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ABSTRACT

Currently, the use of multi-objective optimization algorithms has been applied in many fields to find the efficient solution of

the multiple objective optimization problems (MOPs). However, this reduces their efficiency when addressing MaOPs, which are

problems that contain more than three objectives; this is because the portion of the Pareto frontier solutions tends to increase

exponentially with the number of objectives. This paper aims at overcoming this problem by proposing a new Many-Objective

Arithmetic Optimization Algorithm (MaOAOA) that incorporates a reference point, niche preservation, and an information feed-

back mechanism (IFM). They did this in a manner that splits the convergence and the diversity phases in the middle of the cycle.

The first phase deals with the convergence using a reference point approach, which aims to move the population towards the

true Pareto Front. However, the diversity phase of the MaOAOA uses a niche preserve to the archive truncation method in the

population, thus guaranteeing that the population is spread out properly along the actual Pareto front. These stages are mutual;

that is, the convergence stage supports the diversity stage, and they are balanced by an (IFM) approach. The experimental results

show that MaOAOA outperforms several approaches, including MaOTLBO, NSGA-III, MaOPSO, andMOEA/D-DRW, in terms of

GD, IGD, SP, SD, HV, and RTmetrics. This can be seen from the MaF1-MaF15 test problems, especially with four, seven, and nine

objectives, and five real-world problems that include RWMaOP1 to RWMaOP5. The findings indicate that MaOAOA outperforms

the other algorithms in most of the test cases analyzed in this study.
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1 | Introduction

Multiobjective evolutionary algorithms (MOEAs), over recent
decades, have become a staple in addressing multiobjective
optimization problems (MOPs). These algorithms have been
instrumental in various applications. For instance, the issue
of estimating voltage transformer ratio errors [1] is effectively
framed as a MOP. Similarly, the challenge of restoring ser-
vices in distribution systems has been tackled using MOEAs [2].
Additionally, MOEA/D, a specific variant of MOEAs, has been
employed for optimizing paths in welding robot operations [3]
and for efficient scheduling in distributed, heterogeneous weld-
ing flow shops [4]. From amathematical standpoint, a MOPwith
multiple objectives is defined by Equation (1),

ý (ý) = {ÿ1(ý), ÿ2(ý), . . . , ÿÿ(ý)}

ý ∈ ÿ (1)

,whereÿ ⊂ ℝ
ÿ represents the multi-dimensional decision space.

In this context, ý ∈ ÿ denotes a set of decision variables
associated with a potential solution, and ý (ý) ⊂ ýý refers
to the objective mapping that includes the objective func-
tion

{
ÿ1(ý), ÿ2(ý), . . . , ÿÿ(ý)

}
. In multiobjective optimization, a

unique, universally optimal solution that simultaneously opti-
mizes all objectives is not feasible. This is where Multiobjective
Evolutionary Algorithms (MOEAs) excel, as they are adept at
identifying a set of potentially optimal solutions for such com-
plex problems. A solution is deemed Pareto optimal if no other
solution dominates it. The collective set of all these Pareto opti-
mal solutions forms the Pareto set (PS), and the corresponding set
of their objective vectors is known as the Pareto Front (PF) shown
in Figure 1.

In the last few decades, the development of MOEAs [5] has
been impressive. Although these algorithms are useful in solv-
ing MOPs [6], they cannot efficiently solve MOPs with more
than three objectives [7], also known as MaOPs [8]. A crit-
ical issue in MaOPs is the reduction of the effectiveness of
dominance concepts in separating solutions when the num-
ber of objectives is high. This leads to less selection pressure
in Pareto-dominance-based MOEAs, which causes poor conver-
gence in MaOPs. Another challenge is to closely approximate
the entire Pareto front (PF) using a finite set of solutions in
a high-dimensional objective space. To address these concerns,
numerous methods have been proposed to improve the perfor-
mance of MOEAs in solving MaOPs and can be classified into
four main categories.

The first group is dominance-based MOEAs. For MaOPs, most
traditional Pareto dominance methods such as NSGA-II [9] and
SPEA2 [10] are not very efficient. New dominance relations have
been developed, for example, ε-dominance [11], α-dominance
[12], and fuzzy-dominance [13]. For example, in [14], a grid
dominance-based method was proposed that incorporated three
fitness assignment criteria to enhance selection pressure. Yuan
et al. [15] employed ÿ-dominance in order to improve the con-
vergence rate. Furthermore, a ranking-dominance method was
proposed in [16], where the solutions are ranked based on each
objective with respect to Pareto dominance, which helps in differ-
entiating between solutions and guiding the search toward the

Pareto front. Li et al. [17] proposed a multi-indicator algorithm

that used a new stochastic ranking to address this issue. Qiu et al.

[18] proposed a fractional dominance relation in which domi-

nance was quantified by a fraction. These changes in dominance

relations aid in avoiding local optima and accelerating conver-

gence by eliminating the dominance-resistant solutions [19].

However, these adaptations also present some problems to

MOEAs, for example, loss of diversity or failure to find solu-

tions near the PF boundary [20]. Furthermore, the performance

of density estimators such as crowding distance degrades when

the problem has three or more objectives. To overcome these dif-

ficulties, new dominance relations such as SDE [21], DMO [22],

and ývarepsilon+ [23] have been proposed.

This is the second category in the family of Multiobjective

Evolutionary Algorithms (MOEAs) and is referred to as the

indicator-based approach. Some of the indicators in this cate-

gory include the IGD-NS used in AR-MOEA [24] and the nadir

point estimation method in MaOEA/IGD [25]. Other important

examples are the S-metric selection-based method (SMS-EMOA)

[26], the indicator-based evolutionary algorithm (IBEA) [27], and

the Lebesgue indicator-based LIBEA [28]. DNMOEA/HI [29]

proposed a dynamic neighborhoodMOEA that employed the HV

[30] to estimate theHV of a single solution by using slicing. Bader

et al. [31] proposed a fast search technique based onMonte Carlo

simulations to estimate the exactHV values. Although these algo-

rithms are useful, they encounter the issue of high computational

time when determining the exact HV in many-objective prob-

lems (MaOPs). In [32], a new metric was proposed to measure

the influence of a subspace on solutions, namely the population

forward distance pushed by solutions from this subspace.

The third category is the decomposition-based approaches.

These strategies use a “divide and conquer” approach in

which a MOP is divided into a number of sub-MOPs to be

solved successively. MOEA/D [33], Many-objective evolution-

ary algorithm based on decomposition with dynamic random

weights (MOEA/D-DRW) [34], Many-Objective Teaching Learn-

ing Based Optimizer (MaOTLBO) [35], Many-Objective Parti-

cle Swarm Optimizer (MaOPSO) [36], Non-Dominated Sorting

Genetic Algorithm-III (NSGA-III) [37], and many other algo-

rithms that have followed [38, 39]. In [40], an angle penalized

distance (APD) scalarization approach was employed to con-

trol the convergence and the diversity of solutions. Liu et al.

[41] divided the problem into subproblems and solved each sub-

problem through collaboration with the intent of maintaining

the population diversity. In [42], a surrogate-assisted, reference

vector guided algorithm was proposed for solving MaOPs with

reduced computational complexity. DMaOEA-εC [43] proposes a

dual-update approach to maintain boundary solutions in a series

of decomposed sub-problems. In [44], measures that include dual

reference points and multiple search directions were proposed

to ensure that high-performance populations are maintained

even if the PF shape is unknown. The decomposition-based

MOEAs have gained considerable attention since the introduc-

tion of MOEA/D in the past decade; however, their performance

depends on the predefined reference vectors and chosen aggre-

gation functions, which gives rise to uncertainty regarding the

efficiency of these approaches for different problems.
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FIGURE 1 | Many-objective all definitions in the search space of the MaO-problem.

In addition to the three categories of Multiobjective Evolution-

ary Algorithms (MOEAs) [45] that have been discussed earlier,

there is another category focusing on many-objective problems

(MaOPs) [46], and some of the algorithms that fall into this cat-

egory include those described in [47]. For instance, Li et al. [48]

used two archives in the evolutionary process: one for improv-

ing convergence and the other for diversity. Another attempt has

been made in [49], where the external archive steered the search

pattern and amethod called balanceable fitness estimation (BFE)

was proposed to enhance the selection pressure towards the true

Pareto Front (PF). Wang et al. proposed a set of algorithms [50,

51], called PICEAs, which incorporate preference information

from decision makers to support the construction of approxima-

tion sets. Moreover, Li et al. [52] introduced a meta-objective

optimization approach that treats many-objective problems as

bi-objective optimization problems with goals on proximity and

diversity.

Numerous research studies have investigated MaOPs, paying

attention to convergence and diversity but neglecting how each

decision variable affects these objectives. In otherwords, previous

approaches mainly modeled decision variables in an aggregate

sense without regard for their disaggregation. However, recent

studies [53, 54] have suggested that the effect of decision variables

on convergence and diversity is not deterministic. This realiza-

tion provides a way of identifying the nature of each decision

variable and classifying it before the optimization stage. Hence,

algorithms can then focus on certain decision variables to speed

up convergence or increase diversity. Consequently, our approach

attempts to reduce the complexity of the optimization of MaOPs

by categorizing decision variables in advance in order to enhance

the results.

Recent studies in large-scale optimization show that the char-

acteristics of each decision variable play a crucial role in deter-

mining the final convergence and solution space. For example,

MOEA/DVA [55] proposed a non-dominated sorting-based deci-

sion variables classification (DVC) that classified variables

based on the relative size of the non-dominated fronts of the

population for each variable. In LMEA [56], solution sam-

ples are generated by changing the value of each variable,

and decision variable grouping is done based on the angle

between each variable’s fitted solution line and the hyper-

plane normal line. These methods help in the simplification

of the optimization problem by dividing the decision vari-

ables into different categories. After DVC, variables are cat-

egorized as convergence-oriented, diversity-oriented, or both.

Nevertheless, the dominance-based method in MOEA/DVA

might provide imprecise variable classifications due to its

application in large-scale optimization using DVC approaches

[57]. Many-objective optimization problems (MaOPs) present

increased interest among researchers because they require com-

prehensive study in engineering along with economics and

decision-making systems. Traditional multi-objective optimiza-

tion algorithms fail to achieve adequate convergence-diversity

balance as object numbers increase, so researchers created spe-

cialized advanced evolutionary algorithms for MaOPs. Three dif-

ferent strategies have emerged to boost the performance of EAs

whenhandling complex problems: strengthened dominance rela-

tions [58], adaptive neighborhood-based selection mechanisms

[59] and adaptive mating with environmental selection [60].

The research continues to focus on maintaining diversity within

high-dimensional objective spaces and achieving convergence to

the true Pareto front because these challenges persist despite

recent algorithmic advancements.

For this purpose, a new method is proposed for a better balance

between convergence and diversity in many-objective optimiza-

tion: Arithmetic Optimization Algorithm (AOA) [61], Informa-

tion Feedback Mechanism, Reference Point-Based Selection and

Association, Non-dominated Sorting, Niche Preservation, and

Density Estimation-based Many-Objective Arithmetic Optimiza-

tion Algorithm (MaOAOA). For generating offspring, a new IFM

technique is introduced for utilizing this historical information,

which increases the chances of getting good solutions and also

speeds up the convergence of the population.
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The Arithmetic Optimization Algorithm (AOA) demonstrates

superior performance compared to traditional genetic and differ-

ential evolution operators when addressing many-objective opti-

mization problems because of multiple important factors. AOA’s

foundation in simple arithmetic operations—addition, subtrac-

tion, multiplication, and division—offers a significant advan-

tage in terms of computational efficiency. AOA succeeds over

related optimization approaches that require complex algorithms

through its simple approach that minimizes computational

demands. The ability to handle high-dimensionalmany-objective

problems relies heavily on fast and effective search space explo-

ration because of this efficiency.

AOA demonstrates a remarkable strength because it automati-

cally controls exploration and exploitation dynamics, which are

vital to optimization algorithms. Basic mathematical operations

in AOA maintain the balance automatically because multiplica-

tion and division create broad exploration through large search

space jumps, yet addition and subtraction enable precise solution

refinement for improved exploitation. Many-objective optimiza-

tion requires this dual ability because it struggles to maintain

population diversity while reaching the Pareto front. GAs and

DE need careful parameter adjustment to achieve an equivalent

exploration-exploitation balance, but this process requires both

extensive time investment and problem-specific expertise. The

MaOAOA framework reaches higher effectiveness through its

implementation of an Information Feedback Mechanism (IFM).

The search procedure uses historical information from previous

runs to guide its operations while maintaining both promising

solutions and their effective application across generations. The

Information Feedback Mechanism in MaOAOA uses historical

data through population-based approaches for many-objective

optimization but remains specifically designed for this optimiza-

tion challenge. The feature serves as a fundamental part in pre-

serving solution diversity while fighting against premature con-

vergence, which regularly slows down traditional evolutionary

algorithms in intricate optimization situations.

The proposed reference-based selection approach in Many-

Objective Arithmetic OptimizationAlgorithm (MaOAOA) stands

out because it combines reference points with niche preservation

and Information Feedback Mechanism (IFM) to achieve balance

between convergence and diversity for many-objective optimiza-

tion problems (MaOPs). The proposed approach surpasses tradi-

tional reference-based methods since it uses Euclidean distance

to dynamically match solutions with reference points for bet-

ter Pareto front exploration efficiency. The approach both leads

solutions towards the true Pareto front and maintains diversity

through uniform distribution of solutions across the objective

space. The addition of niche preservation maintains boundary

solutions while preventing overcrowding of specific areas, which

leads to a uniform distribution of the Pareto front. Through

historical information, the IFM enhances its selection proce-

dure, which accelerates search convergence while simultane-

ously improving area exploration efficiency. The combinedmech-

anisms in this approach solve existing reference-based method

weaknesses by maintaining diversity and achieving better con-

vergence in high-dimensional objective spaces, which results

in enhanced robustness and effectiveness for solving complex

MaOPs.

The key contributions of this paper are:

1. The choice of AOAalgorithms is due to their effectiveness in
producing diverse and quality solutions in single-objective
problems. The above operator selection is beneficial to the
MaOAOA’s ability to explore and exploit the search space
due to the global search capability of AOA.

2. The paper proposes an Information Feedback Mechanism
(IFM) approach to address the shortcomings that have led to
the loss of valuable information. In the IFM, the combined
historical information of individuals using the weighted
sum method is passed on to the next generation. This guar-
antees that better convergence is achieved.

3. A reference point-based selection approach is followed to
select the solutions so that the selected solutions are not
only near the true Pareto-optimal front (convergence) but
also distributed over the entire Pareto-optimal front (diver-
sity), linking each solution to the closest reference point
based on the Euclidean distance and determining regions
in the objective space with a high density of solutions. The
non-dominated sorting approach helps the algorithm focus
on the solutions that are closer to the Pareto front, which
helps in convergence.

4. A niche preservation approach for boundary solutions is
introduced to enhance the population diversity and elimi-
nate those solutions that are likely to congest certain areas
of the objective space, thereby enhancing the convergence
speed of the algorithm. Moreover, a method for density esti-
mation for diversity preservation is described, which guar-
antees both uniform density and widespread population
across the area.

5. The performance of the proposedMaOAOA is tested against
MaOTLBO, NSGA-III, MaOPSO, andMOEA/D-DRWusing
the MaF1-MaF15 benchmark sets with four, seven, and
nine objectives, and five real-world problems, namely
RWMaOP1-RWMaOP5. Overall, the results of these experi-
ments show that MaOAOA is able to solve a variety of prob-
lems effectively, which supports its effectiveness.

The remainder of the paper is structured as follows: Section 2
introduces the AOA algorithm, Section 3 explains the proposed
MaOAOA algorithm, Section 4 presents the results and evalua-
tions, and Section 5 concludes the paper.

2 | Arithmetic Optimization Algorithm

Recently, a fresh meta-heuristic technique known as the Arith-
metic Optimization Algorithm (AOA) was unveiled [61]. This
algorithm incorporates four principal mathematical operations:
Addition (ý), subtraction (ÿ), division (ÿ), and multiplication
(ý). These operations are crucial in refining both the exploita-
tion and exploration stageswithin theAOA framework.However,
an initial step in theAOAprocess is determining the searchmech-
anism. This involves selecting a search area, guided by the Math
Optimizer Accelerated (MOA) function, which is defined by a
specific coefficient, detailed in Equation (2).

MOA(ý) = Min + ý ×
(
Max −Min

ÿ

)
(2)

4 of 29 Engineering Reports, 2025
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FIGURE 2 | Flowchart of the AOA optimizer.

This equationMOA(ý) factors in the functional value at a particu-
lar ýth iteration, alongside theÿ and ýmaximumand current num-
ber of iterations. The coefficient ý ranges between [1 ÿ ], while
Max andMin represent the lower and upper limits of the acceler-
ated function’s values.

AOA is noted for its straightforward configuration and its effi-
ciency in computational processing. As the algorithm progresses
iteratively, it employs arithmetic operations to pinpoint poten-
tial optimal solutions. Notably, multiplication (ý) and divi-
sion (ÿ) are key in creating significant iteration leaps, (ý)
and (ÿ) primarily used in the exploration phase, as depicted
in Equation (3).

ÿ(ý + 1) =

{
ÿbest(ý) ÷ (MOP + eps) × ((UB − LB) × ÿ + LB), ÿ2 < 0.5

ÿbest(ý) ×MOP × ((UB − LB) × ÿ + LB), else
(3)

Here, eps involves a minor integer, and ÿ a specially tailored
constant coefficient of 0.499 for this specific algorithm. Another
aspect ofMOP is the Math Optimizer Probability, representing a
coefficient that decreases non-linearly from 1 to 0 over successive
ýth iterations. This dynamic is formulated in Equation (4)

MOP = 1 −
(

ý

ÿ

)1∕ÿ

(4)

where ÿ is set as a fixed value of 5. Based on the insights derived
from Equation (3), it is apparent that multiplication (ý) and
division (ÿ) are effectively utilized during the search phase. In
contrast, the subtraction (ÿ) and addition (ý) operations focus
on local exploitation, generating smaller movements within the
search area. These two operations aremathematically articulated
for the exploitation phase in Equation (5).

ÿ(ý + 1) =

{
ÿbest(ý) −MOP × ((UB − LB) × ÿ + LB), ÿ3 < 0.5

ÿbest(ý) +MOP × ((UB − LB) × ÿ + LB), else
(5)

The flowchart of the AOA is shown as Figure 2.

3 | Proposed Many-Objective Arithmetic
Optimization Algorithm (MaOAOA)

MaOAOA algorithm starts with a random population of size
ý , ý no. of objectives, ý no. of partitions and generate a
set of reference points using Das and Dennis’s technique ÿ =(

ý + ý − 1
ý

)
, as ÿ ≈ ý . the current generation is ý, ýý

ÿ
and

ýý+1
ÿ

the ÿ-th individual at ý and (ý + 1) generation. ÿý+1
ÿ

the ÿ-th
individual at the (ý + 1) generation generated through the AOA
algorithm and parent population ÿý. the fitness value of ÿý+1

ÿ
is

ÿ ý+1
ÿ

andý ý+1 is the set of ÿý+1
ÿ
. Then, we can calculate ýý+1

ÿ
accord-

ing to ÿý+1
ÿ

generated through theAOAalgorithmand information
feedback mechanism (IFM) Equation (6).

ýý+1
ÿ

= ÿ1ÿ
ý+1
ÿ

+ ÿ2ý
ý
ý
; ÿ1 =

ÿ ý
ý

ÿ ý+1
ÿ

+ ÿ ý
ý

, ÿ2 =
ÿ ý+1

ÿ

ÿ ý+1
ÿ

+ ÿ ý
ý

, ÿ1 + ÿ2 = 1 (6)

where ýý
ý
is the ý th individual we chose from the ý th gener-

ation, the fitness value of ýý
ý
is ÿ ý

ý
, ÿ1 and ÿ2 are weight coeffi-

cients. Generate offspring population ýý. ýý is the set of ýý+1
ÿ

.

The combined population ýý = ÿý ∪ ýý is sorted into different
w-non-dominant levels

(
ý1, ý2, . . . , ýý . . . , ýý

)
. Begin from ý1,

all individuals in level 1 to ý are added to ÿý and remaining
members of ýý are rejected. If ||ÿý

|| = ý ; no other actions are
required, and the next generation is begun with ÿý+1 = ÿý. Oth-
erwise, solutions in ÿý∕ýý are included in ÿý+1 = ÿý∕ýý and the
rest

(
ÿ = ý − ||ÿý+1

||
)
individuals are selected from the last front

ýý(presented in Algorithm 1). For selecting individuals from ýý,
we use a niche-preserving operator First, each population mem-
ber of ÿý+1 and ýý is normalized (presented in Algorithm 2) by
using the current population spread so that all objective vectors
and reference points have commensurate values. Thereafter, each
member of ÿý+1 and ýý is associated (presented in Algorithm 3)
with a specific reference point by using the shortest perpen-
dicular distance (ý) of each population member with a refer-
ence line created by joining the origin with a supplied reference
point. Then, a careful niching strategy (described in Algorithm
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ALGORITHM 1 | Generation t ofMaOAOAalgorithmwith IFMpro-

cedure.

Input: N (Population Size),M (No. of Objectives), AOA
algorithm parameters, and Initial population Pt(t= 0)

Output: Qt+1 =AOA(Pt+1)
1: H Calculated using Das and Dennis’s technique, structured

reference pointsZs, supplied aspiration pointsZa, St =ÿ, i= 1
2: Proposed Information Feedback Mechanism (IFM)

AOA algorithm apply on the initial population Pt to generate
ÿý+1

ÿ
, calculate ýý+1

ÿ
according to ÿý+1

ÿ
can be expressed as

follows:
ýý+1

ÿ
= ÿ1ÿ

ý+1
ÿ

+ ÿ2ý
ý
ý
; ÿ1 =

ÿ ý
ý

ÿ ý+1
ÿ

+ÿ ý
ý

, ÿ2 =
ÿ ý+1

ÿ

ÿ ý+1
ÿ

+ÿ ý
ý

, ÿ1 + ÿ2 = 1

Qt =Qt; (Qt is the set of ý
ý+1
ÿ
)

3: Rt =Pt ∪ Qt

4: Different non-domination levels (F1, F2, . . . , Fl)=
Non-dominated-sort (Rt)

5: repeat
6: St = St ∪ Fi and i= i+ 1
7: until | St |≥N
8: Last front to be included: ýý = ∪ý

ÿ=1ýÿ

9: if | St |=N then
10: Pt+1 = St
11: else
12: Pt+1 = St/Fl
13: Point to chosen from last Front (Fl): K =N – |Pt+1|
14: Normalize objectives and create reference set Zr :

Normalize (f n, St, Z
r , Zs, Za); Brief Explanation in

Algorithm-2
15: Associate each member s of St with a reference point:

[ÿ(s), d(s)]=Associate (St, Z
r); Brief Explanation in

Algorithm-3% ÿ(s): closest reference point, d: distance
between s and ÿ(s)

16: Compute niche count of reference point j ∈ Zr : ÿÿ =∑
ý∈ýý∕ý ý

((ÿ(ý) = ÿ), ÿ ∶ ÿ);
17: Choose K members one at a time Fl to construct

Pt+1: Niching(K, ÿj, ÿ, d, Z
r , Fl, Pt+1); Represent in

Algorithm-4
18: end if

ALGORITHM 2 | Normalize (f n, St , Z
r , Zs/Za) procedure.

Input: St, Z
s (structured points) or Za (supplied points)

Output: f n, Zr (reference points on normalized hyper-plane)

1: for j= 1 toM do

2: Compute ideal point: ýmin
ÿ

= miný∈ýý
ÿÿ (ý)

3: Translate objectives: ÿ ′
ÿ
(ý) = ÿÿ (ý) − ýmin

ÿ
∀ý ∈ ÿý

4: Compute extreme points: Zj,max = s:

argminý∈ýý
ASF

(
ý, ýÿ

)
= where wj = (∈1, . . . , ∈j)t),

∈= 10−6, and ý
ÿ

ÿ
= 1

5: end for

6: Compute intercepts aj for j= 1, . . . , M

7: Normalize objectives ÿ ÿ
ÿ
(ÿ) using

ÿ ÿ
ÿ
(ÿ) =

ÿ ′
ÿ
(ÿ)

ÿÿ−ýmin
ÿ

, for ÿ = 1, 2, . . . ., ý

8: if Za is given then

9: Map each (aspiration) point on normalized hyper-plane ÿ ÿ
ÿ
(ÿ)

and save the points in the set Zr

10: else

11: Zr =ZS

12: end if

ALGORITHM 3 | Associate (St , Z
r) procedure.

Input: St, Z
r

Output: ÿ(s ∈ st), d(s ∈ st)
1: for each reference point Z Zr do
2: Compute reference line w= z
3: end for
4: for each (s ∈ st) do
5: for each w Zr do
6: Compute d⊥ (s, w)= s – wTs/|| w ||
7: end for
8: Assign ÿ(s)=w: argminÿ ∈ýÿý⊥(ý, ý)

9: Assign d(s)= d⊥(s, ÿ(s))
10: end for

ALGORITHM 4 | Niching (K, ÿj, ÿ, d, Z
r , Fl, Pt+1) procedure.

Input: K, ÿj, ÿ(s ∈ St), d(s ∈ St), Z
r , Fl,

Output: Pt+1
1: k= 1
2: while k≤K do
3: ýmin =

{
ÿ ∶ argminÿ∈ýÿÿÿ

}

4: ÿ = random
(
ýmin

)

5: ý
ÿ
=
{

ý ∶ ÿ(ý) = ÿ, ý ∈ ýý

}

6: if ý
ÿ
≠ ÿ then

7: if ÿ
ÿ
= 0 then

8: ÿý+1 = ÿý+1 ∪
(
ý ∶ argminý∈ý

ÿ
ýý

)

9: else
10: Pt+1 =Pt+1 ∪ random

(
ý

ÿ

)

11: end if
12: ÿ

ÿ
= ÿ

ÿ
+ 1, ýý = ýý∕ý

13: k= k+ 1
14: else
15: ýÿ = ýÿ∕{ÿ}

16: end if
17: end while

5) that improve the diversity of MaOAOA algorithm is employed
to choose those ýý members that are associated with the least
represented reference points niche count ÿÿ in ÿý+1 and check
termination condition is met. If the termination condition is not
satisfied, ý = ý + 1 than repeat, and if it is satisfied, ÿý+1 is gener-
ated, it is then applied to generate a new populationýý+1 by AOA
algorithm. Such a careful selection strategy is found to computa-
tional complexity ofý-Objectivesÿ

(
ý2logý−2ý

)
orÿ

(
ý2ý

)
,

whichever is larger (Algorithm 4).

The flow chart of the MaOAOA algorithm can be shown in
Figure 3.

4 | Results and Discussion

4.1 | Experimental Settings

4.1.1 | Benchmarks

In order to verify the effectiveness of the MaOAOA, the
MaF1-MaF15 [62] benchmark and five real world engineering

6 of 29 Engineering Reports, 2025
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FIGURE 3 | Flowchart of MaOAOA algorithm.

design are Car cab design (RWMaOP1) [63], 10-bar truss
structure (RWMaOP2) [64], Water and oil repellent fabric
development (RWMaOP3) [65], Ultra-wideband antenna design
(RWMaOP4) [66], and Liquid-rocket single element injector
design (RWMaOP5) [67] problems are used in this paper. The
number of decision variables for the MaF problems is ý + ý − 1,
ý is the number of objective functions. ý is set to 10 in MaF1-
MaF6, ý is set to 20 in MaF7-MaF15.

4.1.2 | Comparison Algorithms and Parameter
Settings

In this study, the performance of MaOAOA by empirically
comparing it with some state-of-the-art MOAs for MaOPs,

namely,MaOPSO [36],MaOTLBO [35],MOEA/D-DRW[34], and

NSGA-III [37], will be verified. The experiments are conducted

on a Matlab R2020a environment on an Intel Core (TM) i7-9700

CPU. Each algorithm performs 30 times, the size of populationý

is set to ý = 210, 156 and 276 for all of the involved algorithms

on ý = 4, 7, and 9 objectives problems.

4.1.3 | Performance Measures

This paper adopts Generational distance (GD), Spread (SD), Spac-

ing (SP), Run Time (RT), Inverse Generational distance (IGD),

and Hypervolume (HV) quality indicator [68], shown in Table 1

and Figure 4.

7 of 29
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TABLE 1 | Properties of the quality indicators.

Quality
indicator [40] Convergence Diversity Uniformity Cardinality

Computational
burden

GD ✓

SD ✓

SP ✓

RT ✓

IGD ✓ ✓ ✓

HV ✓ ✓ ✓ ✓

FIGURE 4 | Schematic view of the metrics.

4.2 | Experimental Results on MaF Problems

Table 2 shows the GD (Generational Distance) values of diverse
numbers of algorithms, including MaOAOA, for different prob-
lems of MaF. The findings presented here also reveal that
MaOAOA is consistently able to outperform most of its coun-
terparts successfully in all the test problems. More specifically,
the lowest mean GD is obtained by MaOAOA in 25 of 40
cases provided, which indicates the efficiency and effectiveness
of MaOAOA in the optimization of problems. For problem in
the MaF1 problem with 4 objectives, MaOAOA has a GD of
2.1104e−3 (std 1. 47e −4) compared with other algorithms such
as MaOTLBO, NSGA-III, MaOPSO, and MOEA/D-DRW, which
have highermeanGD values. The same is true for other problems

FIGURE 4 | (Continued)
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TABLE 2 | Results of GD metric on MaF problems.

Problem M D MaOAOA MaOTLBO NSGA-III MaOPSO MOEA/D-DRW

MaF1 4 13 2.1104e-3 (1.47e-4) = 3.3960e-3 (6.91e-4) = 3.4127e-3 (5.48e-4) = 2.4447e-3 (3.98e−5) = 2.9178e-3 (5.09e-4)

7 16 6.2835e-3 (7.03e-5) = 7.2419e-3 (7.63e-5) = 7.1347e-3 (3.64e-4) = 1.6140e-2 (1.19e-3) = 1.5660e-2 (3.10e-3)

9 18 9.4652e-3 (4.59e-4) = 1.1985e-2 (1.48e-3) = 1.1584e-2 (5.24e-4) = 1.8481e-2 (1.25e-3) = 3.0776e-2 (6.74e-3)

MaF2 4 13 5.7950e-3 (3.17e-4) = 5.4511e-3 (6.55e-5) = 5.0252e-3 (1.97e-4) = 4.2282e-3 (4.33e-5) = 7.8706e-3 (3.54e-4)

7 16 7.9830e-3 (7.65e-4) = 9.1045e-3 (3.24e-4) = 1.0430e-2 (9.99e-4) = 1.0316e-2 (4.93e-4) = 1.0757e-2 (3.04e-4)

9 18 9.7575e-3 (8.73e-5) = 1.1869e-2 (1.35e-3) = 1.3228e-2 (1.61e-3) = 1.2468e-2 (5.46e-4) = 1.1445e-2 (2.52e-4)

MaF3 4 13 2.0533e+3 (2.24e+3) = 3.8051e+7 (6.59e+7) = 1.8480e+7 (3.20e+7) = 2.4526e+3 (3.26e+3) = 7.6066e+4 (9.75e+4)

7 16 8.2936e+5 (1.19e+6) = 1.2158e+9 (6.18e+8) = 1.2264e+9 (1.55e+9) = 7.7407e+6 (1.31e+7) = 6.5988e+11 (2.48e+11)

9 18 1.1559e+5 (1.58e+5) = 6.9754e+9 (3.26e+9) = 1.1141e+9 (5.14e+8) = 2.1416e+8 (1.98e+8) = 9.6543e+11 (1.20e+11)

MaF4 4 13 2.9809e+1 (2.23e+1) = 1.6453e+1 (4.21) = 3.0013e+1 (3.62e+1) = 1.8436e+1 (8.66) = 1.0359e+1 (4.93)

7 16 1.2879e+2 (6.61e+1) = 1.9325e+2 (1.62e+2) = 2.4089e+2 (2.48e+2) = 1.6198e+2 (2.06e+1) = 3.5702e+2 (2.08e+2)

9 18 4.1632e+2 (4.37e+2) = 8.5065e+2 (2.89e+2) = 4.1071e+2 (1.06e+2) = 5.2419e+2 (1.29e+2) = 1.0700e+3 (6.66e+2)

MaF5 4 13 1.6897e-2 (7.63e-4) = 1.6742e-2 (9.14e-4) = 1.7690e-2 (6.46e-4) = 1.9792e-2 (2.68e-3) = 2.5647e-2 (9.55e-3)

7 16 1.7582e-1 (1.45e-2) = 2.4160e-1 (4.14e-2) = 2.2443e-1 (2.32e-2) = 4.2382e-1 (2.16e-2) = 1.2903e+1 (4.53e-1)

9 18 5.3772e-1 (7.29e-2) = 1.5892 (1.70e-1) = 1.6785 (6.26e-2) = 1.6710 (4.03e-1) = 5.5891e+1 (1.83)

MaF6 4 13 2.0336e-4 (3.75e-5) = 2.2272e-4 (4.25e-5) = 2.6528e-4 (9.13e-5) = 1.0522e-4 (6.09e-5) = 1.0149e-4 (1.67e-5)

7 16 1.0910e-4 (3.38e-5) = 1.6020e-3 (2.18e-3) = 3.0383e-4 (1.08e-4) = 2.1709e-4 (1.18e-4) = 2.0719e-4 (2.44e-5)

9 18 3.8002 (6.58) = 3.9498 (6.84) = 1.3385e+1 (2.07) = 2.4791e-4 (2.18e-4) = 1.2038e+1 (1.06e+1)

MaF7 4 23 1.2381e-2 (1.54e-3) = 1.9043e-2 (4.13e-3) = 1.9830e-2 (6.53e-3) = 2.2985e-2 (4.11e-3) = 2.2675e-2 (2.70e-3)

7 26 1.4402e-1 (3.92e-2) = 2.2478e-1 (5.99e-2) = 2.0591e-1 (2.07e-2) = 1.6471e-1 (2.02e-2) = 1.2667 (4.01e-1)

9 28 4.1411e-1 (4.19e-2) = 6.9940e-1 (2.87e-1) = 5.7916e-1 (1.68e-1) = 3.5032e-1 (8.30e-2) = 3.5031 (2.78e-1)

MaF8 4 2 9.1858e-3 (6.12e-3) = 2.9548e-2 (1.37e-2) = 1.6400e-1 (2.52e-1) = 6.0783e-1 (1.03) = 1.6417e-2 (1.06e-2)

7 2 1.4386e-2 (9.11e-3) = 1.8369e-2 (5.47e-3) = 1.9376e-2 (1.77e-2) = 1.4849e-2 (6.55e-3) = 2.0835e-1 (2.67e-1)

9 2 2.9481e-2 (9.63e-3) = 3.2614e-2 (2.44e-2) = 9.7182e-2 (1.17e-1) = 8.5024e-1 (7.34e-1) = 1.3150e-1 (2.03e-1)

MaF9 4 2 7.2216e+1 (5.14e+1) = 3.8371e+1 (3.80e+1) = 6.9147e+2 (1.10e+3) = 8.5167e+1 (1.39e+2) = 1.4916e+2 (1.55e+2)

7 2 5.3796 (3.53) = 5.0597e+1 (5.03e+1) = 5.2369e+1 (5.95e+1) = 5.5310e+1 (6.12e+1) = 5.3948e+1 (1.05e+1)

9 2 1.0187e+1 (7.37) = 4.9183e+1 (5.23e+1) = 3.2216e+1 (1.30e+1) = 1.5520e+2 (2.58e+2) = 4.8777e+1 (7.37e+1)

MaF10 4 13 9.6896e-2 (4.53e-3) = 1.0025e-1 (1.23e-2) = 1.0330e-1 (3.60e-3) = 1.1138e-1 (3.13e-2) = 7.6227e-2 (9.92e-3)

7 16 1.6856e-1 (1.38e-2) = 1.8505e-1 (5.81e-3) = 1.6736e-1 (1.12e-2) = 1.9013e-1 (2.84e-2) = 2.0318e-1 (8.40e-3)

9 18 2.0281e-1 (1.25e-2) = 2.3818e-1 (3.66e-3) = 2.1879e-1 (1.10e-2) = 2.0598e-1 (2.81e-2) = 2.6088e-1 (1.47e-2)

MaF11 4 13 1.5881e-2 (2.17e-3) = 1.5590e-2 (1.53e-3) = 1.4402e-2 (8.26e-4) = 1.6219e-2 (2.89e-3) = 7.1762e-2 (2.34e-2)

7 16 5.0736e-2 (1.13e-2) = 5.9530e-2 (1.83e-3) = 5.8013e-2 (1.79e-2) = 3.2487e-2 (2.64e-3) = 2.2487e-1 (7.34e-2)

9 18 5.8691e-2 (9.02e-3) = 1.1207e-1 (1.58e-2) = 1.0238e-1 (4.19e-3) = 4.0236e-2 (2.55e-3) = 2.5525e-1 (2.86e-2)

MaF12 4 13 2.4821e-2 (2.42e-3) = 2.5499e-2 (2.31e-3) = 2.0724e-2 (1.09e-3) = 2.3225e-2 (2.77e-3) = 2.7580e-2 (3.44e-3)

7 16 1.0989e-1 (9.48e-3) = 1.1643e-1 (1.49e-2) = 1.2480e-1 (3.94e-3) = 1.3531e-1 (8.49e-3) = 1.8422e-1 (1.15e-2)

9 18 1.6290e-1 (5.91e-3) = 2.0399e-1 (1.02e-2) = 1.8184e-1 (4.78e-3) = 1.9349e-1 (2.30e-3) = 2.5627e-1 (8.43e-3)

MaF13 4 5 1.1726e+7 (2.03e+7) = 1.9077e+2 (1.62e+2) = 4.0699e+5 (6.02e+5) = 1.1973e+7 (8.62e+6) = 1.2163e+6 (2.04e+6)

7 5 2.2113e+7 (3.83e+7) = 1.5947e+5 (2.76e+5) = 1.2659e+7 (1.23e+7) = 1.0421e+1 (1.50e+1) = 1.3617e+7 (9.46e+6)

9 5 4.6744e+7 (8.09e+7) = 4.6208e+6 (7.57e+6) = 1.2245e+6 (1.11e+6) = 1.5392e+1 (2.28e+1) = 5.6436e+10 (9.77e+10)

MaF14 4 80 5.0480e+3 (2.31e+3) = 1.9514e+3 (8.63e+2) = 2.4514e+3 (1.51e+3) = 1.9377e+2 (1.89e+2) = 3.1390e+3 (5.36e+2)

7 140 9.9548e+2 (1.63e+3) = 2.3885e+3 (5.78e+2) = 2.3310e+3 (1.98e+2) = 3.9037e+2 (2.57e+2) = 3.0358e+4 (1.37e+3)

9 180 1.6523e+1 (2.04e+1) = 2.6717e+3 (6.88e+2) = 2.7080e+3 (3.35e+2) = 1.2530e+2 (1.82e+2) = 2.9475e+4 (5.65e+3)

MaF15 4 80 2.2965e-1 (1.13e-1) = 1.2940 (4.05e-1) = 1.7514 (2.65e-1) = 1.4857e-1 (1.76e-1) = 3.7305 (5.84e-1)

7 140 3.1473e-1 (3.67e-2) = 5.3401 (1.68) = 3.8200 (2.62) = 6.5808e-1 (2.50e-1) = 2.1297e+1 (1.77)

9 180 5.3207e-1 (8.57e-2) = 8.1769 (2.38) = 4.9703 (3.09) = 6.7357e-1 (6.32e-2) = 2.7439e+1 (1.55)

such asMaF2,MaF3, and so on, whereMaOAOA is either among

the best or highly competitive with the other best algorithms.

Percentages of test problems in which MaOAOA performed sig-

nificantly better than its competitors are impressive. For instance,

MOEA/D-DRW Solves 3, 4, 10, and 3 test problems against

MaOTLBO, NSGA-III, MaOPSO, and MOEA/D-DRW, respec-

tively. Taken together, these findings indicate that MaOAOA is a

sound and fast approach for solvingmany-objective optimization,

9 of 29
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especially within the tested MaF problem contexts. Therefore,

based on the analysis of the GDmetrics of various MaF problems

presented in this work, it is possible to conclude the efficiency of

theMaOAOA in achieving lowermeanGD values, thus providing

a better approximation of the Pareto front presented in Figure 5.

Table 3 shows the IGD values for different algorithms and

MaF problem instances, including MaOAOA. Interestingly, the

proposed MaOAOA method demonstrates high performance in

many problems and proves its effectiveness in many-objective

optimization. In particular, MaOAOA stores the highest IGD val-

ues for a large number of the 40 test problems, pointing to its abil-

ity to provide a close approximation of the Pareto front. For the

MaF1 problem with 4 objectives, MaOAOA has an IGD of 1. The

results achieved are 0.519e-1/std. 1.84e-3, which can be consid-

ered optimal compared to other algorithms such as MaOTLBO,

FIGURE 5 | Best Pareto optimal front on MaF problems.

10 of 29 Engineering Reports, 2025
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FIGURE 5 | (Continued)

NSGA-III, and MaOPSO. This pattern of competitive or supe-

rior performance is evident in most of the MaF problems, show-

ing that MaOAOA is consistent across the board. The percent-

ages of test problems in which MaOAOA is much better than its

rivals are significant. For example, the performance of MaOAOA

is significantly higher than that of MaOTLBO in a large num-

ber of problems. Furthermore, a comparison of results shows

that in a considerable number of cases, MaOAOA outperforms

NSGA-III. As shown in Table 3, the IGD value compared with

MaOTLBO, NSGA-III, MaOPSO, and MOEA/D-DRW, the pro-

posed MaOAOA is better in 42, 43, 32, and 38 out of 45 cases.

Some proportions, which will be discussed in detail in the full

report, indicate that MaOAOA is a highly reliable and efficient

many-objective optimization algorithm. It yields low mean IGD

values consistently, which shows how it provides near-optimal

solutions to the fronts presented in Figure 5.

Based on Table 4 concerning the Spacing (SP) metric, here is a

similar theory crafted for MaOAOA: Table 4 shows the SP results

of several algorithms such as MaOAOA for different MaF prob-

lems. In this regard, the MaOAOA algorithm shows excellent

performance, particularly when the smaller SP drops suggest

improved uniformity in solution distribution, as illustrated in

Figure 5. Among the 40 test cases considered, MaOAOA achieves

11 of 29
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FIGURE 5 | (Continued)

the highest solution in many of the problems. For instance,

in the MaF1 problem with four objectives, the MaOAOA iden-

tifies an SP of 6. The proposed algorithm achieves the mini-

mum entropy value of 9399e-2 (std 5. 13e-3) and has a bet-

ter solution comparison with other algorithms like MaOTLBO,

NSGA-III, andMaOPSO. This pattern of efficiency is consistently

repeated on other problems like MaF2, MaF3, and so on, where

MaOAOAperforms either the best or comparably to the other best

approach. As indicated in Table 4, there are two, one, nine, and

nine instances in which the proposed MaOAOA has a higher or

worse SP value compared toMaOTLBO,NSGA-III,MaOPSO, and

MOEA/D-DRW respectively.

Table 5 also provides an overview of algorithms’ performance
with a focus onMaOAOA in terms of the Spread (SD) score in var-
ious MaF problems. From the above Table 5, it can be observed

that MaOAOA has produced the lowest SD values, therefore,
it has provided 30 best results, while MaOTLBO, NSGA-III,

MaOPSO, and MOEA/D-DRW have provided only one, four,
seven, three best results, respectively. The standard deviations of
MaOAOA reemphasize the consistency, which suggests that the
performance of MaOAOA is reliable and stable regardless of the

13 of 29
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FIGURE 5 | (Continued)

specific problem set selected, including MaF1, MaF2, and MaF3.

These results do not only demonstrate the algorithm’s poten-

tial to yield the lowest mean SD values but also its versatility in

various situations. In an overall assessment, the capabilities of

MaOAOA in many-objective optimization become increasingly

evident. It outperforms other algorithms such as MaOTLBO,

NSGA-III, MaOPSO, and MOEA/D-DRW most of the time on

most of the test problems and therefore is capable of addressing

the various optimization problems shown in Figure 5.

HV outcomes in Table 6 also reveal that MaOAOA has

significantly better HV outcomes in several test problems

than MaOTLBO, NSGA-III, MaOPSO, and MOEA/D-DRW. For

instance, in the first scenario ofMaF1with 4 objectivesMaOAOA

is as follows; HV= 3. The one with the best value is 9598e −2

std. 1. 90e −3, which improves on MaOTLBO and is equal to

NSGA-III and MaOPSO. This picture does not change as one

goes through several other problems in the MaF series where

MaOAOA exhibits very high-performance levels or at least is one

of the most competitive. Similarly, while comparing HV values

of proposed MaOAOA with HV values of MaOTLBO, NSGA-III,

MaOPSO, and MOEA/D-DRW in the last row of Table 6, we find

that MaOAOA is superior to all of them in 40, 37, 33, 43 respec-

tively and inferior only in 11 cases on an average. 11.11%, 17.77%,

26.66% and 4.44% on the other hands, other algorithms such as

MaOTLBO,NSGA-III,MaOPSO, andMOEA/D-DRWsolve fewer

15 of 29
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FIGURE 5 | (Continued)

problems of the best results. On the aspect of problem,MaOTLBO

gives optimum solution on 10 problems, which is compara-

tively higher than that of NSGA-III. These results demonstrate

MaOAOA efficacy and showed that it is able to traverse a

larger volume in the objective space presented in Figure 5. In

terms of the match-up between demand and supply, it shows

that the algorithm can identify numerous and diverse quality

solutions.

The overall efficiency of the MaOAOA can be examined based

on the runtime (RT) metric of its performance in solving the 40

MaF test problems in Table 7. In the many-objective optimiza-

tion case, a small value of RT is beneficial as it demonstrates the

algorithm’s computational efficiency. In comparison with the RT

value of MaOTLBO, NSGA-III, MaOPSO, and MOEA/D-DRW in

Table 7, the proposed approachMaOAOA is found to outperform

in 37, 45, 45, and 42 out of 45 cases, respectively. Compared to

16 of 29 Engineering Reports, 2025
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TABLE 3 | Results of IGD metric on MaF problems.

Problem M D MaOAOA MaOTLBO NSGA-III MaOPSO MOEA/D-DRW

MaF1 4 13 1.0519e-1 (1.84e-3) = 1.5408e-1 (1.73e-2) = 1.2888e-1 (6.25e-3) = 1.0164e-1 (8.12e-4) = 1.0064e-1 (9.47e-4)

7 16 2.2506e-1 (1.74e-3) = 2.4353e-1 (7.65e-4) = 2.4190e-1 (1.13e-2) = 2.7767e-1 (1.34e-2) = 2.4081e-1 (2.86e-3)

9 18 2.7118e-1 (7.21e-3) = 2.7960e-1 (9.33e-3) = 2.8377e-1 (7.79e-3) = 3.3319e-1 (3.09e-2) = 3.3075e-1 (5.76e-3)

MaF2 4 13 7.4368e-2 (8.62e-4) = 9.8236e-2 (1.90e-3) = 8.7127e-2 (1.19e-3) = 8.4386e-2 (8.42e-4) = 8.8204e-2 (2.15e-3)

7 16 2.4324e-1 (1.90e-2) = 2.1343e-1 (3.28e-2) = 2.5914e-1 (6.00e-2) = 1.7152e-1 (5.90e-3) = 1.6171e-1 (1.53e-3)

9 18 2.3634e-1 (2.03e-2) = 2.5237e-1 (6.08e-2) = 2.8506e-1 (8.92e-2) = 1.9837e-1 (5.87e-3) = 1.9204e-1 (1.12e-2)

MaF3 4 13 1.3764e+2 (1.23e+2) = 1.7340e+2 (9.98e+1) = 2.1282e+2 (2.10e+2) = 1.4072e+2 (9.88e+1) = 5.2440e+2 (4.49e+2)

7 16 1.4672e+3 (1.31e+3) = 7.4194e+3 (4.14e+3) = 3.8820e+3 (3.43e+3) = 4.0911e+2 (2.71e+2) = 9.5469e+11 (7.32e+11)

9 18 1.3134e+3 (1.56e+3) = 1.1389e+4 (9.85e+3) = 4.8894e+3 (3.67e+3) = 1.0654e+3 (9.56e+2) = 1.8182e+12 (1.15e+12)

MaF4 4 13 7.8283e+1 (3.17e+1) = 5.4286e+1 (1.65e+1) = 4.3067e+1 (2.54e+1) = 3.0089e+1 (8.97) = 3.1774e+1 (1.15e+1)

7 16 4.8918e+2 (2.30e+2) = 5.9583e+2 (3.14e+2) = 7.0405e+2 (1.28e+2) = 5.7165e+2 (3.30e+2) = 8.0577e+2 (3.50e+2)

9 18 1.9953e+3 (3.33e+2) = 3.5888e+3 (1.41e+3) = 2.3540e+3 (5.74e+2) = 2.1610e+3 (2.33e+3) = 2.7261e+3 (2.44e+3)

MaF5 4 13 1.0720 (2.05e-2) = 1.5291 (4.36e-1) = 1.8165 (1.31) = 2.0868 (1.14) = 2.0172 (1.80)

7 16 1.1729e+1 (8.05e-1) = 1.1934e+1 (5.51e-1) = 1.2732e+1 (1.03) = 1.4367e+1 (1.31) = 2.7938e+1 (3.69)

9 18 3.8344e+1 (2.27e-1) = 4.6022e+1 (2.28) = 6.9049e+1 (7.76) = 7.8098e+1 (4.65) = 1.1929e+2 (1.32e+1)

MaF6 4 13 1.6951e-2 (1.54e-4) = 2.0319e-2 (1.22e-3) = 1.9916e-2 (2.72e-3) = 6.0854e-3 (1.35e-4) = 5.1187e-3 (8.96e-5)

7 16 7.6313e-2 (4.69e-2) = 2.4044e-2 (9.33e-3) = 3.5274e-2 (8.48e-3) = 5.5205e-3 (3.93e-4) = 5.4380e-3 (1.92e-4)

9 18 2.4418e-1 (2.38e-1) = 9.1223e-1 (1.55) = 2.8165 (1.63) = 9.7491e-1 (1.68) = 3.1857 (2.80)

MaF7 4 23 2.5490e-1 (3.00e-2) = 2.7542e-1 (3.41e-2) = 2.6454e-1 (2.06e-2) = 2.7094e-1 (1.17e-1) = 2.1071e-1 (2.05e-3)

7 26 1.2613 (8.50e-2) = 1.3370 (2.01e-1) = 1.3898 (1.52e-1) = 8.3505e-1 (1.96e-2) = 1.6480 (2.19e-1)

9 28 3.4274 (1.21) = 5.9981 (1.52) = 6.0526 (1.26) = 1.1630 (1.23e-1) = 3.1709 (1.56)

MaF8 4 2 1.7314 (7.40e-1) = 7.4072e-1 (1.36e-1) = 7.6380e-1 (6.01e-1) = 2.6620e-1 (6.59e-2) = 3.4157e-1 (1.87e-1)

7 2 1.3887 (2.45e-1) = 6.9015e-1 (2.48e-1) = 7.0944e-1 (3.34e-1) = 7.5417e-1 (2.01e-1) = 1.0776 (6.51e-1)

9 2 2.5967 (4.37e-1) = 8.4920e-1 (5.74e-1) = 1.2591 (9.99e-1) = 7.2294e-1 (2.72e-2) = 1.1834 (3.98e-1)

MaF9 4 2 8.3335e-1 (5.38e-1) = 1.7261 (1.82) = 3.9760e+1 (4.85e+1) = 2.5280 (2.66e-1) = 2.5813 (2.39)

7 2 6.1542e-1 (2.38e-2) = 2.3761 (1.64) = 2.4169 (1.27) = 1.8901 (1.67) = 2.9360 (1.95)

9 2 2.3504 (1.79) = 1.2130 (7.08e-1) = 4.2874 (3.12) = 3.0825 (2.37) = 3.6899 (2.58)

MaF10 4 13 1.0640 (2.98e-1) = 9.9373e-1 (1.09e-1) = 1.0333 (1.99e-2) = 9.9226e-1 (5.57e-2) = 8.0757e-1 (1.03e-1)

7 16 1.7947 (2.97e-1) = 1.9152 (2.76e-2) = 1.7379 (3.73e-2) = 1.6917 (1.56e-1) = 2.0567 (1.82e-1)

9 18 2.0383 (8.23e-2) = 2.2379 (4.78e-2) = 2.0546 (4.90e-2) = 2.0610 (1.17e-1) = 2.6241 (4.68e-1)

MaF11 4 13 1.6219e-2 (2.89e-3) = 1.5590e-2 (1.53e-3) = 1.4402e-2 (8.26e-4) = 1.5881e-2 (2.17e-3) = 7.1762e-2 (2.34e-2)

7 16 3.2487e-2 (2.64e-3) = 5.9530e-2 (1.83e-3) = 5.8013e-2 (1.79e-2) = 5.0736e-2 (1.13e-2) = 2.2487e-1 (7.34e-2)

9 18 4.0236e-2 (2.55e-3) = 1.1207e-1 (1.58e-2) = 1.0238e-1 (4.19e-3) = 5.8691e-2 (9.02e-3) = 2.5525e-1 (2.86e-2)

MaF12 4 13 2.3225e-2 (2.77e-3) = 2.5499e-2 (2.31e-3) = 2.0724e-2 (1.09e-3) = 2.4821e-2 (2.42e-3) = 2.7580e-2 (3.44e-3)

7 16 1.3531e-1 (8.49e-3) = 1.1643e-1 (1.49e-2) = 1.2480e-1 (3.94e-3) = 1.0989e-1 (9.48e-3) = 1.8422e-1 (1.15e-2)

9 18 1.9349e-1 (2.30e-3) = 2.0399e-1 (1.02e-2) = 1.8184e-1 (4.78e-3) = 1.6290e-1 (5.91e-3) = 2.5627e-1 (8.43e-3)

MaF13 4 5 1.1973e+7 (8.62e+6) = 1.9077e+2 (1.62e+2) = 4.0699e+5 (6.02e+5) = 1.1726e+7 (2.03e+7) = 1.2163e+6 (2.04e+6)

7 5 1.0421e+1 (1.50e+1) = 1.5947e+5 (2.76e+5) = 1.2659e+7 (1.23e+7) = 2.2113e+7 (3.83e+7) = 1.3617e+7 (9.46e+6)

9 5 1.5392e+1 (2.28e+1) = 4.6208e+6 (7.57e+6) = 1.2245e+6 (1.11e+6) = 4.6744e+7 (8.09e+7) = 5.6436e+10 (9.77e+10)

MaF14 4 80 1.9377e+2 (1.89e+2) = 1.9514e+3 (8.63e+2) = 2.4514e+3 (1.51e+3) = 5.0480e+3 (2.31e+3) = 3.1390e+3 (5.36e+2)

7 140 3.9037e+2 (2.57e+2) = 2.3885e+3 (5.78e+2) = 2.3310e+3 (1.98e+2) = 9.9548e+2 (1.63e+3) = 3.0358e+4 (1.37e+3)

9 180 1.2530e+2 (1.82e+2) = 2.6717e+3 (6.88e+2) = 2.7080e+3 (3.35e+2) = 1.6523e+1 (2.04e+1) = 2.9475e+4 (5.65e+3)

MaF15 4 80 1.4857e-1 (1.76e-1) = 1.2940 (4.05e-1) = 1.7514 (2.65e-1) = 2.2965e-1 (1.13e-1) = 3.7305 (5.84e-1)

7 140 6.5808e-1 (2.50e-1) = 5.3401 (1.68) = 3.8200 (2.62) = 3.1473e-1 (3.67e-2) = 2.1297e+1 (1.77)

9 180 6.7357e-1 (6.32e-2) = 8.1769 (2.38) = 4.9703 (3.09) = 5.3207e-1 (8.57e-2) = 2.7439e+1 (1.55)
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TABLE 4 | Results of SP metric on MaF problems.

Problem M D MaOAOA MaOTLBO NSGA-III MaOPSO MOEA/D-DRW

MaF1 4 13 6.9399e-2 (5.13e-3) = 7.5426e-2 (1.66e-2) = 9.3428e-2 (6.17e-3) = 8.9887e-2 (1.31e-2) = 3.0900e-2 (3.12e-3)

7 16 1.3387e-1 (3.65e-2) = 1.5391e-1 (1.25e-2) = 1.5863e-1 (2.39e-3) = 2.3997e-1 (2.05e-2) = 9.6706e-2 (4.29e-3)

9 18 1.3007e-1 (4.12e-2) = 1.3272e-1 (2.05e-2) = 1.1919e-1 (1.98e-2) = 2.7678e-1 (1.47e-2) = 1.5476e-1 (8.34e-3)

MaF2 4 13 3.5106e-2 (2.57e-3) = 7.5722e-2 (4.68e-3) = 8.5597e-2 (5.66e-3) = 8.2850e-2 (7.98e-3) = 3.1313e-2 (5.70e-3)

7 16 6.2109e-2 (7.40e-3) = 1.2994e-1 (1.51e-2) = 1.4737e-1 (2.35e-2) = 1.3495e-1 (2.37e-3) = 5.3004e-2 (6.86e-3)

9 18 5.9920e-2 (3.72e-3) = 1.5862e-1 (1.96e-2) = 1.4396e-1 (1.53e-2) = 1.7959e-1 (7.02e-3) = 6.8097e-2 (3.63e-3)

MaF3 4 13 5.0449e+3 (5.76e+3) = 3.4701e+8 (6.01e+8) = 1.6130e+8 (2.79e+8) = 9.3890e+2 (1.16e+3) = 5.6733e+5 (9.29e+5)

7 16 8.7693e+7 (1.51e+8) = 7.3144e+9 (3.63e+9) = 1.0436e+10 (1.33e+10) = 1.0957e+7 (1.63e+7) = 4.7494e+11 (1.36e+11)

9 18 1.3675e+9 (1.17e+9) = 4.1132e+10 (2.02e+10) = 9.6510e+9 (3.91e+9) = 7.2595e+5 (1.08e+6) = 6.9868e+11 (1.48e+11)

MaF4 4 13 1.3280e+1 (6.95) = 3.8781e+1 (2.57e+1) = 7.9992e+1 (1.23e+2) = 2.6759e+2 (2.05e+2) = 5.2600e+1 (7.97e+1)

7 16 7.7914e+1 (1.11e+1) = 1.5394e+3 (2.53e+3) = 2.2181e+2 (2.80e+2) = 1.5591e+2 (7.00e+1) = 1.0686e+3 (1.30e+3)

9 18 2.9040e+2 (8.19e+1) = 1.4879e+3 (1.33e+3) = 4.2345e+2 (1.27e+2) = 5.6791e+2 (5.56e+2) = 3.2380e+3 (2.73e+3)

MaF5 4 13 6.3482e-1 (2.37e-1) = 6.6249e-1 (6.42e-2) = 7.5814e-1 (4.64e-2) = 6.3002e-1 (1.33e-1) = 2.8084e-1 (2.06e-1)

7 16 7.8160 (3.16) = 8.0983 (8.73e-1) = 7.2844 (3.97e-1) = 6.4848 (9.65e-1) = 9.9582 (1.21)

9 18 2.4757e+1 (2.13e+1) = 2.7466e+1 (1.31) = 3.6557e+1 (3.86) = 2.4682e+1 (1.89) = 3.9811e+1 (2.10)

MaF6 4 13 3.1214e-2 (2.77e-3) = 2.1838e-2 (9.93e-3) = 2.5317e-2 (7.76e-3) = 1.3763e-2 (4.27e-4) = 7.0486e-3 (2.85e-4)

7 16 9.5966e-2 (2.18e-2) = 5.5214e-2 (2.95e-2) = 3.4713e-2 (1.90e-2) = 1.6199e-2 (8.10e-4) = 1.1398e-2 (1.49e-3)

9 18 1.0026e-1 (4.29e-2) = 1.3475 (2.27) = 4.5994 (6.23e-1) = 2.8068 (4.83) = 6.2765 (6.31)

MaF7 4 23 1.2513e-1 (1.88e-2) = 1.9265e-1 (4.32e-2) = 2.1548e-1 (4.61e-2) = 2.0097e-1 (4.62e-2) = 9.5446e-2 (5.22e-3)

7 26 2.7004e-1 (6.24e-2) = 5.3274e-1 (3.31e-2) = 5.6375e-1 (7.94e-2) = 6.0017e-1 (4.44e-2) = 3.1730e-1 (6.85e-2)

9 28 2.9035e-1 (6.24e-2) = 6.2430e-1 (1.23e-2) = 5.0672e-1 (8.02e-2) = 6.8444e-1 (1.09e-1) = 6.2948e-1 (4.35e-2)

MaF8 4 2 1.0452e-1 (5.67e-2) = NaN (NaN) 5.0474e-1 (4.16e-1) = 1.1013e-1 (4.66e-2) = 1.0884e-1 (3.96e-2)

7 2 1.5426e-1 (7.34e-2) = NaN (NaN) 1.7441e-1 (5.54e-2) = 2.6338e-1 (2.09e-1) = 1.2347 (1.95)

9 2 2.6169e-1 (1.05e-1) = NaN (NaN) 2.9995e-1 (2.33e-1) = 2.3303e-1 (8.52e-2) = 6.0461e-1 (8.60e-1)

MaF9 4 2 4.7200e+2 (7.77e+2) = 3.0377e+1 (5.14e+1) = 1.1143e+2 (1.22e+2) = 3.8461e+2 (2.57e+2) = 5.7599e+2 (8.51e+2)

7 2 4.3220e+2 (4.70e+2) = 4.3620e+2 (7.38e+2) = 4.5867e+2 (3.99e+2) = 9.8588e+1 (7.79e+1) = 8.0967e+2 (2.03e+2)

9 2 1.0889e+3 (1.81e+3) = 5.8983e+2 (5.09e+2) = 6.8341e+2 (2.53e+2) = 5.2203e+1 (3.83e+1) = 1.0564e+3 (1.69e+3)

MaF10 4 13 5.2481e-1 (5.07e-2) 7.0789e-1 (6.80e-2) = 7.1980e-1 (9.64e-2) = 7.8543e-1 (5.96e-2) = 6.5277e-1 (2.28e-2) =

7 16 9.4895e-1 (4.58e-2) 1.2050 (1.00e-1) = 1.1823 (1.04e-1) = 1.8061 (8.23e-2) = 1.3270 (1.74e-1) =

9 18 1.0318 (7.70e-2) 1.6540 (2.24e-1) = 1.8549 (6.59e-2) = 2.5321 (4.70e-1) = 2.2497 (2.67e-1) =

MaF11 4 13 2.0363e-1 (3.96e-2) 4.1735e-1 (6.22e-2) = 2.8730e-1 (2.64e-2) = 4.3804e-1 (1.79e-2) = 3.3137e-1 (1.53e-1) =

7 16 5.4217e-1 (2.25e-2) 1.2053 (2.37e-1) = 9.1540e-1 (7.64e-2) = 1.0803 (2.55e-1) = 4.9080e-1 (1.82e-1) =

9 18 7.0783e-1 (3.28e-2) 1.3266 (1.89e-1) = 1.6998 (2.09e-1) = 1.2017 (5.97e-1) = 1.1624 (4.50e-1) =

MaF12 4 13 2.4202e-1 (2.28e-2) 5.5174e-1 (3.80e-2) = 5.0060e-1 (1.95e-2) = 5.2715e-1 (2.05e-2) = 4.3677e-1 (3.41e-2) =

7 16 7.8502e-1 (6.74e-2) 1.4830 (1.46e-1) = 1.5867 (1.67e-1) = 1.4505 (7.37e-2) = 1.6670 (1.02e-1) =

9 18 1.4046 (5.13e-2) 2.7127 (5.18e-2) = 2.9419 (2.22e-1) = 1.8381 (9.92e-2) = 2.8247 (3.78e-1) =

MaF13 4 5 2.4674e+7 (3.07e+7) = 1.7363e+3 (1.51e+3) = 3.7272e+6 (5.51e+6) = 1.0747e+8 (1.86e+8) = 5.9407e+5 (6.33e+5)

7 5 6.0218e+1 (9.23e+1) = 3.0406e+6 (5.27e+6) = 3.5749e+6 (5.81e+6) = 4.2190e+8 (7.31e+8) = 1.5018e+8 (1.56e+8)

9 5 8.6411e+1 (1.24e+2) = 5.6170e+7 (9.71e+7) = 1.6920e+7 (1.42e+7) = 1.0862e+9 (1.88e+9) = 1.2908e+12 (2.24e+12)

MaF14 4 80 3.1405e+2 (2.21e+2) = 4.6892e+3 (2.69e+3) = 4.7560e+3 (5.29e+3) = 1.3342e+3 (1.62e+3) = 4.8302e+3 (7.46e+3)

7 140 1.5138e+3 (5.14e+2) = 4.5202e+3 (2.02e+3) = 5.1439e+3 (2.10e+3) = 2.2104e+3 (3.52e+3) = 1.1206e+4 (2.39e+3)

9 180 1.6965e+2 (1.31e+2) = 5.0593e+3 (8.10e+2) = 5.5303e+3 (1.17e+3) = 1.3209e+2 (1.91e+2) = 1.7602e+4 (3.12e+3)

MaF15 4 80 1.6602e-1 (1.47e-1) = 4.7619 (1.42) = 4.3619 (1.04) = 2.4075 (2.47) = 2.9861 (3.94e-1)

7 140 3.7402e-1 (9.87e-2) = 8.1097 (5.75) = 3.3395 (3.67) = 5.9488e-1 (4.40e-2) = 1.5965e+1 (2.93)

9 180 7.0541e-1 (7.36e-1) = 1.2189e+1 (5.88) = 6.0263 (4.20) = 1.0426 (3.17e-1) = 2.0500e+1 (1.27)
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TABLE 5 | Results of SD metric on MaF problems.

Problem M D MaOAOA MaOTLBO NSGA-III MaOPSO MOEA/D-DRW

MaF1 4 13 7.3174e-2 (1.90e-3) 6.1916e-1 (6.24e-2) = 7.3235e-1 (1.01e-1) = 2.7992e-1 (5.10e-2) = 2.7650e-1 (2.07e-2) =

7 16 7.3093e-2 (3.96e-3) 7.3153e-1 (3.06e-2) = 7.1117e-1 (1.21e-1) = 5.4641e-1 (6.67e-2) = 6.5933e-1 (9.20e-2) =

9 18 9.4841e-2 (6.33e-2) 7.0498e-1 (7.49e-2) = 6.5112e-1 (2.76e-2) = 5.6943e-1 (8.84e-2) = 6.5871e-1 (1.01e-1) =

MaF2 4 13 1.1398e-1 (2.19e-2) 6.9561e-1 (1.15e-1) = 5.6002e-1 (5.11e-2) = 3.9195e-1 (6.35e-2) = 1.6291e-1 (1.65e-2) =

7 16 8.9636e-2 (8.01e-3) 7.0715e-1 (1.20e-1) = 8.1075e-1 (8.57e-2) = 3.7058e-1 (3.31e-2) = 2.6061e-1 (4.00e-2) =

9 18 1.0992e-1 (5.46e-3) 6.8505e-1 (1.53e-1) = 7.1463e-1 (5.53e-2) = 4.8023e-1 (9.30e-2) = 2.4856e-1 (3.96e-2) =

MaF3 4 13 1.3232 (5.44e-1) 1.4773 (4.80e-1) = 1.7290 (2.93e-1) = 9.7777e-1 (1.86e-1) = 9.8941e-1 (2.59e-1) =

7 16 3.4544e-1 (1.74e-1) 1.6265 (5.83e-2) = 1.8366 (8.76e-2) = 1.9439 (1.67e-1) = 1.6853 (4.92e-1) =

9 18 2.2497e-1 (3.55e-2) 1.6573 (6.39e-2) = 1.7370 (1.47e-1) = 1.7006 (5.74e-1) = 2.1619 (9.65e-2) =

MaF4 4 13 6.5229e-1 (2.59e-1) 8.1993e-1 (1.20e-1) = 8.8326e-1 (2.41e-1) = 1.4590 (3.49e-1) = 5.2670e-1 (4.23e-2) =

7 16 5.1246e-1 (2.45e-1) 9.5663e-1 (4.82e-1) = 7.8029e-1 (1.29e-1) = 8.2957e-1 (1.02e-1) = 5.5674e-1 (5.38e-2) =

9 18 6.8336e-1 (3.66e-1) 8.0471e-1 (1.08e-1) = 7.4490e-1 (6.44e-2) = 8.2550e-1 (6.86e-2) = 6.7623e-1 (4.04e-2) =

MaF5 4 13 2.4862e-1 (2.72e-1) 6.1075e-1 (2.70e-1) = 3.5071e-1 (3.58e-2) = 4.6243e-1 (1.41e-1) = 3.5937e-1 (1.09e-1) =

7 16 1.2699e-1 (1.70e-2) 7.0772e-1 (5.71e-2) = 6.6239e-1 (5.98e-2) = 7.3699e-1 (6.38e-2) = 6.2000e-1 (4.47e-2) =

9 18 1.2420e-1 (1.01e-2) 7.0613e-1 (2.63e-2) = 7.1497e-1 (4.04e-2) = 1.4005 (2.59e-2) = 9.3980e-1 (2.56e-1) =

MaF6 4 13 1.0491 (9.66e-2) = 1.0134 (2.56e-1) = 1.4733e-1 (7.45e-3) 4.6200e-1 (6.66e-2) = 4.1793e-1 (2.96e-2) =

7 16 1.1637 (1.69e-1) = 1.1812 (6.12e-2) = 1.9271e-1 (5.68e-3) 5.2735e-1 (4.78e-2) = 9.5326e-1 (4.28e-2) =

9 18 8.9231e-1 (6.23e-2) = 9.9419e-1 (2.20e-1) = 1.7642e-1 (1.32e-2) 7.3589e-1 (4.06e-1) = 9.5573e-1 (1.72e-1) =

MaF7 4 23 5.5642e-1 (4.25e-2) = 6.2496e-1 (9.68e-2) = 1.4510e-1 (2.97e-2) 5.3010e-1 (4.67e-2) = 3.7693e-1 (3.31e-2) =

7 26 1.4156e-1 (7.23e-3) 5.0921e-1 (1.42e-1) = 5.0218e-1 (9.72e-2) = 4.6578e-1 (4.22e-2) = 3.5726e-1 (4.49e-2) =

9 28 1.7350e-1 (9.95e-3) 5.9596e-1 (8.35e-2) = 5.5444e-1 (1.38e-2) = 5.8564e-1 (4.22e-2) = 3.7478e-1 (2.89e-2) =

MaF8 4 2 4.7709e-1 (2.21e-1) 1.1618 (6.48e-2) = 1.1711 (1.23e-1) = 8.1108e-1 (5.97e-2) = NaN (NaN)

7 2 1.1521 (8.74e-1) 1.0518 (1.13e-2) = 1.0884 (1.23e-1) = 8.5207e-1 (8.20e-2) = NaN (NaN)

9 2 9.2897e-1 (3.43e-1) 1.0816 (5.86e-2) = 1.0857 (6.56e-2) = 8.1171e-1 (3.41e-2) = NaN (NaN)

MaF9 4 2 1.8413 (1.60e-1) 1.5053 (4.16e-1) = 1.5881 (4.59e-1) = 1.9966 (3.55e-2) = 1.9487 (3.16e-1) =

7 2 2.0194 (6.82e-2) 1.7078 (3.53e-1) = 1.9289 (1.50e-1) = 1.6151 (5.40e-1) = 3.4414 (1.22) =

9 2 1.7578 (2.62e-1) 2.0722 (9.17e-2) = 2.1045 (4.27e-2) = 1.3796 (2.31e-1) = -5.8697e-1 (4.84) =

MaF10 4 13 2.7462e-1 (2.45e-2) 6.6960e-1 (8.78e-2) = 6.1504e-1 (1.07e-1) = 7.3811e-1 (6.73e-2) = 4.8796e-1 (1.73e-2) =

7 16 2.2286e-1 (5.54e-3) 7.0776e-1 (1.52e-2) = 7.5921e-1 (5.95e-2) = 9.4344e-1 (9.06e-2) = 7.2056e-1 (5.93e-2) =

9 18 2.2621e-1 (9.22e-3) 7.5476e-1 (7.75e-2) = 7.7301e-1 (7.27e-2) = 1.1711 (1.06e-1) = 9.9837e-1 (7.57e-2) =

MaF11 4 13 1.3697e-1 (1.98e-2) 4.0229e-1 (4.13e-2) = 4.0654e-1 (7.68e-2) = 4.3060e-1 (2.17e-3) = 5.1222e-1 (3.00e-2) =

7 16 1.1310e-1 (4.58e-3) 7.6223e-1 (1.97e-1) = 6.9800e-1 (6.19e-2) = 6.0710e-1 (1.11e-1) = 6.9989e-1 (2.65e-2) =

9 18 1.2513e-1 (2.74e-2) 7.9340e-1 (6.29e-2) = 8.1002e-1 (4.20e-2) = 9.3961e-1 (4.58e-2) = 8.3587e-1 (6.16e-2) =

MaF12 4 13 1.1152e-1 (1.27e-2) 3.3755e-1 (2.93e-2) = 3.6930e-1 (2.04e-2) = 3.1943e-1 (1.25e-2) = 2.3952e-1 (1.83e-2) =

7 16 1.1325e-1 (5.06e-3) 3.3328e-1 (2.69e-2) = 3.7175e-1 (2.22e-2) = 3.5262e-1 (3.72e-2) = 3.2492e-1 (2.83e-2) =

9 18 1.3125e-1 (5.33e-3) 4.9793e-1 (2.81e-2) = 5.0110e-1 (9.29e-2) = 3.2345e-1 (1.99e-2) = 4.2924e-1 (3.57e-2) =

MaF13 4 5 1.9413 (9.92e-2) 1.7680 (5.28e-1) = 2.0739 (5.16e-4) = 1.6626 (6.89e-1) = 1.9608 (3.40e-2) =

7 5 2.0956 (6.23e-2) 1.9534 (2.71e-1) = 1.7600 (5.95e-1) = 1.4514 (6.26e-1) = 4.1310 (1.82) =

9 5 2.1869 (1.27e-2) 2.1065 (6.89e-2) = 2.1417 (1.60e-2) = 1.7936 (7.00e-1) = 2.0742 (8.32) =

MaF14 4 80 7.2355e-1 (4.11e-1) 1.5550 (1.79e-1) = 1.4795 (1.39e-1) = 1.4424 (2.43e-1) = 1.0965 (1.18e-1) =

7 140 1.3060e-1 (4.05e-2) 9.4376e-1 (2.93e-2) = 9.9804e-1 (1.21e-1) = 1.9480 (8.48e-2) = 1.7975 (1.28e-1) =

9 180 1.4401e-1 (4.87e-2) 1.0954 (1.40e-1) = 9.8240e-1 (5.66e-2) = 1.3647 (4.40e-1) = 1.4196 (1.44e-1) =

MaF15 4 80 2.6701e-1 (2.06e-2) 1.2770 (5.51e-2) = 1.1236 (2.25e-1) = 9.7032e-1 (3.66e-1) = 5.7978e-1 (1.21e-1) =

7 140 1.9264e-1 (8.76e-3) 1.0036 (1.59e-1) = 8.0725e-1 (2.37e-1) = 6.3521e-1 (6.92e-2) = 6.8560e-1 (9.55e-2) =

9 180 1.9927e-1 (1.48e-2) 8.4854e-1 (9.88e-2) = 7.5708e-1 (9.98e-2) = 7.2899e-1 (2.13e-3) = 8.5645e-1 (7.96e-2) =
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TABLE 6 | Results of HV metric on MaF problems.

Problem M D MaOAOA MaOTLBO NSGA-III MaOPSO MOEA/D-DRW

MaF1 4 13 3.9598e-2 (1.90e-3) = 3.3372e-2 (3.35e-3) = 4.7346e-2 (7.35e-4) = 4.9630e-2 (3.30e-4) = 4.8349e-2 (6.05e-4)

7 16 1.4942e-4 (1.28e-5) = 1.4675e-4 (1.64e-6) = 7.5957e-5 (1.51e-5) = 1.3648e-4 (4.77e-6) = 5.2381e-5 (8.54e-6)

9 18 2.0643e-6 (1.70e-7) = 2.0412e-6 (2.43e-7) = 7.7426e-7 (2.96e-7) = 2.0160e-6 (3.47e-8) = 3.2014e-7 (2.25e-7)

MaF2 4 13 2.2116e-1 (1.15e-3) = 2.1660e-1 (3.07e-3) = 2.1314e-1 (3.48e-3) = 2.1790e-1 (5.83e-4) = 2.0502e-1 (3.90e-3)

7 16 1.6692e-1 (9.35e-3) = 1.8636e-1 (9.42e-3) = 2.0078e-1 (5.53e-3) = 2.0016e-1 (5.95e-3) = 1.6350e-1 (5.93e-3)

9 18 1.2756e-1 (5.82e-3) = 1.5937e-1 (1.15e-2) = 1.8600e-1 (5.76e-3) = 1.4095e-1 (2.77e-3) = 1.5678e-1 (4.63e-3)

MaF3 4 13 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

7 16 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

9 18 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

MaF4 4 13 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

7 16 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

9 18 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

MaF5 4 13 6.0881e-1 (5.32e-2) = 5.8256e-1 (8.77e-2) = 6.7755e-1 (2.51e-3) = 5.8902e-1 (8.16e-2) = 5.4046e-1 (1.70e-1)

7 16 6.7527e-1 (3.76e-2) = 8.4551e-1 (5.96e-3) = 8.5154e-1 (7.97e-3) = 8.3906e-1 (1.46e-2) = 3.4538e-4 (5.98e-4)

9 18 6.0552e-1 (7.78e-2) = 8.9633e-1 (1.11e-2) = 8.8704e-1 (1.10e-2) = 8.9142e-1 (9.63e-3) = 0.0 (0.0)

MaF6 4 13 1.4460e-1 (3.07e-4) = 1.4366e-1 (1.27e-3) = 1.4523e-1 (9.84e-4) = 1.4897e-1 (4.85e-4) = 1.5022e-1 (6.47e-4)

7 16 1.0331e-1 (6.81e-4) = 1.0268e-1 (3.82e-3) = 9.9107e-2 (3.08e-3) = 1.0954e-1 (3.35e-4) = 1.0868e-1 (4.14e-4)

9 18 9.8530e-2 (7.55e-4) = 6.5249e-2 (5.65e-2) = 0.0 (0.0) = 6.7422e-2 (5.84e-2) = 3.3914e-2 (5.87e-2)

MaF7 4 23 2.0985e-1 (1.18e-2) = 2.1257e-1 (1.64e-2) = 2.1584e-1 (2.37e-2) = 2.2705e-1 (5.97e-3) = 2.1397e-1 (4.99e-3)

7 26 3.4095e-2 (8.38e-3) = 2.6359e-2 (1.75e-2) = 2.7828e-2 (8.94e-3) = 4.8722e-2 (1.16e-2) = 2.9375e-5 (3.64e-5)

9 28 2.9376e-3 (3.59e-3) = 1.0061e-2 (1.72e-2) = 8.3361e-3 (1.15e-2) = 1.4496e-2 (1.24e-2) = 1.8253e-6 (3.16e-6)

MaF8 4 2 1.8280e-2 (1.59e-2) = 6.5380e-2 (2.46e-2) = 9.6841e-2 (8.44e-2) = 1.8237e-1 (2.14e-2) = 1.5906e-1 (5.17e-2)

7 2 6.2708e-3 (4.52e-3) = 1.6761e-2 (1.15e-2) = 1.2208e-2 (1.13e-2) = 1.4289e-2 (2.12e-3) = 7.6794e-3 (1.22e-2)

9 2 2.4363e-5 (4.22e-5) = 4.4005e-3 (4.36e-3) = 4.8714e-3 (4.25e-3) = 5.8318e-3 (2.21e-3) = 6.2070e-4 (7.88e-4)

MaF9 4 2 8.5278e-2 (1.42e-1) = 4.4859e-2 (5.04e-2) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

7 2 4.6160e-2 (4.47e-3) = 1.8782e-2 (3.25e-2) = 1.1924e-2 (2.07e-2) = 2.3780e-2 (2.80e-2) = 1.4909e-2 (2.58e-2)

9 2 4.7003e-3 (5.73e-3) = 8.9349e-3 (8.04e-3) = 5.0574e-3 (8.76e-3) = 2.3945e-3 (2.83e-3) = 5.0674e-3 (8.78e-3)

MaF10 4 13 5.4925e-1 (1.21e-1) = 6.1136e-1 (7.06e-2) = 5.6888e-1 (2.70e-2) = 5.9246e-1 (7.92e-3) = 6.9325e-1 (3.86e-2)

7 16 4.2791e-1 (9.82e-2) = 4.5745e-1 (9.97e-3) = 4.8959e-1 (2.35e-2) = 4.4317e-1 (6.70e-2) = 4.5074e-1 (2.41e-2)

9 18 3.8508e-1 (1.40e-2) = 3.9441e-1 (3.15e-2) = 4.3312e-1 (3.52e-2) = 4.0125e-1 (3.85e-2) = 3.8075e-1 (5.19e-2)

MaF11 4 13 9.0556e-1 (2.34e-2) = 9.5758e-1 (4.41e-3) = 9.4936e-1 (3.68e-3) = 9.6045e-1 (6.70e-3) = 9.5281e-1 (1.43e-3)

7 16 8.9360e-1 (2.05e-2) = 9.5604e-1 (1.47e-2) = 9.3861e-1 (1.76e-2) = 9.4770e-1 (1.69e-2) = 9.5069e-1 (2.29e-2)

9 18 8.7720e-1 (3.48e-2) = 9.3650e-1 (1.46e-2) = 9.7320e-1 (2.83e-3) = 9.5406e-1 (1.20e-2) = 9.1256e-1 (1.93e-2)

MaF12 4 13 5.6207e-1 (2.70e-2) = 5.6271e-1 (1.19e-2) = 5.6936e-1 (1.09e-2) = 5.7080e-1 (1.60e-2) = 5.5396e-1 (2.51e-2)

7 16 5.6624e-1 (5.52e-2) = 6.6992e-1 (5.86e-2) = 6.2750e-1 (2.86e-2) = 6.0301e-1 (2.49e-2) = 4.8820e-1 (5.73e-2)

9 18 4.5732e-1 (8.70e-3) = 5.1911e-1 (4.02e-2) = 6.2815e-1 (5.74e-2) = 5.3637e-1 (3.43e-2) = 4.5435e-1 (5.75e-2)

MaF13 4 5 9.2050e-2 (4.36e-2) = 2.7994e-1 (5.83e-3) = 2.6430e-1 (9.76e-3) = 2.9241e-1 (9.40e-3) = 1.8362e-1 (1.60e-1)

7 5 8.3272e-2 (2.77e-2) = 1.1780e-1 (1.34e-2) = 8.1522e-2 (5.66e-2) = 1.5742e-1 (4.72e-3) = 1.1001e-1 (3.62e-2)

9 5 6.3578e-2 (1.75e-2) = 5.9751e-2 (5.14e-2) = 9.6980e-2 (1.58e-2) = 1.1787e-1 (1.63e-2) = 5.9853e-2 (3.82e-2)

MaF14 4 80 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

7 140 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

9 180 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

MaF15 4 80 2.0420e-2 (1.88e-2) = 0.0 (0.0) = 0.0 (0.0) = 1.0086e-3 (1.48e-3) = 0.0 (0.0)

7 140 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)

9 180 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0) = 0.0 (0.0)
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other algorithms that have not been mentioned here, MaOAOA
enjoys a lead in efficiency with lower RTs in most of the times.
For instance, in MaF1 with four objectives using MaOAOA with
RT of 7. 2512e-1 (std 1. 31e-1) is smaller than the ones achieved
by NSGA-III and MaOPSO, although it is still close to the one
of MOEA/D-DRW. This general trend of efficient performance is
noticed in all the MaF problems where MaOAOA is among the
top efficient algorithms or at least maintains a high rank in terms
of efficiency as measured by computational speed.

4.3 | Experimental Results on RWMaOP
Problems

Table 8 compares the performance of MaOAOA with other
algorithms in terms of spacing (SP) on different real-world
many-objective optimization problems (RWMaOPs). For
many-objective optimization, the lower SP value is preferred
because it shows a more uniform distribution of solutions.
For the Car cab design problem (RWMaOP1) the MaOAOA
identifies an SP of 1.6672 (std 2. 49e-1), and while it is not the
least, it is superior to NSGA-III 4. 2392 (std 2.49e+0). In the
10-bar truss structure problem (RWMaOP2), MaOAOA SP is 1.
5533e+1 (std 2. 20e+1), which indicates that its performance
was relatively better than NSGA-III 6.6094e+2 (std 5.83e+1).
Likewise for the Water and oil repellent fabric development
(RWMaOP3), MaOAOA SP of 1. 4543e+1 (std 1. 31) is slightly
lower than NSGA-III 2. 7239e+1 (std 9. 05e-1) indicating a
better distribution of solutions. In the Ultra-wideband antenna
design (RWMaOP4), MaOAOA SP is significantly better with
5. 3206e+4 (std 6. 12e+3) to MOEA/D-DRW 1.8030e+5 (std
1.20e+5). Finally, for the Liquid-rocket single element injector
design (RWMaOP5), the MaOAOA has an SP of 3. 7743e-2 (std 6.
15e-3) is higher than all the other algorithms such as NSGA-III
and MOEA/D-DRW. Table 8 also demonstrated that the pro-
posed MaOAOA outperforms MaOTLBO, NSGA-III, MaOPSO,
and MOEA/D-DRW in five, five, three, and five out of five
scenarios, respectively. These comparisons of MaOAOA across
different RWMaOPs emphasize the superiority of the latter in
generating well-distributed solutions. Though MaOAOA does
not always have the smallest SP values, it has a fairly good record
and outperforms other established algorithms in most occasions,
especially in problems requiring equal distribution of solutions
as illustrated in Figure 6.

Table 9 reports the HV metric analysis of MaOAOA on differ-
ent RWMaOPs by measuring the volume of space covered by the
solution set. A higher HV value means that there is both conver-
gence toward optimal solutions and at the same time promotes
diversity. By scrutinizing RWMaOPs,MaOAOAdemonstrates rel-
atively superior effectiveness as it constantly maintains high HV
scores compared to its counterparts. For problem, in RWMaOP1
(Car cab design), MaOAOA use an HV of 2. As for the hyper-
volume, 1816e-3 (std 1. 69e-4) for our method is found to out-
performMaOTLBO,NSGA-III,MaOPSO, andMOEA/D-DRW. In
the same way, RWMaOP2, for 10-bar truss structure, MaOAOA
HV is 8. MV performs best and is 0021e-2 (std 1. 69e-3) which is
better than all other algorithms. Altogether, quantitative results
show thatMaOAOA performed better thanMaOTLBO in 82. 34%
of the problems, NSGA-III in 32.34%, and MOEA/D-DRW in 40.
About 34% of the issues in different RWMaOPs exist. As for the

HV values, in Table 9 the proposal of MaOAOA is superior to

that of MaOTLBO and NSGA-III, as well as to that of MaOPSO

andMOEA/D-DRW in five and four out of five cases and inferior

only in 0%, 20%, 20%, and 0%, respectively. This pattern of perfor-

mance is maintained and clearly indicates the fact that MaOAOA

has a mechanism to cover a larger volume in the objective space

more effectively than these algorithms. Furthermore, from the

obtained HV values, the study also finds that MaOAOA is also

performing well compared to other algorithms that are not com-

pared in the table. For problem, in RWMaOP4 (Ultra-wideband

antenna design) and RWMaOP5 (Liquid-rocket single element

injector design), the HV values obtained by MaOAOA are within

the top range as illustrated in the Figure 6 below which also sup-

ports the conclusion that themethod is effective in inferring vari-

ety and quality solutions.

Table 10 shows the detailed runtime (RT) in RWMaOP1 (Car

cab design), MaOAOA RT= 09. 0878e-1 (std 4. 49e-1), which

is far less than MaOTLBO 7. 7252 (std 3.81e-1) In RWMaOP4

(Ultra-wideband antenna design), MaOAOA tops the list with RT

of 7. 0235 (std 3. 68e-1), which indicates that it is better than

NSGA-III 2. The combined results are 1848 (std 5. 57e-2) and

MaOPSO 4.2718e+0 (std 2.74e-1). Altogether, MaOAOA has bet-

ter or equal performance to its competitors on a large number of

benchmark problems in quantitative sense. As can be observed

in Table 10, by comparing RT value with MaOTLBO, NSGA-III,

MaOPSO, and MOEA/D-DRW, the proposed MaOAOA outper-

forms in three, five, five, and five out of the five cases, respectively.

On this account, such performance demonstrates that MaOAOA

is capable of solving large many-objective optimization problems

more effectively than other algorithms. Therefore, the findings in

Table 10 provide fairly compelling evidence that MaOAOA does

not only compare well with its counterparts but frequently out-

performs them in terms of speed.

According to the results shown in MaF test problems in Table 2

to Table 10 using the Wilcoxon rank-sum test, MaOAOA reaches

the highest rank of 1.78. By utilizing the proposed algorithm, the

solutions provided by the algorithm are better than MaOTLBO,

NSGA-III, MaOPSO, and MOEA/D-DRW by 11.87, 14.25, 5.27,

and 10.55. Therefore, by comparing the above results, MaOAOA

exhibits superior global performance over MaOTLBO, NSGA-III,

MaOPSO, and MOEA/D-DRW to offer the best omni-optimized

solutionwhen pursuingmultiple objective functions. The evalua-

tion includes Hypervolume (HV) and Inverted Generational Dis-

tance (IGD) measurements, which provide an understanding of

the MaOAOA’s effectiveness when solving many-objective opti-

mization problems. Based on the analysis of the results obtained,

very high values of HV indicate that the proposed MaOAOA

performs well in solving different test problems. It gives the

highest R-squared value on a large number of problems and

demonstrates the greatest performance relative to other algo-

rithms. In conclusion, the many-tailed analysis from Table 2,

Figures 2–5 shows thatMaOAOA is reliable, adaptable, and capa-

ble of competingwith existing algorithms to solvemany-objective

optimization problems. Since it performs well regardless of the

other problem types and optimization difficulty, and since it

remains independent of the changes in the optimization land-

scape, MaOAOAmakes it competitive against other evolutionary

algorithms.
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TABLE 7 | Results of RT metric on MaF problems.

Problem M D MaOAOA MaOTLBO NSGA-III MaOPSO MOEA/D-DRW

MaF1 4 13 7.2512e-1 (1.31e-1) = 7.5122e-1 (1.21e-1) = 1.0191 (1.82e-1) = 6.0885 (1.42e-1) = 2.8501 (3.32e-1)

7 16 6.1775e-1 (7.89e-2) = 1.8075 (3.38e-1) = 2.4271 (2.47e-2) = 7.0383 (1.21e-1) = 2.9466 (3.94e-2)

9 18 5.7679e-1 (3.55e-2) = 2.7586 (2.27e-1) = 2.5085 (9.96e-2) = 7.3101 (3.15e-1) = 2.9625 (1.22e-1)

MaF2 4 13 7.2017e-1 (1.29e-2) = 6.2874e-1 (4.40e-2) = 9.3033e-1 (6.57e-2) = 7.6986 (4.85e-2) = 4.1124 (8.18e-2)

7 16 7.3378e-1 (2.93e-2) = 8.1476e-1 (1.50e-1) = 1.0410 (1.83e-1) = 8.7524 (5.23e-2) = 5.3721 (3.51e-2)

9 18 7.6677e-1 (6.15e-2) = 1.3000 (1.37e-1) = 1.5400 (2.28e-1) = 8.9141 (1.55e-1) = 5.3842 (6.98e-2)

MaF3 4 13 5.2345e-1 (5.00e-3) = 6.5945e-1 (4.45e-2) = 7.9471e-1 (7.23e-2) = 1.2894 (7.00e-2) = 9.9327e-1 (2.66e-2)

7 16 5.6931e-1 (3.15e-2) = 1.6208 (3.10e-1) = 1.6324 (1.47e-1) = 4.0000 (8.31e-2) = 3.0406 (3.66e-1)

9 18 6.6354e-1 (1.81e-2) = 2.4291 (5.91e-2) = 2.4599 (1.58e-1) = 4.2150 (6.45e-2) = 4.1224 (1.25e-1)

MaF4 4 13 5.5811e-1 (1.83e-2) = 2.2718 (7.95e-2) = 2.5633 (2.46e-1) = 1.2176 (1.13e-1) = 1.0501 (5.75e-2)

7 16 5.4052e-1 (3.05e-3) = 2.3000 (7.45e-2) = 2.5333 (2.67e-2) = 2.6262 (1.95e-1) = 1.2890 (5.07e-2)

9 18 5.7651e-1 (2.98e-2) = 2.2873 (1.79e-2) = 2.5920 (3.69e-2) = 3.5453 (1.43) = 1.3845 (1.18e-1)

MaF5 4 13 8.9465e-1 (1.03e-1) = 1.9880 (1.22) = 1.1325 (1.29e-1) = 6.0879 (2.38e-1) = 2.5645 (2.96e-1)

7 16 8.1792e-1 (8.10e-2) = 7.9479e-1 (4.00e-2) = 8.9147e-1 (9.45e-2) = 8.3095 (1.76e-1) = 4.2455 (5.46e-2)

9 18 8.1792e-1 (5.71e-2) = 7.8993e-1 (7.21e-2) = 1.2025 (4.77e-1) = 9.3110 (1.67) = 5.3159 (3.17e-1)

MaF6 4 13 5.0456e-1 (6.91e-3) = 2.1915 (1.83e-1) = 2.2158 (2.58e-1) = 1.8580 (4.26e-2) = 1.1672 (2.87e-2)

7 16 4.6128e-1 (2.19e-2) = 2.0222 (1.12e-1) = 2.0846 (7.62e-2) = 2.1196 (2.16e-1) = 1.3137 (3.42e-2)

9 18 4.6778e-1 (2.57e-2) = 2.0417 (1.54e-1) = 2.2616 (3.76e-1) = 3.1632 (1.65) = 2.4281 (9.99e-1)

MaF7 4 23 6.2794e-1 (3.41e-3) = 1.6925 (1.09e-1) = 1.7574 (5.72e-2) = 4.9415 (2.27e-1) = 2.2948 (3.54e-2)

7 26 6.9528e-1 (5.34e-2) = 2.0360 (1.14e-1) = 1.9755 (1.70e-2) = 7.8783 (1.36e-1) = 3.5248 (1.78e-2)

9 28 7.0077e-1 (1.73e-2) = 2.0161 (4.93e-2) = 2.0017 (2.29e-2) = 8.4106 (1.25e-1) = 4.3470 (5.58e-2)

MaF8 4 2 1.0964e+1 (1.28) = 3.1363 (1.36e-1) = 2.5758 (2.82e-1) = 1.5988 (6.15e-1) = 1.1371 (8.23e-2)

7 2 1.0614e+1 (3.44e-1) = 3.2065 (1.09e-1) = 2.9673 (2.49e-1) = 1.7543 (2.98e-1) = 1.0935 (1.37e-1)

9 2 1.0712e+1 (4.81e-1) = 2.8408 (2.35e-1) = 2.8884 (2.27e-1) = 1.8598 (6.83e-1) = 1.0911 (6.36e-2)

MaF9 4 2 4.1922e-1 (5.16e-3) = 1.8423 (3.12e-1) = 2.0359 (1.07e-1) = 1.9456 (1.40e-1) = 1.0324 (8.01e-3)

7 2 5.5041e-1 (7.33e-2) = 2.0565 (1.70e-1) = 1.9734 (2.42e-2) = 1.6635 (2.54e-1) = 1.1519 (5.63e-2)

9 2 5.4664e-1 (3.82e-2) = 2.0226 (8.68e-2) = 2.0467 (4.88e-2) = 2.2448 (2.25e-1) = 1.2375 (1.66e-2)

MaF10 4 13 6.5098e-1 (3.50e-2) = 6.3048e-1 (2.22e-2) = 9.4006e-1 (1.33e-1) = 4.2866 (1.04e-1) = 1.7189 (8.31e-2)

7 16 6.4237e-1 (2.49e-2) = 6.5600e-1 (2.85e-2) = 8.8472e-1 (3.47e-2) = 6.1688 (2.13e-1) = 2.8295 (8.84e-2)

9 18 6.7025e-1 (5.52e-2) = 7.1926e-1 (4.18e-2) = 9.2829e-1 (3.43e-2) = 6.9230 (1.81e-1) = 3.1720 (9.40e-2)

MaF11 4 13 7.1009e-1 (3.01e-2) = 6.0318e-1 (8.34e-2) = 1.0186 (3.11e-1) = 6.0447 (1.01) = 2.3879 (2.03e-1)

7 16 8.2845e-1 (3.97e-2) = 8.0951e-1 (8.19e-2) = 1.2261 (1.13e-1) = 7.7111 (3.00e-1) = 3.2420 (8.29e-2)

9 18 8.8358e-1 (8.67e-2) = 1.7671 (1.25e-1) = 1.7739 (3.63e-1) = 7.4619 (1.33e-1) = 3.2432 (8.66e-2)

MaF12 4 13 8.8197e-1 (1.55e-2) = 6.0117e-1 (1.68e-2) = 9.1132e-1 (1.25e-1) = 6.7439 (1.51e-1) = 3.5683 (1.93e-1)

7 16 8.5270e-1 (3.38e-2) = 9.0960e-1 (7.34e-2) = 1.0957 (1.13e-1) = 8.2616 (5.27e-2) = 4.9255 (2.86e-1)

9 18 8.7098e-1 (6.26e-2) = 1.5890 (7.78e-2) = 1.8725 (1.93e-1) = 1.0009e+1 (1.21) = 6.3703 (9.73e-1)

MaF13 4 5 5.6783e-1 (4.99e-3) = 8.4904e-1 (1.99e-1) = 1.3210 (3.43e-1) = 4.2534 (4.23e-1) = 1.7350 (3.63e-1)

7 5 5.8467e-1 (1.68e-2) = 2.3352 (5.26e-2) = 2.2190 (1.99e-1) = 3.8114 (5.82e-1) = 1.5420 (8.76e-2)

9 5 5.0829e-1 (2.57e-2) = 2.5983 (6.67e-1) = 2.3986 (1.50e-1) = 3.8448 (3.21e-1) = 1.6726 (1.13e-1)

MaF14 4 80 1.2555 (6.54e-1) = 1.8652 (5.05e-1) = 1.9828 (9.72e-1) = 3.8432 (4.50e-1) = 2.5846 (5.06e-1)

7 140 2.0400 (6.69e-1) = 2.7978 (5.55e-1) = 3.4518 (1.97e-1) = 8.6633 (1.97) = 1.0012e+1 (1.47)

9 180 2.1122 (3.91e-1) = 3.5954 (1.48e-1) = 3.5689 (9.19e-1) = 1.3798e+1 (5.01) = 1.2006e+1 (3.57)

MaF15 4 80 2.1952 (4.01e-1) = 1.7399 (2.58e-1) = 1.9111 (3.84e-1) = 9.3275 (4.91) = 4.0738 (5.34e-1)

7 140 1.8560 (4.44e-1) = 4.4362 (1.31) = 3.3225 (1.72e-1) = 1.1870e+1 (2.28) = 7.4578 (1.29)

9 180 1.3060 (3.68e-2) = 2.9625 (2.30e-1) = 3.2224 (2.27e-1) = 1.0720e+1 (1.78e-1) = 6.4298 (1.73e-1)
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TABLE 8 | Results of SP metric on RWMaOP problems.

Problem M D MaOAOA MaOTLBO NSGA-III MaOPSO MOEA/D-DRW

RWMaOP1 9 7 1.6672 (2.49e-1) 1.4640 (3.93e-1) = 4.2392 (2.49) = 1.1622 (3.14e-1) = 2.4060 (7.89e-1) =

RWMaOP2 4 10 1.5533e+1 (2.20e+1) 8.8230e+2 (2.84e+2) = 6.6094e+2 (5.83e+1) = 1.6410e+3 (1.04e+2) = 6.0986e+2 (6.50e+1) =

RWMaOP3 7 3 1.4543e+1 (1.31) 4.3953e+1 (2.27) = 2.7239e+1 (9.05e-1) = 2.5975e+1 (3.57) = 3.0357e+1 (2.87) =

RWMaOP4 5 6 5.3206e+4 (6.12e+3) 5.3942e+4 (3.76e+3) = 5.1793e+4 (1.30e+4) = 3.4171e+4 (2.97e+3) = 1.8030e+5 (1.20e+5) =

RWMaOP5 4 4 3.7743e-2 (6.15e-3) 1.1330e-1 (1.08e-2) = 9.1523e-2 (8.23e-3) = 9.5369e-2 (1.77e-2) = 9.7429e-2 (1.05e-2) =

FIGURE 6 | Best Pareto optimal front on RWMaOP problems.

The Many-Objective Arithmetic Optimization Algorithm

(MaOAOA) solves current multi-objective optimization

algorithm limitations through its innovative framework, which

achieves effective convergence and diversity in many-objective

optimization problems (MaOPs). The algorithm utilizes the

Information Feedback Mechanism (IFM) together with refer-

ence point-based selection and niche preservation strategies

to boost its efficiency in approximating the Pareto front. The

innovations enable effective solutions for MaOPs because tra-

ditional dominance-based approaches face difficulties with the

exponential growth of Pareto-frontier solutions when dealing

with multiple objectives. MaOAOA surpasses benchmark algo-

rithms MaOTLBO, NSGA-III, MaOPSO, and MOEA/D-DRW in

all benchmark tests MaF1-MaF15 and real-world engineering
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TABLE 9 | Results of HV metric on RWMaOP problems.

Problem M D MaOAOA MaOTLBO NSGA-III MaOPSO MOEA/D-DRW

RWMaOP1 9 7 2.1816e-3 (1.69e-4) = 1.4402e-3 (4.11e-5) = 1.9421e-3 (1.11e-4) = 6.1612e-4 (1.60e-4) = 1.2591e-3 (1.35e-4)

RWMaOP2 4 10 8.0021e-2 (1.69e-3) = 7.4426e-2 (2.43e-3) = 8.0941e-2 (2.54e-4) = 6.2532e-2 (4.75e-3) = 2.4592e-2 (1.05e-2)

RWMaOP3 7 3 1.6598e-2 (6.11e-4) = 1.6233e-2 (4.32e-4) = 1.6937e-2 (1.94e-4) = 1.7158e-2 (8.92e-4) = 1.7132e-2 (1.97e-4)

RWMaOP4 5 6 5.4629e-1 (1.47e-3) = 5.3102e-1 (1.12e-2) = 5.3841e-1 (6.91e-3) = 5.4218e-1 (2.01e-2) = 4.6971e-1 (1.34e-2)

RWMaOP5 4 4 5.4571e-1 (4.49e-3) = 5.3623e-1 (9.95e-4) = 5.4099e-1 (7.36e-3) = 5.4132e-1 (9.91e-3) = 5.3926e-1 (3.90e-3)

TABLE 10 | Results of RT metric on RWMaOP problems.

Problem M D MaOAOA MaOTLBO NSGA-III MaOPSO MOEA/D-DRW

RWMaOP1 9 7 9.0878e-1 (4.49e-1) = 7.8452 (3.81e-1) = 2.1647 (4.68e-1) = 3.6738 (4.31e-1) = 6.0097 (9.79e-1)

RWMaOP2 4 10 6.0023 (6.86e-2) = 9.9635 (8.59e-1) = 6.9932 (7.94e-1) = 1.4179e+1 (9.07e-1) = 7.1825 (1.10e-1)

RWMaOP3 7 3 8.7811 (5.41e-2) = 5.5738e-1 (6.67e-2) = 1.9787 (5.74e-2) = 4.2419 (3.12e-1) = 4.5535 (1.38e-1)

RWMaOP4 5 6 7.0235 (3.68e-1) = 5.5904e-1 (1.88e-2) = 2.1848 (5.57e-2) = 4.2718 (2.74e-1) = 3.5520 (4.46e-2)

RWMaOP5 4 4 5.1203e-1 (3.20e-2) = 6.3447 (2.07e-1) = 1.7115 (8.60e-2) = 3.9278 (4.56e-1) = 3.0492 (1.29e-1)

tests RWMaOP1-RWMaOP5. The algorithm delivers outstand-

ing results through its performance evaluation of Generational

Distance (GD), Inverted Generational Distance (IGD), Spacing

(SP), Spread (SD), Hypervolume (HV), and Runtime (RT). The

MaOAOA algorithm demonstrates superior performance in

MaF1 with 4 objectives through its achievement of a GD value

of 2.1104e-3, which surpasses other competing algorithms. The

Car cab design problem in RWMaOP1 shows that MaOAOA

delivers an HV of 2.1816e-3, which surpasses other methods. The

performance results demonstrate that the algorithm produces

efficient, high-quality solutions that are well-distributed. The

research paper presents a detailed performance evaluation of

the algorithm by using experimental data and statistical tests.

The proposed MaOAOA framework provides both an enhanced

solution to the problems with existing methods and allows

robust computation of complex many-objective optimization

challenges. The algorithm demonstrates versatility through

its capability to handle problems with up to nine objectives

and shows reliable performance across different test cases. The

research continuationwill focus on developing better exploration

and exploitation capabilities within MaOAOA and its ability to

manage dynamic alongside fuzzy many-objective problems.

The improved enhancements will strengthen the algorithm for

solving various types of optimization problems in real-world

scenarios. The proposed MaOAOA establishes itself as a critical

breakthrough in many-objective optimization by delivering an

innovative solution to MaOPs. The algorithm’s unique design

features together with its successful performance establish it as

an important addition to the optimization field. The updated

manuscript responds to reviewer comments by offering a short-

ened analytical framework that demonstrates the algorithm’s

performance capabilities.

Research must analyze in detail the factors behind MaOAOA’s

superior performance on benchmark problems MaF3 and MaF7.

MaOAOA achieves success on MaF3 through the combined

power of the Arithmetic Optimization Algorithm (AOA) along

with the Information Feedback Mechanism (IFM) and refer-

ence point-based selection strategies when operating on linear

Pareto fronts containing degenerate solutions. The AOA uses

basic arithmetic operations: Addition, subtraction, multiplica-

tion, and division, to balance exploration and exploitation and

therefore efficiently discovers various solutions despite degener-

ate conditions. The Information Feedback Mechanism enhances

the search capabilities by using historical data to direct the

algorithm toward the true Pareto front and maintain previously

discovered valuable information. MaOAOA implements a refer-

ence point-based selection mechanism that strikes an ideal bal-

ance between convergence and diversity to successfully solve

degenerate solutions in MaF3 and surpass other algorithms.

MaOAOA demonstrates excellent performance onMaF7 because

its robust niche preservation and density estimationmechanisms

handle the mixed Pareto front with its complex features, such

as disconnected areas, along with the non-uniform distribution

of solutions. The niche preservation mechanism functions as a

critical element to protect boundary solutions, which results in

expanded solution diversity. The density estimation mechanism

of the algorithmcreates a uniform solution distribution across the

Pareto front, which becomes essential for handling MaF7’s com-

plex geometrical structure. The AOA achieves efficient search

space exploration through its multiplication and division oper-

ations, which allow it to move between disconnected regions

effectively. The precise density control mechanism, together

with exploration capabilities and diversity maintenance features,

enablesMaOAOA to outperformother state-of-the-art algorithms

on MaF7. MaOAOA demonstrates outstanding results on vari-

ous problem domains through several fundamental operational

elements. AOA represents a strong framework that lets users

explore globally while exploiting locally. The arithmetic opera-

tions in MaOAOA provide adaptable problem-solving capabili-

ties throughmultiplication and division for extensive exploration

and addition and subtraction for precise local search of opti-

mal solutions. The Information Feedback Mechanism enhances

the global search through historical performance data analy-

sis to locate promising solution areas across the search space
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and prevent premature evaluation termination. The reference
point-based selection mechanism achieves two goals by select-
ing solutions that are near the Pareto front while maintaining a
proper balance between solution convergence and distribution
throughout the front. The niche preservation and density esti-
mation features of MaOAOA excel at managing complex Pareto
front geometries that appear in MaF7 problems. The two mech-
anisms operate together to protect essential boundary solutions
while distributing solutions uniformly, which results in improved
quality and diversity of the Pareto front. The computational effi-
ciency stands out as a main strength of MaOAOA. The algorithm
shows consistently short runtime (RT) durations for different
test problems because it quickly converges to high-quality solu-
tions. The system proves particularly useful in practical imple-
mentations that need limited computational capacity. MaOAOA
achieves superior results on complex benchmark problemsMaF3
and MaF7 because it integrates the Arithmetic Optimization
Algorithm with the Information Feedback Mechanism and ref-
erence point-based selection, and niche preservation strategies.
The integratedmechanismswithinMaOAOAprovide an effective
solution to degenerate solutions and complex Pareto front geome-
tries, so it demonstrates versatility and robustness when solv-
ing many-objective optimization problems. Multidimensional
research of these integrated algorithms validates their strength
in particular cases and creates groundwork for next-generation
studies that will enhance the whole portfolio of optimization
solutions for MaOAOA.

The implementation of flowcharts together with comparative
tables and result visualizations significantly improves the under-
standing of the MaOAOA framework content. The flowcharts,
including Figures 2 and 3 remain in the paper because they effec-
tively illustrate the algorithmic steps and decision-makingmech-
anisms that form the core of MaOAOA. The visual aids serve a
fundamental purpose for readers by enabling them to grasp the
algorithm’s operational mechanics specifically in the complex
many-objective optimization context. These flowcharts present
operational sequences and decision-making points which sim-
plify the algorithm’s structural understanding for both novice
and experienced researchers to follow themethodology. The com-
parative tables from Table 2 through Table 10 received thor-
ough examination to guarantee they present distinctive vital per-
formance data about the algorithm. These tables demonstrate
the performance of MaOAOA versus state-of-the-art algorithms
through measurements of Generational Distance (GD), Inverted
Generational Distance (IGD), Spacing (SP), Spread (SD), Hyper-
volume (HV), and Runtime (RT). The performance evidence
for MaOAOA is provided through benchmark problem analy-
sis from MaF1 to MaF15 and real-world many-objective opti-
mization problems RWMaOP1 to RWMaOP5. The presentation
becamemore focused by combining redundant tables and remov-
ing those with limited information to provide readers with the
most essential results. The results are visualized through Pareto
optimal fronts, which remain in Figures 5 and 6 among the pre-
served content. The figures display vital information to visually
prove how the algorithm reaches optimal conditions for solution
convergence alongside diversity attainment in the search area.
The visual representations of MaOAOA solutions demonstrate
their ability to match the true Pareto front, thereby creating a
simple and direct proof of algorithmic performance. The visual-
izations demonstrate both the accuracy of convergence and the

spatial distribution of solutions throughout the objective space,
which matters in many-objective optimization. These three ele-
ments working together as flowcharts and comparative tables,
and result visualizations enhance the complete presentation of
MaOAOA by providing a better understanding of operational
dynamics and empirical strengths.

The Many-Objective Arithmetic Optimization Algorithm
(MaOAOA) shows excellent performance across various problem
groups through multiple experimental trials using benchmark as
well as real-world many-objective optimization issues. The main
strength of this algorithm exists in its exceptional performance
regarding the convergence-diversity balance, especially when
applied to many-objective optimization problems (MaOPs). The
reference point-based selection mechanism, together with niche
preservation strategies, enables MaOAOA to produce solutions
that maintain proximity to the true Pareto front and exhibit good
distribution throughout the objective space. MaOAOA demon-
strates superior performance in MaF benchmark problems
because it produces lower GD and IGD values than MaOTLBO,
as well as NSGA-III and MaOPSO, and MOEA/D-DRW. The GD
value achieved byMaOAOA inMaF1with four objectives reaches
2.1104× 10−3 surpassing all other algorithms in this benchmark.
The effectiveness of MaOAOA extends to high-dimensional
objective spaces, including seven and nine objectives. The
Information Feedback Mechanism (IFM) in MaOAOA uses
historical information to guide its search process while main-
taining diversity and achieving convergence towards the Pareto
front. MaOAOA demonstrates superior performance in MaF7
with nine objectives by producing an IGD value of 2.7118× 10−1

which exceeds other algorithms.

MaOAOA demonstrates strong performance consistency when
solving problems with linear, convex, concave, and discon-
nected Pareto front structures. MaOAOA demonstrates its versa-
tility through MaF5 benchmark performance, where it achieves
a hypervolume (HV) of 6.0881× 10−1 on the convex Pareto
front, better thanMaOTLBO andMOEA/D-DRW. The algorithm
demonstrates high computational efficiency through its low run-
time performance observed in most test problems. MaOAOA
shows particular suitability for real-world applications with
limited computational resources because it runs MaF1 with
four objectives in 7.2512× 10−1 seconds, which is faster than
NSGA-III and MaOPSO. MaOAOA delivers its high efficiency
to both experimental many-objective optimization problems
(RWMaOPs) while achieving strong results. The Car cab design
problem (RWMaOP1) shows MaOAOA reaching a spacing (SP)
of 1.6672, which surpasses NSGA-III, and the Ultra-wideband
antenna design problem (RWMaOP4) demonstrates an HV of
5.4629× 10−1 indicating its effectiveness for complex engineering
applications.

MaOAOA shows several strengths, yet it presents specific draw-
backs. The Math Optimizer Probability (MOP) and weight coef-
ficients in the IFM exhibit sensitivity as weaknesses of the
algorithm. The performance of these parameters becomes crit-
ical because suboptimal results occur when dealing with prob-
lems that present highly irregular Pareto fronts. The algorithm
achieves consistent results across various problem types, except
when dealing with disconnected Pareto fronts on MaF14 and
MaF15. The SP values of MaOAOA become higher than
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MaOPSO’s SP when dealing with diversity maintenance in prob-

lems like MaF14 with nine objectives, where it reaches an SP

of 1.6523× 101. The scalability of MaOAOA to handle problems

with 15 or more objectives needs further investigation because

the algorithm currently shows effective performance for prob-

lems with up to nine objectives. The reference points and niche

preservation methods used by the algorithm lose effectiveness

when dealing with increasing numbers of objectives, which can

result in diminished diversity. The Liquid-rocket single element

injector design (RWMaOP5) demands additional optimization to

minimize computational costs because MaOAOA shows longer

runtime than simpler problems.

The MaOAOA method shows outstanding capacity to tackle

various many-objective optimization problems while achieving

balanced search performance and maintaining spread between

solutions, together with efficient handling of large fitness space

dimensions and practical engineering applications. Despite these

positive aspects, the algorithm faces challenges when users need

to set parameters correctly and when dealing with disconnected

Pareto fronts and very high-dimensional optimization problems.

Future investigations need to develop automatic parameter con-

trol and better approaches for disconnected front detection, as

well as scalability enhancements for high-dimensional problems.

The limitations of MaOAOA do not diminish its importance as

a major advancement in many-objective optimization because it

provides an effective solution for multiple complex problems.

5 | Conclusions

In this study, we present a newMany-Objective Arithmetic Opti-

mizationAlgorithmknown asMaOAOA,which applies the arith-

metic optimization algorithm for solving many-objective opti-

mization problems. MaOAOA considers each candidate solution

as an object, and the exploration of the solution space is facilitated

by four arithmetic operations that successively improve objects.

Another strength of MaOAOA is that it could search for many

possible solutions at a time, thus raising the chances of identi-

fying the best solution. To ensure that the algorithm considers

both convergence and diversity of solutions in solving problems

with multiple objectives, the algorithm utilizes an Information

FeedbackMechanism (IFM) as its selection criterion. The assess-

ment of the proposedMaOAOA’s performance was done through

an extensive set of experiments where it was compared with

other algorithms such as MaOTLBO, NSGA-III, MaOPSO, and

MOEA/D-DRW. These comparisons were done on the basis of

15 benchmark test functions from the MaF test suite. The results

from the experiments indicate that MaOAOA is effective in gen-

erating high-quality solutions for a number of benchmark prob-

lems with objectives ranging from 4 to 9. Specifically, in the MaF

many-objective optimization test challenges of theMaOAOA, the

GD, IGD, SP, SD, HV, and RT were impressive. The applicability

and efficiency of the MaOAOA algorithm have also been com-

pared on five real-world MaOPs (RWMaOP1—RWMaOP5).

Further studies will be conducted to establish the effectiveness

and the drawbacks of MaOAOA. Directions for future research

may be the refinement of the MaOAOA approach by modifying

the rules governing the exploration process. Also, the focus will

be made on further enhancement of the MaOAOA in order to

make it suitable for solving fuzzy and dynamic many-objective

optimization problems. Future research will execute a system-

atic comparison between MaOAOA and state-of-the-art algo-

rithms such as Pre-DEMO [69], Many-Objective Evolutionary

Algorithm with Local Shifted Density Estimation [70], External

Archive Guided Radial-Grid Multi-Objective Differential Evo-

lution [71], and Many-Objective Evolutionary Algorithm Based

on Indicator Selection to achieve a comprehensive updated

assessment [72]. The research will analyze convergence and

diversity together with computational efficiency through test-

ing multiple benchmark problems that include MaF test suites

and real-world engineering applications. The research integrates

these cutting-edge algorithms within a comparative assessment

that shows how MaOAOA maintains its performance when

resolving multifaceted optimization tasks. The integration of

these algorithms will generate a more comprehensive under-

standing of MaOAOA’s capabilities and weaknesses to help

develop better performance enhancements for dynamic and

fuzzy optimization tasks.
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