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Abstract
To understand how a disease spreads through a society, mathematical formulations are
a crucial tool for comprehending the complete dynamics of cholera. Model formulations
are essential for thoroughly understanding the propagation of cholera throughout a pop-
ulation. For an assessment of the stable state of a newly established SEIRB system,
both qualitative and quantitative evaluations are conducted. The reproductive number
is derived to observe the infection spread rate among patients. Additionally, sensitivity
analyses are performed to assess the impact of each parameter and to determine the
rate of change in each. The existence of positive solutions with linear growth has been
verified using global derivatives, and the level of effect in each subsection is determined
through the application of Lipschitz criteria. By employing Lyapunov’s first derivative of
the function, the framework is analyzed for global stability to evaluate the overall effect
of both symptomatic and asymptomatic measures following early detection interventions.
The Mittag-Leffler kernel is utilized to obtain a robust solution via a fractal-fractional oper-
ator, enabling continuous monitoring for improved control measures. Simulations are
performed to assess the global impact of both symptomatic and asymptomatic conse-
quences of cholera and to observe the actual behavior of the disease. It has been con-
firmed that individuals with strong immune systems will recover efficiently if the infection
is diagnosed early through timely detection measures. This analysis provides insight into
the current state of cholera control, comparing outcomes for those receiving treatment
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and those whose robust immune systems negate the need for medication. Such investi-
gations will enhance our understanding of disease transmission and support the develop-
ment of effective control strategies based on our validated findings.

1 Introduction
Since Fibonacci introduced the well-known Fibonacci series to model population growth in
the early 12th century, mathematics has been an integral part of biology [1]. Daniel Bernoulli
used mathematical concepts to demonstrate their application to microscopic objects. In 1901,
Johannes Ranke [2] coined the term ’biomathematics.’ The primary objective of biomathe-
matics is to theoretically examine mathematical models to uncover the laws governing the
growth and behavior of biological systems [3]. It aims to help us understand the complexities
of living organisms. Mathematics has made significant contributions to the natural sciences,
and it can be equally useful in advancing our understanding of the biological sciences [4]. For
this reason, it is crucial to begin educating students about the interrelated aspects of mathe-
matical biology early, starting with foundational knowledge [5]. An investigation in mathe-
matical biology can be structured into several steps [6]. The first step involves presenting bio-
logical techniques that may raise additional biological questions, which mathematics could
help address. The second step aims to explain a mathematical procedure that can be used to
characterize a suitable biological model. The next step involves implementing mathematical
models and additional techniques to apply them in the formulation of mathematical laws. The
final step is to draw conclusions regarding the mathematical results within the context of the
biological methods used.

Aspects of fractional calculus (FC) [7] can be useful for solving a wide range of scientific
problems. Various operators, including Caputo [8], Grünwald-Letnikov, Riemann-Liouville,
Fabrizio (CF), Caputo-Fabrizio [9], and Atangana-Baleanu [10], have been explained. The
bacterium Vibrio cholerae is responsible for the severe intestinal disease cholera [11]. The
fecal-oral route is the primary mode of transmission, where infectious bacteria are passed
from an infected person to another, typically through vomit or feces [12]. This disease causes
severe diarrhea and vomiting when contaminated food or water is ingested [13]. For many
years, cholera has raised serious concerns regarding hygiene and the lack of social infrastruc-
ture, even in affluent countries.

Cholera remains a global public health concern due to recent outbreaks in Zimbabwe
[14], Tanzania [15], Ethiopia [16], Kenya [17], Yemen [18], and other nations. A combina-
tion of human factors, climate, and microbial agents contributes to the spread of cholera
[19]. It spreads both directly through human contact and indirectly through climate-related
pathways. Cholera has had a significant impact and has been widely studied for its effects
on public health and economic development. In theory and practice, cholera can be con-
trolled by taking appropriate measures, such as treating infected individuals and maintaining
good hygiene. Over time, efforts can be made to develop effective prevention and treatment
strategies

Toxic diseases such as cancer have spread globally in recent years, affecting all levels of
society (see [20]). The complex mechanisms behind the spread of cholera have been explored
and understood [21]. In [22], an optimal control mechanism for cholera epidemics was devel-
oped in a mathematical model and analyzed using Pontryagin’s maximum principle. Experts
emphasized immunizations, medical care, and public education programs as key strategies for
controlling widespread cholera outbreaks. However, the model did not include a safe house-
hold water source as a control parameter. A model was developed in Zimbabwe between 2008
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and 2009 to examine the spread of cholera, according to the authors [23]. Cholera epidemics
in Africa highlight the importance of the person-to-person (p-to-p) transmission channel.
The model considers both direct (p-to-p) and indirect (environment-to-person, e-to-p) trans-
mission routes. The analysis in [24] modified the proposed cholera model, while [25] inves-
tigated the most effective intervention strategies and other control options; however, neither
took human infection into account. In Tanzania, researchers modified and studied a deter-
ministic cholera model by incorporating human education campaigns along with water treat-
ment and control technologies. In the analysis of this model, they did not conduct a quanti-
tative assessment of the basic reproduction number, which is essential for understanding dis-
ease transmission. The authors of [26] presented a mathematical model of cholera, in which
public health measures serve as the primary cholera control strategies.

Additionally, some authors utilize different fractional operators to investigate various
physical phenomena. For example, authors employ the Caputo operator, which significantly
advanced fractional-order differential theory after the Riemann-Liouville operator [27,28].
Different fractional-order operators have been applied to physical problems in biological and
engineering systems [29]. These fractional-order operators reflect the genetic and behavioral
aspects of memory present in biological and engineering systems [30]. It is well-known that
integer-order operators cannot capture memory effects as effectively as fractional-order oper-
ators, which can model these effects in geographical systems, even in the absence of exter-
nal variables [31]. Moreover, for various disease models, fractional derivatives provide more
accurate predictions compared to actual data; see [32]. The computation of solutions for cor-
ruption systems is performed using the Power-Law, Mittag-Leffler, and Exponential Decay
kernels via fractional derivatives [33]. A mathematical model for boosting the immune system
was developed in [34] and transformed into a fractional-order model through the application
of the Caputo fractional operator. Another immune system-boosting mathematical model
was created and then transformed into a fractional-order model using the ABC operator
[35]. The goal of that work was to investigate the use of cytokines and anti-PD-L1 inhibitors
in the diagnosis and treatment of lung cancer in individuals with compromised immune
systems [36]. The fractional-order derivatives in studies on cholera models account for the
impact of personal hygiene practices, travel, and treatment of affected individuals. Several
other related studies have investigated liver cirrhosis caused by HBV with early detection and
chemotherapy [37], the stabilizing effect of small prey immigration in predator-prey systems
[38], and the influence of psychological panic, glucose risk, and estrogen on breast cancer
dynamics [39].

We conducted research on cholera using an innovative approach to effectively control the
disease, particularly in populations that are both protected and infected. The main goal of this
work is to develop a new mathematical model for the recovery effect that incorporates early
detection and control methods for cholera. Cholera poses a serious threat to human life. To
aid readers in understanding the innovation, Section 1 provides an introduction and histori-
cal background, including the basic definitions used in the subsequent research. In Section 2,
a new mathematical model is introduced for the recovery effect under the proposed hypothe-
sis, along with control measures. Section 3 discusses the analysis of the cholera model, focus-
ing on positivity, boundedness, and the study of positive solutions using non-local kernels.
Additionally, qualitative and quantitative analyses, reproduction number analysis, and sen-
sitivity analysis are presented. Section 4 examines the impact of the global derivative using
the Riemann-Stieltjes integral and norm. The global stability of the model is addressed in
Section 5, employing Lyapunov’s derivative for data analysis. Numerical solutions are con-
structed in Section 6, utilizing an ML kernel and a fractional operator. Section 7 outlines the
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simulation, which provides a comprehensive physical understanding and was implemented
using MATLAB code. Finally, the conclusion is given in Section 8.

1.1 Basic definitions
Definition 1

For 0≤ ℓ, ı≤ 1, the function∏(t) in the Riemann-Liouville fractional operator with a
generalized Mittag-Leffler kernel is specified as follows:

FFMDℓ,ı
0,t(∏(t)) = AB(ℓ)

1 – ℓ
d
dtı ∫

t

0
Eℓ [–

ℓ
1 – ℓ (t – 𝜍)

ℓ∏(𝜍)]d𝜍,

where 0 < ℓ, ı ≤ 1 and AB(ℓ) = 1 – ℓ + ℓ
Γ(ℓ) .

Thus,∏(t) with order (ℓ, ı) and having Mittag-Leffler type kernel is defined as:

FFMDℓ,ı
0,t(∏(t)) = ı(1 – ℓ)tı–1∏(t)

AB(ℓ) + ℓı
AB(ℓ) ∫

t

0
𝜍ℓ–1(t – 𝜍)∏(𝜍)d𝜍.

2 Formulation of SEIRB generalized Cholera model
In this paper, we employed differential equations for the constructed model under created
hypothesis of early detection and vibrio bacteria spread in the environment, which also
includes a Fractal-Fractional order derivative operator for continuous monitoring of spread
for better control of the cholera epidemic. The portions of the recommended investigation are
used to highlight the relationship between an individual’s physical health state and the level
of Vibrio bacteria present in their surroundings. The straight lines depicts movement while
dotted lines depicts contribution of the bacteria and can be seen in flow diagram. The ensu-
ing presumptions serve as the foundation for the proposed and investigated mathematical
model:

1. We divided the analysis into 4 subcategories for human beings: S, E, I, and R indicate
the people who are susceptible, people who were exposed treated as early detection
in which symptom does not appear but infection exist at acute stage and are recov-
ered without medication, people who were infectious need proper medication and are
considered symptomatic individuals, and people who were recovered for both asymp-
tomatic and symptomatic individuals, respectively. Therefore, N(t) indicates the entire
population of humans. It is described as follows, N = S + E + I + R; B is the amount
of Vibrio bacteria present in the surrounding environment which causes environmen-
tal effects. The purpose is to improve the immune system at asymptomatic stage by
early detection measures to stop to become infectious as symptomatic stage. Also to
reduce the vibrio bacterial infection from the environment release by cholera infected
individuals.

2. Parameters and variables are defined as follows and are presumed to be non-negative
throughout the document: The new recruitment rate and the natural mortality rate
of humans are represented by the symbols∝ and 𝜔, respectively; these indicate the
average amount of time that individuals spend during the infectious phase.

3. People are linked to the percentage of recovered-class people who didn’t lose their
understanding or immunity throughout the epidemic of cholera, and it is expected
that people learn about the disease through instruction and advertising. On another
note, patients who do not take treatment for themselves ultimately pass away at a rate
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known as 𝜔1 from their disease, whereas patients who receive a standard rate of disease
recovery known as 𝜙 are achieved with efficient medical treatment.

4. The parameters 𝜇 and 𝜈 represent the level of infection and expansion of Vib-
rio bacteria, the pace of patient recovery, the dispersal of Vibrio bacteria in their
environment, and the propagation of exposed people. The parameters 𝛽h and
𝛽e represent the effects of infection associated with the propagation of trans-
mission from person to person and from the environment to human beings,
respectively.

The flow chart according to our created hypothesis is shown in Figure 1.
So, the mathematical form of the generalized cholera disease model by taking asymp-

tomatic measures, as follows.

d
dt
S(t) =∝ –𝜇𝛽hS(t)E(t) – 𝛽e𝜈S(t)B(t) – 𝜔S(t),

d
dt
E(t) =𝜇𝛽hS(t)E(t) – (𝛼 +𝜔)E(t),

d
dt
I(t) =𝛼E(t) – (𝜙 +𝜔 +𝜔1)I(t),

d
dt
R(t) =𝜙I(t) – 𝜔R(t),

d
dt
B(t) =𝜈𝛽eB(t)S(t) + 𝜎I(t) – 𝜔2B(t).

(1)

The system indicated above is consistent with the initial conditions. S0 = S(0),E0 = E(0), I0 =
I(0),B0 = B(0),R0 = R(0).

Now, applying the definition of the Fractal-Fractional operator with the Mittag-Leffler
kernel, we obtain the model presented below:

FFM
0 D𝜉,𝜏

t S(t) = ∝ –𝛽h 𝜇E(t)S( t) – 𝜈𝛽eS( t)B( t) – 𝜔S( t),
FFM
0 D𝜉,𝜏

t E( t) =𝜇𝛽hS(t)E(t) – (𝛼 +𝜔)E(t),
FFM
0 D𝜉,𝜏

t I( t) =𝛼E( t) – (𝜙 +𝜔 +𝜔1)I( t),
FFM
0 D𝜉,𝜏

t R( t) =𝜙I( t) – 𝜔R( t),
FFM
0 D𝜉,𝜏

t B( t) =𝜎I( t) + 𝜈𝛽eS( t)B( t) – 𝜔2B( t).

(2)

Fig 1. Flow Chart.Themodel formulation is shown in the flow chart.

https://doi.org/10.1371/journal.pone.0319684.g001
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Considering initial conditions matching the system defined above S0 = S(0), E0 = E(0), I0 =
I(0), B0 = B(0), R0 = R(0).

3 Analysis of SEIRB generalized Cholera model
3.1 Positiveness and boundedness of generalized Cholera model
We Search regarding the criteria that secure positive outcomes of the suggested model’s solu-
tions to show that they are appropriate and limited, presuming that they consist of actual
circumstances with pertinent values. For this, we have

S(t)≥ S0e–(𝜇𝛽h|E|∞+𝜈𝛽e|B|∞+𝜔)t,∀t≥ 0 (3)

and the remaining equations will be

E(t)≥ E 0e–(𝜔+𝛼)t,∀t≥ 0 (4)

I(t)≥ I 0e–(𝜙+𝜔+𝜔1)t,∀t≥ 0 (5)

R(t)≥ R 0e–(𝜔)t,∀t≥ 0 (6)

B(t)≥ B 0e(–𝜔2)t,∀t≥ 0 (7)

Define the norm

||𝜅||∞ = sup
t∈D𝜅

|𝜅(t)| (8)

so the D𝜅 is the domain of 𝜅. employing the Norm, we get for function S(t);

FFM
0 D𝜉,𝜏

t S = ∝ –𝛽h 𝜇ES – 𝜈𝛽eSB – 𝜔S,
≥ –𝛽h𝜇ES – 𝜈𝛽eSB – 𝜔S,
≥ –(𝛽h𝜇E + 𝜈𝛽eB +𝜔)S,
= –(𝛽h𝜇∥E∥∞ + 𝜈𝛽e∥B∥∞ +𝜔)S,

For ordinary derivative, we have

S = S0e–(𝛽h𝜇∥E∥∞+𝜈𝛽e∥B∥∞+𝜔)t, ∀t≥ 0.

Positive outcomes utilizing a non-local operator are detailed in the following.

3.2 Positive solutions with non-local operator
For non-local operators, all outcomes of system (1) are positive [40] if all initial conditions are
met.
●With a power law kernel for the Fractal-Fractional operator, we have ∀t≥ 0.

S ≥ S0E𝜉 (–𝜑1–𝜏(𝜇𝛽h|E|∞ + 𝜈𝛽e|B|∞ +𝜔)t𝜉) ,
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E ≥ E0E𝜉 (–𝜑1–𝜏(𝜔 + 𝛼)t𝜉) ,

I ≥ I0E𝜉 (–𝜑1–𝜏(𝜙 +𝜔 +𝜔1)t𝜉) ,

R ≥ R0E𝜉 (–𝜑1–𝜏(𝜔)t𝜉) ,

B ≥ B0E𝜉 (–𝜑1–𝜏(𝜔2)t𝜉) .

Where the time component is 𝜑.
●We obtain ∀t≥ 0 for an operator with an exponential kernel that is fractal-fractional.

S ≥ S0exp(– 𝜒1–𝜏𝜉(𝜇𝛽h|E|∞ + 𝜈𝛽e|B|∞ +𝜔)t
M(𝜉) – (1 – 𝜉) [𝜇𝛽h|E|∞ + 𝜈𝛽e|B|∞ +𝜔]

) ,

E ≥ E0exp(– 𝜒1–𝜏𝜉(𝜔 + 𝛼)t
M(𝜉) – (1 – 𝜉) [𝜔 + 𝛼]) ,

I ≥ I0exp(– 𝜒1–𝜏𝜉(𝜙 +𝜔 +𝜔1)t
M(𝜉) – (1 – 𝜉) [𝜙 +𝜔 +𝜔1]

) ,

R ≥ R0exp(– 𝜒1–𝜏𝜉(𝜔)t
M(𝜉) – (1 – 𝜉)[𝜔]) ,

B ≥ B0exp(– 𝜒1–𝜏𝜉(𝜔2)t
M(𝜉) – (1 – 𝜉) [𝜔2]

) .

●With a Mittag-Leffler kernel for the Fractal-Fractional operator, we have ∀t≥ 0.

S ≥ S0E𝜉 (–
𝜒1–𝜏𝜉(𝜇𝛽h|E|∞ + 𝜈𝛽e|B|∞ +𝜔)t

AB(𝜉) – (1 – 𝜉) [𝜇𝛽h|E|∞ + 𝜈𝛽e|B|∞ +𝜔]
) ,

E ≥ E0E𝜉 (–
𝜒1–𝜏𝜉(𝜔 + 𝛼)t

AB(𝜉) – (1 – 𝜉) [𝜔 + 𝛼]) ,

I ≥ I0E𝜉 (–
𝜒1–𝜏𝜉(𝜙 +𝜔 +𝜔1)t

AB(𝜉) – (1 – 𝜉) [𝜙 +𝜔 +𝜔1]
) ,

R ≥ R(0)E𝜉 (–
𝜒1–𝜏𝜉(𝜔)t

AB(𝜉) – (1 – 𝜉)[𝜔]) ,

B ≥ B0E𝜉 (–
𝜒1–𝜏𝜉(𝜔2)t

AB(𝜉) – (1 – 𝜉) [𝜔2]
) .

3.3 Qualitative and quantitative analysis
The feasible equilibrium of cholera model will be given in this part.

Theorem 1: To ensure the existence of an equilibrium in the generalized cholera model,
the following statement must hold:

1. The cholera model’s disease free point, FS0000(∝𝜔 , 0, 0, 0, 0) ∀ 𝜇,∝,𝜈,𝜔,𝜔1,𝜔2,𝛽h,𝛽e,𝜎,
𝛼, 𝜙 > 0 .

2. The cholera model endemic point, F+SEIRB(S∗,E∗, I∗,R∗,B∗).

Proof: Epidemic and endemic equilibrium points are two distinct types of equilibrium
points. To find them, the right-hand sides of the equations associated with the system are set
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to be “0”. If there is no cholera spread in the population of F0, the constant production is the
disease-free equilibrium point. Now, by setting

FFM
0 D𝜉,𝜏

t S = FFM
0 D𝜉,𝜏

t E = FFM
0 D𝜉,𝜏

t I = FFM
0 D𝜉,𝜏

t R = FFM
0 D𝜉,𝜏

t B = 0,

and right-hand sides of system to be zero, we get

0 = ∝ –𝜇𝛽hES – 𝜈𝛽eBS – 𝜔S,
0 = 𝜇𝛽hES – (𝛼 +𝜔)E,
0 = 𝛼E – (𝜙 +𝜔 +𝜔1)I,
0 = 𝜙I – 𝜔R,
0 = 𝜎I + 𝜈𝛽eBS – 𝜔2B.

After simplification, we get

F0 = (S0,E0, I0,R0,B0) = (∝𝜔 , 0, 0, 0, 0), (9)

and

F∗ = (S∗, E∗, I∗, R∗, B∗), (10)

where

S∗ = 𝛼 +𝜔
𝛽h𝜇

,

E∗ = (𝜔 +𝜔1 + 𝜙) (𝜔(𝛼 +𝜔) – 𝛽h∝ 𝜇) (𝛽e𝜈(𝛼 +𝜔) – 𝛽h𝜇𝜔2)
𝛽h𝜇(𝛼 +𝜔) (𝛽h𝜇𝜔2 (𝜔 +𝜔1 + 𝜙) – 𝛽e𝜈 (𝜔1(𝛼 +𝜔) +𝜔(𝛼 +𝜔 + 𝜙)))

,

I∗ = 𝛼 (𝜔(𝛼 +𝜔) – 𝛽h∝ 𝜇) (𝛽e𝜈(𝛼 +𝜔) – 𝛽h𝜇𝜔2)
𝛽h𝜇(𝛼 +𝜔) (𝛽h𝜇𝜔2 (𝜔 +𝜔1 + 𝜙) – 𝛽e𝜈 (𝜔1(𝛼 +𝜔) +𝜔(𝛼 +𝜔 + 𝜙)))

R∗ = 𝛼𝜙 (𝜔(𝛼 +𝜔) – 𝛽h∝ 𝜇) (𝛽e𝜈(𝛼 +𝜔) – 𝛽h𝜇𝜔2)
𝛽h𝜇𝜔(𝛼 +𝜔) (𝛽h𝜇𝜔2 (𝜔 +𝜔1 + 𝜙) – 𝛽e𝜈 (𝜔1(𝛼 +𝜔) +𝜔(𝛼 +𝜔 + 𝜙)))

,

B∗ = 𝛼𝜙 (𝜔(𝛼 +𝜔) – 𝛽h∝ 𝜇)
(𝛼 +𝜔) (𝛽e𝜈 (𝜔1(𝛼 +𝜔) +𝜔(𝛼 +𝜔 + 𝜙)) – 𝛽h𝜇𝜔2 (𝜔 +𝜔1 + 𝜙))

.

Theorem 2:The disease-free equilibrium of the model (2) is locally asymptotically stable if
R0 < 1.

Proof:That the Jacobian Matrix model is given below.

J[SEIRB](S,E, I,R,B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 –𝜇𝛽hS 0 0 –𝜈𝛽eS
𝛽h𝜇E w2 0 0 0
0 𝛼 –(𝜙 +𝜔 +𝜔1) 0 0
0 0 𝜙 –𝜔 0

𝛽e𝜈B 0 𝜎 0 𝛽e𝜈S – 𝜔2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Where

w1 = –𝜇𝛽hE – 𝜈𝛽eB – 𝜔
w2 = –(𝜔 + 𝛼) + 𝜇𝛽hS
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J[SEIRB](∝𝜔 , 0, 0, 0, 0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–𝜔 –𝜇𝛽h∝𝜔 0 – 𝜈𝛽e∝𝜔 0
0 𝜇𝛽h∝

𝜔 – (𝜔 + 𝛼) 0 0 0
0 𝛼 w3 0 0
0 0 𝜙 –𝜔 0
0 0 𝜎 0 𝜈𝛽e∝

𝜔 – 𝜔2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Where

w3 = –𝜙 – 𝜔 – 𝜔1

So that the given below equation is Characteristic polynomial of (12)

–((–𝜆 – 𝜔)(𝜆 +𝜔) (–𝜆 – 𝜔2) (–𝜆 – 𝜔 – 𝜔1 – 𝜙) (–𝛼 +
∝ 𝜇𝛽h
𝜔 – 𝜆 – 𝜔)) = 0.

The above model Eigen Values are given below

𝜆1 = –𝜔,
𝜆2 = –𝜔,

𝜆3 = –𝛼𝜔 + 𝛽h∝ 𝜇 – 𝜔2

𝜔 ,

𝜆4 = –𝜔 – 𝜙 – 𝜔1,
𝜆5 = –𝜔2.

The fact that all of the eigenvalues have negative real values indicates that the system (2) is
locally asymptotically stable.

3.4 Reproduction number of the generalized Cholera model
Thematrices P and Q are the Jacobian matrices corresponding to the functions P and Q,
respectively, and are examined at the disease-free equilibrium point of F0. In the setting of
these matrices, the element at the (i, j) location of matrix P denotes the rate at which an
infected person in segment j transmits the virus to segment i. The point at position (i, j) in
the matrix Q indicates the propagation of an infection that presently occurs. The reproduc-
tion number can be calculated by measuring the PQ–1 matrix’s spectrum radius at the disease-
free equilibrium state, similarly in [41]. This matrix is known as the “next generation of the
matrix,” and it is described as follows:

J0 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

–𝜔 –𝜇𝛽h∝𝜔 0 0 – 𝜈𝛽e∝𝜔
0 𝜇𝛽h∝

𝜔 – (𝜔 + 𝛼) 0 0 0
0 𝛼 –𝜙 – 𝜔 – 𝜔1 0 0
0 0 𝜙 –𝜔 0
0 0 𝜎 0 𝜈𝛽e∝

𝜔 – 𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

J0 = P –Q
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The following equation can be used to find the vectors P and Q in our constructed
model: 12

P =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0
0 ∝𝜇𝛽h

𝜔 0 0 0
0 𝛼 0 0 0
0 0 𝜙 0 0
0 0 𝜎 0 ∝𝜈𝛽e

𝜔

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝜔 ∝𝜇𝛽h
𝜔 0 0 ∝𝜈𝛽e

𝜔
0 𝛼 +𝜔 0 0 0
0 0 𝜔 +𝜔1 + 𝜙 0 0
0 0 0 𝜔 0
0 0 0 0 𝜔2

⎞
⎟⎟⎟⎟⎟⎟
⎠

Q–1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛼+𝜔
𝛼𝜔+𝜔2 – ∝𝜇𝛽h

𝜔(𝛼𝜔+𝜔2) 0 0 –𝛼∝𝜈𝛽e
𝜔 –∝𝜈𝛽e

𝜔2(𝛼𝜔+𝜔2)

0 𝜔2𝜔3+𝜔1𝜔2𝜔2+𝜔2𝜔2𝜙
𝜔𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙) 0 0 0

0 0 w4 0 0
0 0 0 1

𝜔 0
0 0 0 0 1

𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Where
w4 = 𝛼𝜔2𝜔2+𝜔2𝜔3

𝜔𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙)

K = P.Q–1

So

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 ∝𝜇𝛽h(𝜔2𝜔3+𝜔1𝜔2𝜔2+𝜔2𝜔2𝜙)
𝜔2𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙) 0 0 0

0 𝛼(𝜔2𝜔3+𝜔1𝜔2𝜔2+𝜔2𝜔2𝜙)
𝜔𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙) 0 0 0

0 0 𝜙(𝛼𝜔2𝜔2+𝜔2𝜔3)
𝜔𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙) 0 0

0 0 𝜎(𝛼𝜔2𝜔2+𝜔2𝜔3)
𝜔𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙) 0 ∝𝜈𝛽e

𝜔𝜔2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Thus

|K –mI| = 0

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

–m 0 0 0 0

0 ∝𝜇𝛽h(𝜔2𝜔3+𝜔1𝜔2𝜔2+𝜔2𝜔2𝜙)
𝜔2𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙) –m 0 0 0

0 𝛼(𝜔2𝜔3+𝜔1𝜔2𝜔2+𝜔2𝜔2𝜙)
𝜔𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙) –m 0 0

0 0 𝜙(𝛼𝜔2𝜔2+𝜔2𝜔3)
𝜔𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙) –m 0

0 0 𝜎(𝛼𝜔2𝜔2+𝜔2𝜔3)
𝜔𝜔2(𝛼𝜔+𝜔2)(𝜔+𝜔1+𝜙) 0 ∝𝜈𝛽e

𝜔𝜔2
–m

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

= 0
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By solving the determinant of the mentioned above matrix, we obtain the values ofm.

m1 = 0,
m2 = 0,
m3 = 0,

m4 = ∝ 𝜇𝛽h
𝜔(𝛼 +𝜔) ,

m5 = ∝ 𝜈𝛽e
𝜔𝜔2

.

Considering that the reproductive number R0 and the primary eigenvalue of the matrix
PQ–1 are associated as follows:

R0 =
∝ 𝜈𝛽e
𝜔𝜔2

.

3.5 Sensitivity analysis
Sensitivity analysis is helpful in figuring out how various parameters, particularly those
dealing with unclear data, affect a model’s stability in relation to one another.

Additionally, this study aids in determining the most crucial characteristics. Since the
number of reproductions is.

R0 =
∝ 𝜈𝛽e
𝜔𝜔2

.

By calculating the partial derivatives of the criterion with respect to the pertinent parame-
ters, we can investigate the sensitivity of R0 in the following ways:

It is clear that when we adjust the settings, the value of R0 is quite sensitive. The parameters
𝛽h,∝, and 𝜇 show expansion in our analysis, whereas 𝛼 and 𝜔 show contraction. Therefore,
medication shouldn’t occur before treatment for effective elimination of infections.

𝜕R0

𝜕∝ = 𝜈𝛽e
𝜔𝜔2

> 0,

𝜕R0

𝜕𝜈 = ∝ 𝛽e
𝜔𝜔2

> 0,

𝜕R0

𝜕𝛽e
= ∝ 𝜈

𝜔𝜔2
> 0,

𝜕R0

𝜕𝜔 = –
∝ 𝜈𝛽e
𝜔2𝜔2

< 0,

𝜕R0

𝜕𝛼 = –
∝ 𝜈𝛽e
𝜔𝜔2

2
< 0.

It can be observed in Figs 2, 3, 4, 5, and 6 that the behavior of the rate of change of R0

with respect to different parameters impact which suggests that it is highly responsive. The
behavior of 𝜈 and 𝛽e with respect to∝ and the behavior of 𝛽e with respect to 𝜈 is approxi-
mately similar with only minor variations. Similarly, the behavior of 𝜔 with respect to∝, 𝜈,
and 𝛽e and the behavior of 𝜔2 with respect to 𝛽e and 𝜔 shows analogous patterns, with minor
effects observed. All the sub-figures indicate that the rate of change of each parameter pro-
vide bounded results and is in specified range, which is important for maintaining stable
conditions.
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(a) (b)

Fig 2. The behavior of 𝝂 and 𝜷e with respect to∝ (a) 𝝂 with respect to parameter∝ (b) 𝜷e with respect to parameter∝.

https://doi.org/10.1371/journal.pone.0319684.g002

(a) (b)

Fig 3. The behavior of 𝝎 and 𝝎2 with respect to∝ (a) 𝝎 with respect to parameter∝ (b) 𝝎2 with respect to parameter∝.

https://doi.org/10.1371/journal.pone.0319684.g003

4 Impact of global derivative
Riemann-Stieltjes integration is a commonly recognized integration method that is often used
to get the integral of a function over its curve. If

H(y) =∫ h(y)dy.

The given function h(y) with respect to g(y) has the riemann-stieltijes integral

Hg(y) =∫ h(y)dg(y).

The definition of the global derivative, which has a close connection to this integral, is
given as follows
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(b)(a)

Fig 4. The behavior of 𝜷e and 𝝎 with respect to 𝝂 (a) 𝜷e with respect to parameter 𝝂 (b) 𝝎 with respect to parameter 𝝂.

https://doi.org/10.1371/journal.pone.0319684.g004

(a) (b)

Fig 5. The behavior of 𝝎2 and 𝝎 with respect to 𝝂 and 𝜷e (a) 𝝎2 with respect to parameter 𝝂 (b) 𝝎 with respect to parameter 𝜷e.

https://doi.org/10.1371/journal.pone.0319684.g005

Dgf(y) = lim
ħ→0

f(y + ħ) – f(y)
g(y + ħ) – g(y)

.

By the definition of the derivative, we get

Dgf(y) =
́f(y)
ǵ(y)

,

where ǵ(y) ≠ 0, forally∈Dǵ

DgS(t) =∝ –𝜇𝛽hSE – 𝜈𝛽eSB – 𝜔S,
DgE(t) =𝜇𝛽hSE – 𝛼E – 𝜔E,
DgI(t) =𝛼E – 𝜙I – 𝜔I,
DgB(t) =𝜎I + 𝜈𝛽eSB – 𝜔B,
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(a) (b)

Fig 6. The behavior of 𝝎2 and 𝝎 with respect to 𝜷e and 𝝎2 (a) 𝝎2 with respect to parameter 𝜷e (b) 𝝎 with respect to parameter 𝝎2.

https://doi.org/10.1371/journal.pone.0319684.g006

DgR(t) =𝜙I – 𝜔R. (13)

For the sake of simplicity, g will be taken to be different. Thus

Ś =ǵ[∝ –𝜇𝛽hSE – 𝜈𝛽eSB – 𝜔S] =M1[t,𝜂],
É =ǵ[𝜇𝛽hSE – 𝛼E – 𝜔E] =M2[t,𝜂],
́I =ǵ[𝛼E – 𝜙I – 𝜔I] =M3[t,𝜂],

B́ =ǵ[𝜎I + 𝜈𝛽eSB – 𝜔B] =M4[t,𝜂],
Ŕ =ǵ[𝜙I – 𝜔R] =M5[t,𝜂],

(14)

where

𝜂 = S,E, I,B,R

∥ǵ∥∞ = sup
n∈D′g
<N,

The following conditionM(t, S, I,E,B,R) < k (1 + |S|2)∀ S1 and S2
We have ∥M(t, S1,E, I,B,R) –M(t, S2,E, I,B,R)∥ <K∥S1 – S2∥2∞.
Initially

|M1(t, S1,E, I,B,R)|2 = |ǵ[∝ –𝜇𝛽hS1E – 𝜈𝛽eS1B – 𝜔S1]|2,
|M1(t, S1,E, I,B,R)|2 = |ǵ|2|[∝ –(𝜇𝛽hE + 𝜈𝛽eB +𝜔)S1]|2,
|M1(t, S1,E, I,B,R)|2 ≤ 2|ǵ|2[|∝ |2 + (𝜇𝛽hE + 𝜈𝛽eB +𝜔)2|S1|2],
|M1(t, S1,E, I,B,R)|2 ≤ 2|ǵ|2[|∝ |2 + {2(𝜇𝛽h)2|E|2 + 4(𝜈𝛽e)2|B|2 + 4(𝜔)2}|S1|2],

|M1(t, S1,E, I,B,R)|2 ≤ 2|ǵ|2|∝ |2 [1 + {2(𝜇𝛽h)
2|E|2 + 4(𝜈𝛽e)2|B|2 + 4(𝜔)2}|S1|2

∝2 ] ,

|M1(t, S1,E, I,B,R)|2 <K1(1 + |S1|2),
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under the condition

{2(𝜇𝛽h)2|E|2 + 4(𝜈𝛽e)2|B|2 + 4(𝜔)2}|S1|2
∝2 < 1,

where

K1 = 2|ǵ|2|∝ |2.
|M2(t, S,E1, I,B,R)|2 = |ǵ[𝜇𝛽hSE1 – 𝛼E1 – 𝜔E1]|2,
|M2(t, S,E1, I,B,R)|2 = |ǵ[𝜇𝛽hS – (𝛼 +𝜔)]2|E1|2,
|M2(t, S,E1, I,B,R)|2 ≤ 2|ǵ|2|[𝜇2𝛽2

h|S|
2 + (𝛼 +𝜔)2]|E1|2,

|M2(t, S,E1, I,B,R)|2 ≤ 2|ǵ|2|[𝜇2𝛽2
h|S|

2 + 2𝛼2 + 2𝜔2]|E1|2,

|M2(t, S,E1, I,B,R)|2 ≤ 2|ǵ|2(2𝛼2 + 2𝜔2) [1 +
𝜇2𝛽2

h|S|2

2𝛼2 + 2𝜔2 ] |E1|
2,

|M2(t, S,E1, I,B,R)|2 <K2[1 + |S|2],

under the condition

𝜇2𝛽2
h|S|2

2𝛼2 + 2𝜔2 < 1,

where

K2 = 2|ǵ|2(2𝛼2 + 2𝜔2)|E|2.
|M3(t, S,E, I1,B,R)|2 = |ǵ[𝛼E – 𝜙I1 – 𝜔1I1 – 𝜔I1]|2,
|M3(t, S,E, I1,B,R)|2 = |ǵ|2|[𝛼E – (𝜙 +𝜔1 +𝜔)I1]|2,
|M3(t, S,E, I1,B,R)|2 ≤ 2|ǵ|2[|𝛼E|2 + (𝜙 +𝜔1 +𝜔)2|I1|2],
|M3(t, S,E, I1,B,R)|2 ≤ 2|ǵ|2[𝛼2|E|2 + {2𝜙2 + 2𝜔2

1 + 2𝜔2}|I1|2],

|M3(t, S,E, I1,B,R)|2 ≤ 2|ǵ|2𝛼2|E|2 [1 + {2𝜙
2 + 2𝜔2

1 + 2𝜔2}|I1|2

𝛼2|E|2
] ,

|M3(t, S,E, I1,B,R)|2 <K3[1 + |I1|2],

under the condition

|I1|2{2𝜙2 + 2𝜔2
1 + 2𝜔2}

|E|2𝛼2 < 1,

where

K3 = 2|ǵ|2𝛼2|E1|2.
|M4(t,R1)|2 = |ǵ[𝜙I – 𝜔R1]|2,
|M4(t,R1)|2 = [|ǵ|2]|[𝜙I – 𝜔R1]|2,
|M4(t,R1)|2 ≤ 2[|ǵ|2][𝜙2|I|2 +𝜔2|R1|2],

|M4(t,R1)|2 ≤ 2|ǵ|2𝜙2|I|2 [1 + 𝜔
2|R1|2

𝜙2|I|2
] ,

|M4(t, ,R1)|2 <K5 [1 + |R1|2] ,
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under the situation

𝜔2|R1|2

𝜙2|I|2
< 1,

where

K4 = 2|ǵ|2𝜙2|I|2.
|M5(t,B1)|2 = |ǵ[𝜎I + 𝜈𝛽eSB1 – 𝜔2B1]|2,
|M5(t,B1)|2 = (ǵ)2|[𝜎I + (𝜈𝛽eS – 𝜔2)B1]|2,
|M5(t,B1)|2 ≤ 2(ǵ)2[𝜎2|I|2 + (𝜈𝛽eS – 𝜔2)2|B1|2],
|M5(t,B1)|2 ≤ 2(ǵ)2[𝜎2|I|2 + {2𝜈2𝛽2

e |S|
2 + 2𝜔2

2}|B1|2],

|M5(t, s,E, I,B1,R)|2 ≤ 2𝜎2(ǵ)2|I|2 [1 + {2𝜈
2𝛽2

e |S|2 + 2𝜔2
2}|B1|2

𝜎2|I|2
] ,

|M5(t,B1)|2 <K4[1 + |B1|2],

under the situation

{2𝜈2𝛽2
e |S|2 + 2𝜔2

2}|B1|2

𝜎2|I|2
< 1,

where

K5 = 2(ǵ)2𝜎2(|I|)2.

Hence the linear growth criteria is satisfied.
Now we verify the Lipschitz condition as follows.
If

|M1(t, s1) –M1(t, S2)|2 = |[–𝛽h𝜇E – 𝜈𝛽eB – 𝜔]|2|(S1 – S2)|2,
|M1(t, s1) –M1(t, S2)|2 = |[–(𝛽h𝜇E + 𝜈𝛽eB) – 𝜔]|2|(S1 – S2)|2,
|M1(t, s1) –M1(t, S2)|2 ≤ [2(𝛽h𝜇E + 𝜈𝛽eB)2 + 2(𝜔)2]|(S1 – S2)|2,
|M1(t, s1) –M1(t, S2)|2 ≤ [4𝜇2𝛽2

h|E|
2 + 4𝜈2𝛽2

e |B|
2 + 2𝜔2]|(S1 – S2)|2,

|M1(t, s1) –M1(t, S2)|2 ≤ [4𝜇2𝛽2
h sup
t∈DE

|E|2 + 4𝜈2𝛽2
e sup
t∈DB

|B|2 + 2𝜔2] sup
t∈D(S1–S2)

|(S1 – S2)|2,

|M1(t, s1) –M1(t, S2)|2 ≤ [4𝜇2𝛽2
h∥E∥2∞ + 4𝜈2𝛽2

e ∥B∥2∞ + 2𝜔2]∥(S1 – S2)∥2∞,
|M1(t, s1) –M1(t, S2)|2 ≤ K̄1∥(S1 – S2)∥2∞,

where

K̄1 = 4𝜇2𝛽2
h∥E∥2∞ + 4𝜈2𝛽2

e ∥B∥2∞ + 2𝜔2.
|M2(t,E1) –M2(t,E2)|2 = |[𝜇𝛽hS – 𝛼 – 𝜔]|2|(E1 – E2)|2,
|M2(t,E1) –M2(t,E2, I,B,R)|2 ≤ [2|𝜇𝛽hS|2 + 2|𝛼 +𝜔|2]|(E1 – E2)|2,
|M2(t,E1) –M2(t,E2)|2 ≤ [2|𝜇2𝛽2

h|S|
2 + 4𝛼2 + 4𝜔2]|(E1 – E2)|2,

|M2(t,E1) –M2(t,E2)|2 ≤ [2|𝜇2𝛽2
h sup
t∈DS

|S|2 + 4𝛼2 + 4𝜔2] sup
t∈D(E1–E2)

|(E1 – E2)|2,

|M2(t,E1) –M2(t,E2)|2 ≤ [2|𝜇2𝛽2
h∥S∥2∞ + 4𝛼2 + 4𝜔2]∥(E1 – E2)∥2∞,

|M2(t,E1) –M2(t,E2)|2 ≤ ̄K2∥(E1 – E2)∥2∞,
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where

K̄2 = 2|𝜇2𝛽2
h∥S∥2∞ + 4𝛼2 + 4𝜔2.

|M3(t, I1) –M3(t, I2)|2 = |[–𝜙 – 𝜔1 – 𝜔]|2|(I1 – I2)|2,
|M3(t, I1) –M3(t, I2)|2 ≤ [2𝜙2 + 2𝜔2

1 + 2𝜔2] sup
t∈D(I1–I2)

|(I1 – I2)|2,

|M3(t, I1) –M3(t, I2)|2 ≤ [2𝜙2 + 2𝜔2
1 + 2𝜔2]∥(I1 – I2)∥2∞,

|M3(t, I1) –M3(t, I2)|2 ≤ ̄K3∥(I1 – I2)∥2∞,

where

K̄3 = 2𝜙2 + 2𝜔2
1 + 2𝜔2.

|M4(t,R1) –M4(t,R2)|2 = |𝜔|2|R1 – R2|2,
|M4(t,R1) –M4(t,R2)|2 = |𝜔|2|R1 – R2|2,
|M4(t,R1) –M4(t,R2)|2 =𝜔2|R1 – R2|2,
|M4(t,R1) –M4(t,R2)|2 ≤𝜔2 sup

t∈D(R1–R2)
|R1 – R2|2,

|M4(t,R1) –M4(t,R2)|2 ≤𝜔2∥(R1 – R2)∥2∞,
|M4(t,R1) –M4(t,R2)|2 ≤ ̄K5∥(R1 – R2)∥2∞,

where

̄K4 =𝜔2.

|M5(t,B1) –M5(t,B2)|2 = |𝜈𝛽eS – 𝜔2|2|(B1 – B2)|2,
|M5(t,B1) –M5(t,B2)|2 = [2𝜈2𝛽2

e |S|
2 + 2𝜔2

2]|(B1 – B2)|2,
|M5(t,B1) –M5(t,B2)|2 = [2𝜈2𝛽2

e sup
t∈D(s)

|S|2 + 2𝜔2
2] sup

t∈D(B1–B2)
|(B1 – B2)|2,

|M5(t,B1) –M5(t,B2)|2 = [2𝜈2𝛽2
e ∥S∥2∞ + 2𝜔2

2]∥(B1 – B2)∥2∞,
|M5(t,B1) –M5(t,B2)|2 ≤ ̄K4∥(B1 – B2)∥2∞,

where

̄K5 = 2𝜈2𝛽2
e ∥S∥2∞ + 2𝜔2

2.

The system 2 therefore has a unique solution under the following conditions using global
derivative impact results.

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{2(𝜇𝛽h)2|E|2+4(𝜈𝛽e)2|B|2+4(𝜔)2}|S1|2
∝2 ,

𝜇2𝛽2
h |S|

2

2𝛼2+2𝜔2 ,

|I1|2{2𝜙2+2𝜔2
1+2𝜔2}

|E|2𝛼2 ,

𝜔2|R1|2

𝜙2|I|2 ,

{2𝜈2𝛽2
e |S|

2+2𝜔2
2}|B1|

2

𝜎2|I|2 ,

< 1

PLOS ONE https://doi.org/10.1371/journal.pone.0319684 March 31, 2025 17/ 26

https://doi.org/10.1371/journal.pone.0319684


ID: pone.0319684 — 2025/3/29 — page 18 — #18

PLOS ONE Modeling Cholera Epidemic with Asymptomatic Measures for Early Detection

5 Global stability analysis
The Lyapunovs approach and LaSalles invariance concept are used to show the global sta-
bility assessment and estimate the necessary conditions for the eradication of disease see
in [42].

5.1 Lyapunov first derivative
The Lyapunov function for the endemic equilibrium, denoted as {S∗,E∗, I∗,R∗,B∗}, with
L > 0, is represented by F∗.

Theorem 3: If the reproductive number R0 > 1 , then the endemic F∗ of the cholera disease
outbreak is globally asymptotically stable.

Proof: By definition, we get

L(S∗, E∗, I∗, B∗, R∗) = {S – S∗ – S∗ log
S∗

S
} + {E – E∗ – E∗ log

E∗

E
}

+{ I – I∗ – I∗ log
I∗

I
} + {B – B∗ – B∗ log

B∗

B
}

+{R – R∗ – R∗ log
R∗

R
}

dL
dt

= (S – S
∗

S
) d
dt
S + (E – E∗

E
) d
dt
E + ( I – I

∗

I
) d
dt
I

+(B – B∗

B
) d
dt
B + (R – R∗

R
) d
dt
R

= (S – S
∗

S
){∝ –𝜇𝛽hSE – 𝜈𝛽eSB – 𝜔S} + (E – E∗

E
){𝜇𝛽hSE

–𝛼E – 𝜔E} + ( I – I
∗

I
){𝛼E – 𝜙I – 𝜔1I – 𝜔I} + (

R – R∗

R
){𝜙I – 𝜔R}

+(B – B∗

B
){𝜎I + 𝜈𝛽eSB – 𝜔2B}

Substituting S = (S – S∗), E = (E – E∗), I = (I – I∗), B = (B – B∗), and R = (R – R∗).

dL
dt

= (S – S
∗

S
){∝ –(𝜇𝛽h(E – E∗) + 𝜈𝛽e(B – B∗) +𝜔)(S – S∗)}

+(E – E∗

E
){(𝜇𝛽h(S – S∗) – 𝛼 – 𝜔)(E – E∗)}

+( I – I
∗

I
){𝛼(–E∗ + E) – (𝜙 +𝜔1 +𝜔)(–I∗ + I)}

+(B – B∗

B
){𝜎(I – I∗) + (𝜈𝛽e(S – S∗) – 𝜔2)(B – B∗)}

+(R – R∗

R
){𝜙(–I∗ + I) – 𝜔(R – R∗)},

dL
dt

= ∝+1
S
(∝ S∗) – 1

S
(𝜇𝛽h(S – S∗)2E) +

1
S
(𝜇𝛽h(S – S∗)2E∗) –

1
S
(𝜈𝛽e(S – S∗)2) +

1
S
(𝜈𝛽e(S – S∗)2B∗) –

1
S
(𝜔(S – S∗)2) +

1
E
(𝜇𝛽h(E – E∗)2S) – 1

E
(𝜇𝛽h(E – E∗)2S∗) – 1

E
(𝛼(E – E∗)2)

–
1
E
(𝜔(E – E∗)2) + 𝛼E – 𝛼E∗ – 1

I
(𝛼EI∗) – 1

I
(𝜙(I – I∗)2)
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+1
I
(𝛼E∗I∗) – 1

I
(𝜔1(I – I∗)2) –

1
I
(𝜔(I – I∗)2) + 𝜎I – 𝜎I∗ –

1
B
(𝜎IB∗) + 𝜎I

∗B∗

B
+ 1
B
(𝜈𝛽e(B – B∗)2S) – 1

B
(𝜈𝛽e(B – B∗)2S∗)

–
1
B
(𝜔2(B – B∗)2) + 𝜙I – 𝜙I∗ – 1

R
(𝜙IR∗) + 1

R
(𝜙R∗I∗)

–
1
R
(𝜔(R – R∗)2) ,

which can be written as
dL
dt
= 𝔑 –ℜ,

where

𝔑 = ∝+1
S
(∝ S∗) + 1

S
(𝜇𝛽h(S – S∗)2E∗) +

1
S
(𝜈𝛽e(S – S∗)2B∗)

+ 1
E
(𝜇𝛽h(E – E∗)2S) + 1

I
(𝛼E∗I∗) + 1

B
(𝜎I∗B∗) +

1
B
(𝜈𝛽e(B – B∗)2S) + 𝛼E + 𝜎I + 𝜙I + 1

R
(𝜙I∗R∗) ,

and

ℜ = 1
S
(𝜇𝛽h(S – S∗)2E) +

1
S
(𝜈𝛽e(S – S∗)2) +

1
S
(𝜔(S – S∗)2) +

1
E
(𝜇𝛽h(E – E∗)2S∗) + 1

E
(𝛼(E – E∗)2) + 𝛼E∗ + 1

E
(𝜔(E – E∗)2)

+1
I
(𝜙(I – I∗)2) + 1

I
(𝜔1(I – I∗)2) +

1
I
(𝜔(I – I∗)2) + 1

I
(𝛼EI∗)

+ 1
B
(𝜎IB∗) + 1

B
(𝜈𝛽e(B – B∗)2S∗) + 1

B
(𝜔2(B – B∗)2)

+ 1
R
(𝜙IR∗) + 1

R
(𝜔(R – R∗)2) + 𝜎I∗ + 𝜙I∗.

We conclude that if𝔑 <ℜ, this yields FFM
0 D𝜉,𝜏

t L < 0, However, in the case where the S = S∗,
E = E∗, I = I∗, B = B∗, and R = R∗.
𝔑 <ℜ ⇒ FFM

0 D𝜉,𝜏
t L = 0.

Now
{(S∗,E∗, I∗,B∗,R∗)∈ Γ ∶ FFM

0 D𝜉,𝜏
t L = 0} illustrates the point F∗ for the accomplished

model.
In accordance with Lasalles’ theory of consistency, the system F∗ is uniform stability across

the globe in Γ if 𝔑 <ℜ.

6 Computational analysis with Fractal-Fractional operator
The requirements that need to be fulfilled in order for our solution to attain global stability are
examined in this part, and we make understanding of them by utilizing to Lyapunov functions
and the LaSalle principle. Using the Fractal Fractional with Mittag-Leffler Kernel Model 1 so
we have

FFM
0 D𝜉, 𝜏

t S(t) = S1(t,Γ),
FFM
0 D𝜉, 𝜏

t E(t) = E1(t,Γ),
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FFM
0 D𝜉, 𝜏

t I(t) = I1(t,Γ),
FFM
0 D𝜉, 𝜏

t B(t) = B1(t,Γ),
FFM
0 D𝜉, 𝜏

t R(t) = R1(t,Γ).

By using Mittag Laffler kernel, we get

S(t(1+𝜉)) = S0 +
(1 – 𝜏)𝜉
AB(𝜏) t𝜏–1𝜉 S1(M(t𝜉)) + ħ

𝜉
∑
ℜ=0

S1(𝜚,Γ)𝜚𝜏–1(t𝜉+1 – 𝜚)d𝜚,

E(t(1+𝜉)) = E0 +
1 – 𝜏
AB(𝜏) t

𝜏–1
𝜉 E1(M(t𝜉)) + ħ

𝜉
∑
ℜ=0

E1(𝜚,Γ)𝜚𝜏–1(t𝜉+1 – 𝜚)d𝜚,

I(t(1+𝜉)) = I0 +
1 – 𝜏
AB(𝜏) t

𝜏–1
𝜉 I1(M(t𝜉)) + ħ

𝜉
∑
ℜ=0

I1(𝜚,Γ)𝜚𝜏–1(t𝜉+1 – 𝜚)d𝜚,

B(t(1+𝜉)) = B0 +
1 – 𝜏
AB(𝜏) t

𝜏–1
𝜉 B1(M(t𝜉)) + ħ

𝜉
∑
ℜ=0

B1(𝜚,Γ)𝜚𝜏–1(t𝜉+1 – 𝜚)d𝜚,

R(t(1+𝜉)) = R0 +
1 – 𝜏
AB(𝜏) t

𝜏–1
𝜉 R1(M(t𝜉)) + ħ

𝜉
∑
ℜ=0

R1(𝜚,Γ)𝜚𝜏–1(t𝜉+1 – 𝜚)d𝜚.

where

M(t𝜉) = (t𝜉 ,B(t𝜉), S(t𝜉),E(t𝜉), I(t𝜉),R(t𝜉)).

Now

S𝜉+1 = S0 + 𝜏(△t)𝜏
Γ(𝜉+2)∑

𝜉
ℜ=0 [t

𝜏–1
ℜ S1(M(t𝜉)) {𝟋}

–t𝜏–1ℜ–1S1(N(t𝜉+1))((𝜉 –ℜ + 1)𝜏+1 – (𝜉 –ℜ)𝜏(𝜉 –ℜ + 1 + 𝜏))],

E𝜉+1 = E0 + 𝜏(△t)𝜏
Γ(𝜉+2)∑

𝜉
ℜ=0 [t

𝜏–1
ℜ E1(M(t𝜉))(𝟋)

–t𝜏–1ℜ–1E1(N(t𝜉+1))((𝜉 –ℜ + 1)𝜏+1 – (𝜉 –ℜ)𝜏(𝜉 –ℜ + 1 + 𝜏))],

I𝜉+1 = I0 + 𝜏(△t)𝜏
Γ(𝜉+2)∑

𝜉
ℜ=0 [t

𝜏–1
ℜ I1(M(t𝜉))(𝟋)

–t𝜏–1ℜ–1I1(N(t𝜉+1))((𝜉 –ℜ + 1)𝜏+1 – (𝜉 –ℜ)𝜏(𝜉 –ℜ + 1 + 𝜏))],

B𝜉+1 = B0 + 𝜏(△t)𝜏
Γ(𝜉+2)∑

𝜉
ℜ=0 [t

𝜏–1
ℜ B1(M(t𝜉))(𝟋)

–t𝜏–1ℜ–1B1(N(t𝜉+1))((𝜉 –ℜ + 1)𝜏+1 – (𝜉 –ℜ)𝜏(𝜉 –ℜ + 1 + 𝜏))],

R𝜉+1 = R0 + 𝜏(△t)𝜏
Γ(𝜉+2)∑

𝜉
ℜ=0 [t

𝜏–1
ℜ R1(M(t𝜉))(𝟋)

–t𝜏–1ℜ–1R1(N(t𝜉+1))((𝜉 –ℜ + 1)𝜏+1 – (𝜉 –ℜ)𝜏(𝜉 –ℜ + 1 + 𝜏))].

where

(N(t𝜉+1)) = (t1+𝜉 , S(t𝜉+1), I(t𝜉+1),E(t𝜉),B(t𝜉+1),R(t𝜉+1)),
𝟋 = (𝜉 –ℜ + 1)𝜏(𝜉 –ℜ + 2 + 𝜏) – (𝜉 –ℜ)𝜏(𝜉 –ℜ + 2 + 2𝜏).
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(a) (b)

Fig 7. Using Fractal-Fractional operator, the value of S(t) at multiple dimensions with different fractional values (a) 0.6 dimension (b) 0.8 dimension.

https://doi.org/10.1371/journal.pone.0319684.g007

7 Simulation and discussion
We employed the fractal-fractional derivative of the cholera model being connected to the
Mittag-Leffler operator under preset initial conditions to investigate disease transmission
employing simulations that comprised both symptomatic and asymptomatic modes of trans-
fer. The simulation data for both dimensions are displayed in Figs 7–11 with different frac-
tional order values 0.6 and 0.8. The effectiveness of the obtained theoretical implications
is illustrated by a number of cases. Reliable findings are obtained when non-integers para-
metric possibilities are used for cholera disease, taking consideration of both symptomatic
and asymptomatic propagation. Figs 7, 8, 9, 10 and 11 display the outcome for each sub-
compartment in dimensions 0.66 and 0.8. A computerized simulation for the fractional-order
cholera model is generated via MATLAB coding, taking into account both symptomatic and
asymptomatic propagation. The parameters values which are adopted from [21], are 𝜇 = 0.01 ,
∝= 0.00005480 , 𝛽e = 0.124 , 𝛽h = 0.04444 , 𝜎 = 0.0006 , 𝛼 = 0.034 , 𝜈 = 0.02 , 𝜙 = 0.029, along
with the initial numerical values S0 = 200, E0 = 160, I0 = 120, B0 = 130, and R0 = 100 which
are employed in the developed system. Fig 7 depicts the behavior of susceptible people, indi-
cated by S. The number of persons grows and then steadies after a brief rapid fall, reaching
at steady state at dimensions 0.6 and 0.8, respectively. Figs 8, 9, and 10 indicate the exposed
peoples, infected people, and the existence of vibrio in the climate. In both scenarios, the pop-
ulation grows at first and steadies at dimensions of 0.6 and 0.8, respectively, after a while all
sub-compartments approaching at steady state. Fig 7 shows the dynamics of Recovered people
(R), showing an initial rise, a subsequent decrease, and a point of equilibrium at dimensions
of 0.6 and 0.8, respectively.

A combination of immune-system-boosting tactics and treatment causes infected persons
to fall significantly, as demonstrated in Figs 9, 10 and 11 using various dimensions. It is found
that behaviors are similar when utilizing dimensions of either 0.8 or 0.6 with small effects;
however, they produce more appropriate outcomes by decreasing dimensions. Addition-
ally, the infected increases due to an increase in Vibrio virus in the environment, as shown in
Figs 8a, 9a, and 8b, 9b, respectively. The work makes predictions about the future and offers
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(b)(a)

Fig 8. Using Fractal-Fractional operator, the value of E(t) at multiple dimensions with different fractional values (a) 0.6 dimension
(b) 0.8 dimension.

https://doi.org/10.1371/journal.pone.0319684.g008

(b)(a)

Fig 9. Using Fractal-Fractional operator, the value of I(t) at multiple dimensions with different fractional values (a) 0.6 dimension (b) 0.8
dimension.

https://doi.org/10.1371/journal.pone.0319684.g009

better strategies for reducing the level of cholera that spreads through the gastrointestinal
tract. For all sub-compartments at fractional derivatives, the FFM approach provides superior
results than the standard derivatives. It is observed that cholera infected either asymptomatic
or symptomatic rises due to vibrio bacterial increase in the environment and approach to sta-
ble situation as will as reduces due to control in the stabilization of vibrio bacteria spread in
the environment released from cholera infected individuals. Infection can be reduced more
effectively by early detection on asymptomatic individuals at acute stage, then automatically
symptomatic will reduces, also need to elimination of released infected vibrio bacteria in
the environment. Furthermore, it is claimed that lowering dimensions and fractional values
improves the dependability and precision of the solutions for every compartment. Researchers
may be able to predict what this study can support in the future.
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(a) (b)

Fig 10. Using Fractal-Fractional operator, the value of B(t) at multiple dimensions with different fractional values (a) 0.6 dimension (b)
0.8 dimension

https://doi.org/10.1371/journal.pone.0319684.g010

(b)(a)

Fig 11. Using Fractal-Fractional operator, the value of R(t) at multiple dimensions with different fractional values (a) 0.6 dimension (b)
0.8 dimension.

https://doi.org/10.1371/journal.pone.0319684.g011

8 Conclusion
A fractional-order dynamics cholera disease model that includes asymptomatic cases healed
without medical intervention is discussed in this research as well as symptomatic cases includ-
ing vibrio bacterial infection spread in the environment are under consideration in this inves-
tigation. Using a fractal-fractional operator (FFO) with a Mittag-Leffler kernel for the solu-
tions’ dependability to examined the continuous monitoring of spread of cholera. For those
with vigorous immune systems, we offer advice on how to prevent the spread of disease by
using asymptomatic measures for early detection, consequently avoiding the need for medica-
tion which is helpful for better control measures. The full global impact of the deadly cholera
disease with and without symptoms is being examined to see the rate of impact of cholera
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spread in the environment. In order to verify the created system which is stable or not in a
continuous dynamical system, it is necessary to analyzed developed system quantitatively
and qualitatively. Next generation technique is utilized to determine the verge condition to
observe the rate of spread and also identify that how much parameters are sensitive and we
need to maintain the rate of each parameter in specified range. We also examine the results of
global efforts to halt the propagation of cholera.

The FFO is utilized to provide accurate and plausible results together with a range of frac-
tional values for ongoing viral spread monitoring. We utilized numerical simulations with
MATLAB to witness the real-world dynamics of controlling cholera disease in society by com-
bining asymptomatic and symptomatic interventions to strengthen the immune system and
early detection measures. Furthermore, in order to establish control strategies to reduce the
threat of cholera in the society, numerical simulation can be used to ascertain the true nature
of cholera affects in society using various fractional values. It is being observed that a strong
immune system and a combination of treatment modalities are responsible for a rapid elim-
ination of cholera disease, also helpful in reducing the vibrio bacteria release from cholera
infected individuals spread in the surrounding environment. On the basis of verified findings,
predictions can also be produced for additional study, which will help with early detection
and climate diffusion caused by the cholera virus.
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