avista SR-12 P-I Characteristics Curve.

Table 12
Ballard Mark V Friedman Ranking Test.

Algorithms Friedman Ranking

PSO 6
GOA 5
PO 4
GWO 3
TSO 2
Proposed Algorithm 1

Table 13
Avista SR-12 Friedman Ranking Test.

Algorithms Friedman Ranking

PSO 6
GOA 5
PO 4
GWO 3
TSO 2
Proposed Algorithm 1
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presented in Tables 5 and 6, respectively. These results were obtained
under standard temperature conditions (STC). Analyzing these tables
reveals that the proposed algorithm consistently achieves the lowest SSE
values compared to other methods. This suggests it finds parameter sets
that better match the experimental data for both PEMFC models. Further
confirmation of the algorithm’s effectiveness comes from the statistical
results in Tables 7 and 8, also obtained under STC. Together with Fig. 4,
these findings indicate that the proposed algorithm generally out-
performs the others across various statistical metrics. The Fig. 5 and
Fig. 6 represents the multi-axis radar of all the compared and proposed
algorithms and from this figures it is also clear that the proposed algo-
rithm is better than the compared algorithms.

4.2.3. Convergence analysis
An evaluation of different optimization algorithms for the proposed

algorithm’s computations revealed its superiority (Table 9, Fig. 7). The
proposed algorithm significantly outperforms both the parental algo-
rithm and other compared methods. This is evident from its demon-
strably faster convergence compared to the alternatives.

The proposed algorithm demonstrates its effectiveness in extracting
PEMFC model parameters, enabling the accurate prediction of output
voltage and power across various current levels. Supporting this accu-
racy, Tables 10 and 11 present measured data for both models, including
voltage, power, and absolute error (AE). Additionally, Figs. 8 through 11
visually represent the Voltage-Current (V-I) and Power-Current (P-I)
curves. A combined analysis of these results suggests the proposed al-
gorithm achieves superior performance and delivers more accurate
predictions compared to other tested algorithms for both PEMFC
models.

4.2.4. Statistics analysis and robustness
This study evaluated the proposed algorithm’s performance against

established methods (Particle Swarm Optimization (PSO), Grasshopper
Optimization Algorithm (GOA), Political Optimizer (PO), Tunicate
Swarm Optimizer (TSO), and Grey Wolf Optimizer (GWO)) for param-
eter estimation in Proton Exchange Membrane Fuel Cell (PEMFC)

models. Two datasets, Ballard Mark V and Avista SR-12, were used. The
Friedman test is a reliable approach for analysing ordinal data or non-
normally distributed continuous data in repeated measures settings. Its
fundamental value stems from its flexibility and capacity to handle
complicated experimental designs without depending on strict para-
metric assumptions. The Friedman ranking test (Table 12 & 13) posi-
tioned the proposed algorithm as the top performer in terms of accuracy
and precision for both datasets, followed by AHA and GWO.

To solidify these findings, Wilcoxon’s rank sum test (Table 14 & 15)
is performed. The Wilcoxon rank sum test, commonly known as the
Mann-Whitney U test, is a non-parametric statistical test that determines
if there is a significant difference in the distributions of two independent
samples. It confirmed the proposed algorithm’s superiority at a 95 %
significance level.

Similarly, the Kruskal-Wallis test (Table 16 & 17) supported its
dominance by analyzing statistical differences among all algorithms
(Singla et al., 2022; Rani et al., 2022). Collectively, these
non-parametric tests conclusively demonstrate that the proposed algo-
rithm achieves significantly higher precision and accuracy in PEMFC
model parameter estimation compared to the other evaluated methods.

5. Conclusion

This paper proposes a new algorithm, called ETSO, to tackle chal-
lenges in finding the best possible solutions (global optimization) for
different PEMFC models operating at various temperatures. The author
applied ETSO to two specific PEMFC models: Ballard Mark V and Avista
SR-12. To achieve this, author investigated the mathematical repre-
sentation of the PEMFCs. The following section details the findings
based on the obtained results:

• The authors assessed the effectiveness of their newly developed
Enhanced Tunicate Swarm Optimizer (ETSO) for extracting param-
eters from a PEMFC model. To achieve this, they first tested ETSO on
ten benchmark functions, which are well-established problems used
to evaluate optimization algorithms. ETSO’s performance excelled in
these tests, demonstrating both superior solution accuracy and faster
convergence speed for these global optimization challenges.

• The efficient operation of ETSO went beyond benchmark functions.
The authors successfully used it to extract parameters for two PEMFC
models (Ballard Mark V and Avista SR-12) that operate at different
temperatures. Statistical analysis (Friedman ranking, Wilcoxon rank-
sum, Kruskal-Wallis) were then applied to the resultant current-
voltage (I-V) and power-current (P-I) curves. When ETSO was
compared to other algorithms, it performed similarly on both
models.

• Overall, the combined findings from benchmark functions and real-
world application through statistical analysis strongly suggest that
ETSO offers enhanced effectiveness for parameter extraction in
PEMFC models.

Table 14
Ballard Mark V p values for Wilcoxon’s Rank Sum.

Algorithms PSO GOA PO GWO TSO

Proposed Algorithm 2.5478E− 14 2.5987E− 14 2.5412E− 14 2.5641E− 14 2.5321E− 14

Table 15
Avista SR-12 p values for Wilcoxon’s Rank Sum.

Algorithms PSO GOA PO GWO TSO

Proposed Algorithm 4.4568E− 12 4.4635E− 12 4.4321E− 12 4.4520E− 12 4.4012E− 12

Table 16
Ballard Mark V Anova Kruskal-Wallis Test.

Source SS df MS Chi-sq Prob>Chi-sq

Columns 445872.1 4 80457.3 258.45 3.45254E− 29
Error 45341.3 180 141.2 - -
Total 491213.4 184 - - -

Table 17
Avista SR-12 Anova Kruskal-Wallis Test.

Source SS Df MS Chi-sq Prob>Chi-sq

Columns 445471.6 4 87524.3 358.03 6.24380E− 33
Error 41254.7 180 247.3 - -
Total 486726.3 184 - - -
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5.1. Future scope

This study demonstrates the proposed algorithm’s promising capa-
bilities in efficiently estimating parameters for Proton Exchange Mem-
brane Fuel Cells (PEMFCs). However, its potential extends beyond this
specific application. The algorithm’s versatility allows it to be applied to
various other energy optimization challenges, making it a valuable tool
for tackling diverse energy-related issues. For instance, its application in
power systems could address crucial aspects like optimal configuration
of distributed generation sources, load dispatch, and energy scheduling
problems. Optimizing these areas can lead to significant improvements
in system efficiency and successful outcomes.
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