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Abstract
The focus of multi-objective optimization is to derive a set of optimal solutions in scenarios with multiple and often conflicting
objectives. However, the ability of multi-objective evolutionary algorithms in approaching the Pareto front and sustaining
diversity within the population tends to diminish as the number of objectives grows. To tackle this challenge, this research
introduces a novel Many-Objective Symbiotic Organism Search (MaOSOS) for many-objective optimization. In this method
the concept of reference point, niche preservation and information feedback mechanism (IFM) are incorporated. Niche
preservation aims to enhance selection pressure while preserving diversity by splitting the objective space. Reference point
adaptation strategy effectively accommodates various Pareto front models to improve convergence. The IFM mechanism
augments the likelihood of selecting parent solutions that exhibit both strong convergence and diversity. The efficacy of
MaOSOS was validated through WFG1-WFG9 benchmark problems (with varied number of objectives ranging from 5 to 7)
and five real-world engineering problems. Several metrics like GD, IGD, SP, SD, HV and RT metrics were used to assess the
MaOSOS’s efficacy. The extensive experiments establish the superior performance of MaOSOS in managing many-objective
optimization tasks compared to MaOGBO, MaOJAYA, MaOTLBO and MaOSCA.
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1 Introduction

In the field of optimization, numerous real-world challenges
encompass multiple objectives that often conflict with each
other. Such challenges are commonly identified as mul-
tiobjective optimization problems (MOPs). When MOPs
encompass four or more conflicting objectives, they are clas-
sified as many-objective optimization problems (MaOPs).
Thefield ofmany-objective optimization has garnered signif-
icant attention, owing to its extensive practical applications,
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Fig. 1 Many-Objective all definitions in search space of MaO-Problem

as highlighted in sources [1, 2]. An unconstrained MOP, or
MaOP, can be formally expressed as per Eq. (1) [3],

min F(x) � ( f1(x), f2(x), . . . , fm(x)),
subject to x ∈ Ω ,

(1)

where x � (x1, x2, . . . , xn) denotes a decision vari-
able vector spanning multi-dimension within the decision
space � and F(x) encapsulates m different objective
functions. The inherent conflict among these objectives
means there is no singular, optimal solution. Instead, a spec-
trum of solutions emerges, each signifying a compromise
among varying objectives. In practical scenarios, several
optimization challenges involve optimizing multiple, often
conflicting, objectives concurrently. These challenges fall
under the umbrella of Multi-Objective Optimization prob-
lems (MOPs). The nature of these objective functions being
at odds implies that enhancing one objective might degrade
others. Therefore, the solutions do not converge on a single
optimum for the objective function, but rather form a collec-
tion of trade-off solutions, known as the Pareto-optimal Set
(PS). The depiction of this PS within an objective space is
referred to as a Pareto-optimal Front (PF) shown in Fig. 1.

Multiobjective evolutionary algorithms (MOEAs) stand
out for their direct and derivative-free approach, proving to
be a highly effective solution for tackling MOPs [4]. Various
MOEAs, such as NSGA-II [5] and SPEA2 [6], have been
developed specifically for this purpose. Within the spectrum
of MOEAs, methods based on Pareto dominance are par-
ticularly renowned in the field. NSGA-II and SPEA2, both
Pareto-based strategies, have shown commendable results in
optimizing MOPs with two or three objectives. Neverthe-
less, their effectiveness significantly decreases when applied
to MaOPs, mainly because the increase in objectives leads
to most population solutions being nondominated [7]. To

improve MOEAs’ capability to effectively manage MaOPs,
several innovative approaches have emerged recently [8].

The first group of strategies aims to redefine dominance
relations to better guide the selection process toward the
PF. Techniques like L-optimality [9] and preference order
ranking [10] fall under this category. While these revised
dominance relationships enhance MOEAs’ convergence for
MaOPs, theymight reduce the diversity of the solutions.Con-
versely, grid-based algorithms like ε -MOEA [11] and GrEA
[12] loosen these dominance relations. These algorithms
leverage grid positions to differentiate individuals, ensuring
a well-distributed population. However, the challenge lies
in adaptively setting the grid size for various optimization
problems.

The second group focuses on enhancing the algorithm’s
mechanism for maintaining diversity. For example, Li et al.
[13] introduced a shift-based density estimation (SDE) strat-
egy. This strategy balances the diversity and convergence
aspects of individuals, effectively eliminating solutions that
contribute to poor convergence. Similarly, the knee point-
driven evolutionary algorithm (KnEA) [14] prioritizes knee
points among nondominated solutions.

The third group encompasses a range of decomposition-
based techniques.Within this group, two distinct methodolo-
gies are prevalent. The first approach consolidates objectives
into several scalar functions, with each producing a sin-
gular scalar value. In the case of MOEA/D [15], a MOP
is divided into multiple scalar optimization sub-challenges,
which are then solved concurrently. Alternatively, the second
approach segments a MaOP into a collection of smaller sub-
MaOPs. Techniques like Many-Objective Gradient Based
Optimizer (MaOGBO) [16], Many-Objective Jaya algo-
rithm (MaOJAYA) [17], Many-Objective Teaching Learning
Based Optimizer (MaOTLBO) [18], Many-Objective Sine
Cosine Algorithm (MaOSCA) [19], Non-Dominated Sorting
Genetic Algorithm-III (NSGA-III) [20] andMOEA/DD [21]
partition the objective space into several subspaces using ref-
erence vectors, aiding in the management of nondominated
solutions. A critical aspect for both methods is the config-
uration of weight vectors, a factor that greatly impacts the
diversity within a population [22]. To address MaOPs with
irregular PFs effectively, a range of adaptive, decomposition-
based methods have been developed, including ESOEA [23]
and A-NSGA-III [24].

The fourth category involves indicator-based methods.
These approaches typically rely on a singular indicator to
guide the evolution of the population, focusing on both
convergence and diversity. Prominent indicators like hyper-
volume (HV) [25] and Inverted Generational Distance (IGD)
[26] are often used. However, HV-based methods suffer
from exponentially increasing computational complexity
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withmore objectives. For IGD-based strategies, the key chal-
lenge is acquiring a set of uniformly distributed reference
points for IGD calculation.

Finally, the fifth category comprises objective reduction
techniques. The fundamental concept here is to lessen the
number of objectives while preserving as much informa-
tion as possible. Pal et al. [27] introduced an approach
using clustering-based objective reductionwithin differential
evolution. Bandyopadhyay and Mukherjee [28] suggested
periodically rearranging objectives based on their conflict
levels, selecting themostα-conflictingones for further explo-
ration. Moreover, He et al. [29] devised a strategy aimed at
swiftly directing the entire population towards a limited num-
ber of target points near the true PF, thereby minimizing the
objective space.

While these advancements have significantly enhanced
MOEAs’ capability to handle MaOPs, each method has
its limitations and it is universally acknowledged that no
single optimization technique can be optimal for every prob-
lem [30]. A major challenge in addressing MaOPs is the
high proportion of nondominated solutions, which compli-
cates differentiating among them. Numerous strategies have
been developed to alter the dominance relationship, thereby
intensifying the environmental selection pressure [9, 12].
Additionally, a direct approach to amplify selection pressure
is to prioritize individuals based on their convergence. How-
ever, relying solely on convergence indicators often results in
capturing only a fraction of the PF [31]. Therefore, it is essen-
tial to implement mechanisms that improve the population’s
distribution. One intuitive method is to penalize the neigh-
bors of a selected individual. Nevertheless, the execution of
such penalization (identifying the neighboring individual and
determining the extent of the penalty) is complex.

In this study, a novel information feedback mechanism
(IFM) combining symbiotic organism search (SOS) [32],
reference point, niche-based density estimation and per-
pendicular distance selection strategies is introduced. This
approach focuses on balancing diversity and convergence
effectively. The niche-based density estimation is used to pin-
point individuals lacking in diversity, while the angle-based
selection method eliminates those with subpar convergence.
This paper’s key contributions are—.

1. The SOS algorithm was chosen as it was known to per-
form well in producing various high-quality solutions
in single-objective problems. Thus, MaOSOS algorithm
can exploit the search space efficiently through the use
of the SOS operator’s global search ability.

2. To overcome the limitations that caused the loss of impor-
tant information, this paper proposes the IFM approach.
It incorporates the historical information of individuals
for the next generation through a weighted sum model.
This ensures better convergence properties.

3. A reference point-based selection approach is proposed
to control the selection process and ensure that the
selected solutions are not only near the Pareto front but
also spread out across the entire Pareto optimal surface.
Using perpendicular distances to link each solution to the
closest reference point, the strategy aims at finding the
areas of the objective space that arewell explored.Apply-
ing non-dominated sorting helps the algorithm to work
only with solutions that are closer to the Pareto-optimal
front and thus helps in convergence.

4. A niche preservation approach for boundary solutions
is then introduced to diversify the population while
eliminating those located dense in certain regions of
the objective space, which in turn, accelerates the con-
vergence of the algorithm. Furthermore, to enhance
selection, a density estimation strategy is proposed to
retain population density that is uniform and complete.

5. A large number of systematic simulation tests were per-
formed with the use of WFG test suites to assess the per-
formance of MaOSOS. In comparison with MaOGBO,
MaOJAYA, MaOTLBO and MaOSCA, the performance
of our algorithm was better in terms of the IGD, HV and
SPREAD measures. In addition, MaOSOS showed high
efficiency and potential when applied to five real-world
MaOPs (RWMaOP1 – RWMaOP5).

The structure of this paper is organized in the following
manner—Sect. 2 provides the overview of SOS algorithm.
The detailed methodology of the proposed MaOSOS algo-
rithm is then explored in Sect. 3. Section 4 comprises a
comprehensive series of experiments to assess the algo-
rithm’s proficiency in tacklingMaOPs, alongwith an analysis
of the results. The paper concludeswith Sect. 5, summarizing
the findings.

2 Symbiotic organism search

In 2014, the Symbiotic Organisms Search (SOS) [32] algo-
rithm was introduced by Cheng and Prayogo. This algorithm
was specifically designed for optimizing a variety of mathe-
matical benchmark functions and addressing complex engi-
neering design optimization challenges. The SOS algorithm
is inspired by the dynamics of symbiotic relationships found
in nature, specifically focusing onmutualism, commensalism
and parasitism among ecosystem organisms. The algorithm
initiates by generating a random population of organisms
within the search space, representing an ecosystem.This pop-
ulation is denoted as the X matrix, as outlined in Eq. (2). In
this matrix, each organism possesses a distinct fitness value,
signifying a potential solution to the optimization problem
at hand.
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The initial set of organisms undergoes modifications
through three key phases – mutualism, commensalism and
parasitism. This process generates new organisms, which are
then evaluated and refined based on their fitness. Following
these phases, the algorithm selects themost promising organ-
ism to lead the next generation. This selection and updating
of the superior organism continue iteratively until specific
termination conditions are satisfied. These symbiotic inter-
actions are crucial for the generation of new organisms and
are detailed below.

X �

⎡
⎢⎢⎢⎢⎣

x1, 1 x1, 2 · · · x1,m
x2, 1 x2, 2 · · · x2,m
...

...
. . .

...
xn, 1 xn, 2 · · · xn,m

⎤
⎥⎥⎥⎥⎦
;
n � Eco_si ze
m � D

(2)

Mutualism, exemplified by the interaction between flow-
ering plants and honey bees. In this natural interaction, bees
collect nectar from flowers, aiding in the pollination process,
which benefits both parties. This mutualistic interaction is
simulated in the SOS algorithm’s mutualism phase. An Xi

organism is chosen from the ecosystem’s i th row (referenced
in Eq. (2)) to model this relationship, leading to the creation
of new organisms Xnew

i , Xnew
j and MV based on Eqs. (3),

(4) and (5).

Xnew
i � Xi + rand(0, 1) × (Xbest − MV × b f1) (3)

Xnew
j � X j + rand(0, 1) × (Xbest − MV × b f2) (4)

MV � b f1 + b f2
2

(5)

The updating process of these organisms is detailed in
Eqs. (6) and (7).

Xi �
{
Xnew
i if f

(
Xnew
i

)
< f (Xi )

Xi otherwise
(6)

X j �
{
Xnew

j if f
(
Xnew
i

)
< f (Xi )

X j otherwise
(7)

Commensalism is explored. A classic example of this is
the relationship between remoras and larger marine animals
like sharks. Remoras attach to these larger animals and feed
on their leftovers, benefiting without harming the host. In the
SOS algorithm, a similar process occurs where one organism
benefits from the interaction without impacting the other. An
organism X j is selected randomly for this interaction Xi ,
leading to the Xnew

i creation of a new organism as outlined
in Eq. (8) and updated according to Eq. (6).

Xnew
i � Xi + rand(−1, 1) × (Xbest − X j ) (8)

Parasitism, a relationship where one organism benefits at
the expense of the other, such as fleas or ticks on dogs. In the
SOS algorithm, Xi this is represented by one organism act-
ing as a parasite. A host organism X j is selected randomly
from the current ecosystem. The parasite organism gener-
ates a Parasite Vector (PV ) by duplicating and modifying
itself. The fitness values of both the PV and X j the original
organisms are then evaluated and the PV is either updated or
discarded based on these evaluations, as detailed in Eq. (9).

X j �
{
X PV
i if f

(
X PV
i

)
< f

(
X j

)
X j otherwise

(9)

3 Proposedmany-objective symbiotic
organism search (MaOSOS)

The MaOSOS algorithm generates a set of reference points
using the Das and Dennis’s technique. The number of ref-
erence points H is determined by the formula, H �(
M + p − 1

p

)
, where M is the number of objectives, p is

the number of partitions. The formula calculates the num-
ber of possible reference points based on the combination of
objectives and partitions. This ensures that the set of refer-
ence points covers the objective space evenly. The current
generation is t , xti and xt+1i are the i th individual at t and
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(t + 1) generation. ut+1i is the i th individual at the (t + 1)
generation generated through the SOS algorithm and parent
population Pt . The fitness value of ut+1i is f t+1i and Ut+1 is
the set of ut+1i . Then, xt+1i is calculated according to ut+1i
generated through the SOS algorithm and IFMas per Eq. (10)

xt+1i � ∂ 1u
t+1
i + ∂ 2x

t
k ; ∂ 1 � f tk

f t+1i + f tk
,

∂ 2 � f t+1i

f t+1i + f tk
, ∂ 1 + ∂ 2 � 1 (10)

where xtk is the k th individual we chose from the t
th generation, the fitness value of xtk is f tk , ∂ 1 and ∂ 2

are weight coefficients. ∂1 and ∂2 within the IFM are cru-
cial in determining the contribution of current and historical
information of the solutions during optimization. These coef-
ficients are computed dynamically based on the fitness values
of the individuals at each generation, as defined by Eq. (10).
∂1 is calculated as the ratio of the fitness of the selected
individual to the sum of fitness values of both current and
selected individuals. This ensures that individuals with better
fitness contributemore to the next generationwhilemaintain-
ing diversity through ∂2, which considers the contribution
of individuals with potentially diverse characteristics. The
dynamic adaptation of these coefficients during the opti-
mization process ensures that the mechanism remains robust
across different types of problem landscapes.

Offspring population Qt is the set of xt+1i . The combined
population Rt � Pt ∪ Qt is sorted into different w-non-
dominant levels (F1, F2, . . . , Fl . . . , Fw). Beginning from
F1, all individuals in level 1 to l are added to St and remaining
members of Rt are rejected. If |St | � N then no other actions
are required and the next generation is begunwith Pt+1 � St .
Otherwise, solutions in St/Fl are included in Pt+1 � St/Fl

and the rest (K � N − |Pt+1|) individuals are selected from
the last front Fl (presented in Algorithm 1). For selecting
individuals from Fl , niche-preserving operator is used. First,
each population member of Pt+1 and Fl is normalized (pre-
sented inAlgorithm2) by using the current population spread
so that all objective vectors and reference points have com-
mensurate values. Thereafter, each member of Pt+1 and Fl
is associated (presented in Algorithm 3) with a specific refer-
ence point by using the shortest perpendicular distance (d())

of each population member with a reference line created by
joining the originwith a supplied reference point. Then, nich-
ing strategy (described inAlgorithm5) improves the diversity
of MaOSOS algorithm to choose those Fl members that are
associated with the least represented reference points niche
count ρ i in Pt+1. Then, check is made to see if termination
condition is met. If the termination condition is not satisfied,
t � t + 1 than process is repeated and if it is satisfied, Pt+1
is generated, it is then applied to generate a new population
Qt+1 by SOS algorithm. The computational complexity of
M-Objectives is O

(
N 2logM−2N

)
or O

(
N 2M

)
, whichever

is large. MaOSOS strategically choses reference points to
maintain harmony between convergence and diversity. The
adaptation of reference points in MaOSOS enables it to effi-
ciently deal with difficult shapes of Pareto fronts like convex
and/or discontinuous. To examine the objective space, it is
divided into varied parts of the Pareto-optimal front. Using
the perpendicular distance mechanism to find the shortest
distance between solutions and reference points, even distri-
bution of solutions throughout the Pareto-optimal surface is
achieved. This increases variation by steering the algorithm
toward neglected sections of the front. By integrating niche
safeguarding and reference point modifications congestion
is reduced in certain regions, often faced in many-objective
optimization challenges.
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The flow chart of MaOSOS algorithm can be shown in
Fig. 2.

4 Results and discussions

4.1 Problem description

In order to verify the effectiveness of the MaOSOS,
the WFG1- WFG9 [33] benchmark (Appendix A) and
five real world engineering design (Appendix B) namely
Car cab design (RWMaOP1) [34], 10-bar truss structure
(RWMaOP2) [35], Water and oil repellent fabric devel-
opment (RWMaOP3) [36], Ultra-wideband antenna design
(RWMaOP4) [37] and Liquid-rocket single element injector
design (RWMaOP5) [38] problems are used in this paper.
Choosing WFG1-WFG9 benchmark issues was based on
their flair for creating numerous types of Pareto front shapes

like concave and convex patterns representative of real-world
MaOPs. The literature utilizes these benchmarks to measure
the merit of many-objective algorithms since they incor-
porate critical challenges of convergence and diversity that
indicate an algorithm’s success in handling complex objec-
tive spaces. To evaluate the MaOSOS algorithm effectively
in real-world scenarios five engineering issues were chosen
that reflect actual optimization hurdles. In engineering design
tasks like car cab and ultra-wideband antenna development
optimizing various conflicting goals such as reducing weight
and improving strength or performance is essential. These
issues create an effective setting to measure the algorithm’s
efficiency and strength in addressing conflicting targets.

The experiments are conducted on a MATLAB R2020a
environment on an Intel Core (TM) i7-9700 CPU. Each algo-
rithm performs 30 times, the size of population N is set to
210, 276 and 240 for all the involved algorithms on M � 5,
6and7 objectives problems. TheMaxFEs is set to 1×105for
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Fig. 2 Flowchart of MaOSOS
algorithm
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Table 1 Properties of the quality
indicators Quality indicator

[40]
Convergence Diversity Uniformity Cardinality Computational

Burden

GD ✓

SD ✓

SP ✓

RT ✓

IGD ✓ ✓ ✓

HV ✓ ✓ ✓ ✓

all the test instances. This paper adoptsGenerational distance
(GD), Spread (SD), Spacing (SP), RunTime (RT ), Inverse
Generational distance (IGD) andHypervolume (HV ) qual-
ity indicator [39], shown in Table 1; Fig. 3.

4.2 Results onWFG problems

From Table 2, it is observed that MaOSOS outperforms
16 out of 27 best results, whereas MaOGBO, MaOJAYA,
MaOTLBO and MaOSCA achieves 5, 1, 0 and 5 best results
in termsof theGDvalues onWFGbenchmark for 5-, 6- and7-
objectives. WFG1 problem with M � 5, MaOSOS achieves
a GD of 0.094 ± 0.013, markedly better than its competi-
tors. This trend is consistent across other problem sizes for
WFG1,withMaOSOSmaintaining a lowermeanGD, indica-
tive of better performance. Further examination reveals that
MaOSOSoutperforms other algorithms in specific scenarios,
such as inWFG2 forM� 7, where it scores a GD of 0.041±
0.004. This is significantly lower thanMaOGBO,MaOJAYA,
MaOTLBO and MaOSCA. Throughout the other instances
MaOSOS is seen to be consistently better than or at par with
the rest. This leads to a reasonable assertion that MaOSOS is
a competitive algorithm, thereby establishing its robustness
in many-objective optimization tasks shown in Fig. 4.

Table 3 presents the InvertedGenerational Distance (IGD)
results for various algorithms, including MaOSOS, across a
range of WFG problems. These results, detailed for different
problem sizes (M), provide insights into each algorithm effi-
cacy, with a lower mean IGD indicating better performance.
In an overall assessment, MaOSOS achieves varying results
across the WFG problems. Table 3 shows that MaOSOS
does not consistently achieve the best IGD results, with
its performance fluctuating depending on the problem and
its dimension. However, it is important to note the specific
problems where it exhibits competitive performance. For
problem, in WFG2 with M � 5, MaOSOS records an IGD
of 0.772 ± 0.006, which, while not the lowest but is compet-
itive when compared to other algorithms like MaOGBO and
MaOSCA. This pattern of near-best performance is observ-
able in other problems, such as in WFG3 for M � 7, where
MaOSOS achieves an IGD of 1.831 ± 0.1241. In Table 3,

IGD value compared to MaOGBO, MaOJAYA, MaOTLBO
and MaOSCA, the proposed MaOSOS is better in 24, 25, 21
and 27 out of 27 cases on WFG benchmark for 5-, 6- and 7-
objectives. These proportions indicate that while MaOSOS
does not universally lead in performance, it holds signifi-
cant competitive strength in a notable subset of the WFG
problems. This showcases its capability to handle a diverse
range of many-objective optimization scenarios with varying
degrees of effectiveness shown in Fig. 4.

Table 4 displays the Spacing (SP) SP values ofMaOGBO,
MaOJAYA,MaOTLBO andMaOSCA. This pattern of excel-
lence is consistently observed in other problems, such as
WFG2 with M � 6, where MaOSOS records an SP of 0.444
± 0.034, again outperforming its competitors. In Table 4,
SP value compared to MaOGBO, MaOJAYA, MaOTLBO
and MaOSCA, the proposed MaOSOS worse in 3, 2, 0 and
2 out of 27 cases. These proportions highlight the consider-
able strength ofMaOSOS inmaintaining solution uniformity
across a diverse range of many-objective optimization prob-
lems. Its ability to consistently achieve lower SP values in
most of the test problems highlights its effectiveness in ensur-
ing a well-distributed set of solutions shown in Fig. 4.

Table 5 elucidates the Spread (SD) results for MaOSOS
and its counterparts across various WFG problems, with the
metric measuring the extent of spread among the obtained
solutions. A lower SD value indicates a better spread, sig-
nifying a more comprehensive exploration of the solution
space. Within this framework, MaOSOS demonstrates its
proficiency by achieving the best SD results in a significant
number of test problems compared toMaOGBO,MaOJAYA,
MaOTLBO and MaOSCA. As can be seen from Table 5,
MaOSOS achieves the best performance in terms of SD val-
ues, having obtained 20 best results, followed by MaOGBO,
MaOJAYA, MaOTLBO and MaOSCA that have obtained 2,
1, 2 and 2 best results, respectively. The predominance of
MaOSOS in securing the ability is crucial for ensuring that
the solutions are not only optimal but also diverse, covering
a wide range of possible outcomes shown in Fig. 4.

In Table 6 on the HV values, when respectively com-
pared to MaOGBO, MaOJAYA, MaOTLBO and MaOSCA,
the proposedMaOSOS is better in 27, 24, 24 and 17 out of 27
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Fig. 3 Mathematical and Schematic view of the GD, IGD, SP, SD and HV metrics
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Table 2 Comparison of GD Metric on WFG problems

Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

WFG1 5 14 0.094 ± 0.013 � 0.13 ± 0.015 � 0.129 ± 0.025 � 0.222 ± 0.145 � 0.118 ± 0.021

6 15 0.134 ± 0.015 � 0.159 ± 0.025 � 0.137 ± 0.025 � 0.162 ± 0.007 � 0.156 ± 0.034

7 16 0.159 ± 0.006 � 0.176 ± 0.032 � 0.176 ± 0.009 � 0.205 ± 0.012 � 0.17 ± 0.011

WFG2 5 14 0.024 ± 0.003 � 0.02 ± 0.003 � 0.027 ± 0.003 � 0.095 ± 0.006 � 0.027 ± 0.003

6 15 0.041 ± 0.005 � 0.025 ± 0.003 � 0.052 ± 0.004 � 0.157 ± 0.033 � 0.04 ± 0.01

7 16 0.041 ± 0.004 � 0.044 ± 0.015 � 0.06 ± 0.032 � 0.226 ± 0.009 � 0.044 ± 0.005

WFG3 5 14 0.279 ± 0.007 � 0.165 ± 0.033 � 0.267 ± 0.02 � 0.278 ± 0.006 � 0.319 ± 0.011

6 15 0.377 ± 0.011 � 0.216 ± 0.017 � 0.304 ± 0.048 � 0.381 ± 0.006 � 0.321 ± 0.093

7 16 0.481 ± 0.005 � 0.26 ± 0.018 � 0.117 ± 0.027 � 0.489 ± 0.006 � 0.242 ± 0.039

WFG4 5 14 0.031 ± 0.002 � 0.043 ± 0.001 � 0.036 ± 0.001 � 0.04 ± 0.003 � 0.033 ± 0.001

6 15 0.054 ± 0.004 � 0.072 ± 0.005 � 0.064 ± 0.003 � 0.072 ± 0.004 � 0.055 ± 0.001

7 16 0.057 ± 0.004 � 0.108 ± 0.006 � 0.075 ± 0.004 � 0.115 ± 0.002 � 0.071 ± 0.014

WFG5 5 14 0.034 ± 0.001 � 0.045 ± 0.001 � 0.042 ± 0.002 � 0.042 ± 0.002 � 0.035 ± 0.001

6 15 0.052 ± 0.003 � 0.081 ± 0.002 � 0.078 ± 0.002 � 0.079 ± 0.002 � 0.059 ± 0.001

7 16 0.056 ± 0.001 � 0.114 ± 0 � 0.095 ± 0.008 � 0.123 ± 0.006 � 0.073 ± 0.002

WFG6 5 14 0.041 ± 0.002 � 0.051 ± 0.002 � 0.047 ± 0.003 � 0.048 ± 0.008 � 0.045 ± 0.006

6 15 0.057 ± 0.003 � 0.085 ± 0.006 � 0.075 ± 0.003 � 0.075 ± 0.008 � 0.061 ± 0.002

7 16 0.063 ± 0.003 � 0.126 ± 0.006 � 0.081 ± 0.011 � 0.122 ± 0.003 � 0.071 ± 0.003

WFG7 5 14 0.041 ± 0.003 � 0.048 ± 0.005 � 0.042 ± 0.005 � 0.054 ± 0.002 � 0.039 ± 0

6 15 0.064 ± 0.005 � 0.081 ± 0.004 � 0.075 ± 0.005 � 0.085 ± 0.001 � 0.064 ± 0.008

7 16 0.067 ± 0.006 � 0.12 ± 0.004 � 0.082 ± 0.006 � 0.136 ± 0.009 � 0.075 ± 0.003

WFG8 5 14 0.065 ± 0.003 � 0.071 ± 0.002 � 0.069 ± 0.002 � 0.071 ± 0.002 � 0.067 ± 0.002

6 15 0.103 ± 0.005 � 0.123 ± 0.002 � 0.109 ± 0.006 � 0.109 ± 0.007 � 0.103 ± 0.009

7 16 0.128 ± 0.01 � 0.18 ± 0.007 � 0.126 ± 0.022 � 0.167 ± 0.004 � 0.126 ± 0.019

WFG9 5 14 0.051 ± 0.003 � 0.05 ± 0.001 � 0.052 ± 0.007 � 0.058 ± 0.001 � 0.051 ± 0.004

6 15 0.083 ± 0.002 � 0.097 ± 0.001 � 0.092 ± 0.005 � 0.113 ± 0.015 � 0.076 ± 0.005

7 16 0.107 ± 0.014 � 0.14 ± 0.002 � 0.127 ± 0.009 � 0.177 ± 0.002 � 0.109 ± 0.005

Bold indicates the best solution among the tested algorithms

cases and is only worse in 0%, 11.11%, 11.11% and 37.03%
cases. Therefore,MaOSOShas a better balance between con-
vergence and diversity for solving WFG benchmark for 5-,
6- and 7- objectives. This demonstrates its effectiveness in
generating solutions that cover a larger area of the Pareto
front shown in Fig. 4.

Table 7 presents the runtime (RT) results for MaOSOS
compared to MaOGBO, MaOJAYA, MaOTLBO and
MaOSCA across various WFG problems. In Table 7, RT
value compared to MaOGBO, MaOJAYA, MaOTLBO and
MaOSCA, the proposed MaOSOS is better in 20, 27, 25 and
27 out of 27 cases. MaOSOS exhibits more efficient runtime
results in 26/27 test problems. These proportions highlight
the significant strength of MaOSOS in terms of computa-
tional efficiency. It consistently requires less time to find
solutions compared to its counterparts, which is a crucial fac-
tor in many-objective optimization, especially for problems

that require quick decision-making or are computationally
intensive.

In terms of computational complexity, the proposed
MaOSOS algorithm has a complexity of O(N 2logM−2N )
or O

(
N 2M

)
, where N is the population size and M is

the number of objectives. This complexity arises from the
niche-preserving operator, reference point-based selection
and the use of the Information Feedback Mechanism (IFM)
to maintain both convergence and diversity. These mecha-
nisms, while increasing the computational burden, ensure
that MaOSOS excels in solving problems with a higher
number of objectives by balancing exploration and exploita-
tion more effectively. On the other hand, MaOGBO has a
simpler complexity of O

(
NM2

)
, which is due to its gradient-

based optimization approach that emphasizes convergence
but may compromise diversity when applied to problems
with more objectives. MaOJAYA, with a complexity of
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Fig. 4 Best Pareto optimal front obtained by different algorithms on WFG problems
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Fig. 4 continued
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Fig. 4 continued
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Fig. 4 continued

O(NM logN ), focuses on a teaching-learning-based mecha-
nism that reduces computational overhead but struggles with
maintaining a diverse solution set in high-dimensional objec-
tive spaces. MaOTLBO, another teaching-learning-based
optimizer, has a complexity of O(NM2logN ), making it
faster in smaller problems but less efficient in handling larger
objective spaces where diversity and convergence are criti-
cal. MaOSCA, which relies on a sine cosine mechanism for
generating solutions, has a complexity of O

(
NM2

)
, lead-

ing to reasonable performance in mid-sized problems but
may face difficulties in balancing convergence and diver-
sity as the number of objectives increases. When comparing
these algorithms, MaOSOS proves to be the most robust for
solving many-objective optimization problems, particularly
when the number of objectives increases.While the complex-
ity of MaOSOS is higher than that of MaOGBO, MaOJAYA
and MaOTLBO, the additional computational cost is justi-
fied by its superior ability to handle diverse and complex
Pareto fronts. The use of niche preservation, reference point-
based selection and the IFM ensures that MaOSOS not only
converges faster but also maintains a well-distributed set of
solutions across the Pareto front, making it the most effec-
tive algorithm in high-dimensional objective spaces. Thus,
despite its higher complexity, MaOSOS outperforms other
algorithms in managing the trade-off between computational
efficiency and solution quality.

The distribution of HV values across various runs for
each algorithm is displayed by the box plots shown in Fig. 5
alongwith the strong consistency and durability ofMaOSOS.
These graphs allow simple distinction of any outliers and

offer a clearer view of the algorithms’ performances regard-
ing variability. The narrow distribution and minimal outliers
in the MaOSOS box plots on various WFG benchmarks
indicate its reliability and durability in attaining superior
hypervolume results. Each algorithm’s progress toward the
optimal Pareto front can be seen in the convergence curves
regarding the HV metric over time shown in Fig. 6. These
graphs demonstrate how rapidly MaOSOS moves toward a
more robust HV value than various algorithms. This illus-
trates both the effectiveness of the algorithm and its ability
to span a broader region of the Pareto front across various
objective spaces in the WFG benchmark problems. In these
curves MaOSOS showcases its superior function by rapidly
converging and achieving a higher final HV value.

4.3 Experimental results on RWMaOP problems

Table 8 highlights the Spacing (SP) metric results for
MaOSOS and its counterparts across a range of real-world
many-objective optimization problems (RWMaOPs). This
metric measures the distribution uniformity of solutions,
with a lower mean value indicating better performance. In
RWMaOP1, MaOSOS records a SP of 1.274± 0.213, which
is higher than MaOGBO but significantly lower compared
to MaOJAYA, MaOTLBO and MaOSCA. In RWMaOP2,
MaOSOS achieves a perfect SP of 0 ± 0, substantially out-
performing all other algorithms by a significant margin. In
RWMaOP3, MaOSOS shows a SP of 15.556± 0.419, which
is considerably better than the SP values achieved by other
competing algorithms. In RWMaOP4, MaOSOS has a SP of
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Table 3 Comparison of IGD Metric on WFG problems

Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

WFG1 5 14 1.858 ± 0.757 � 1.283 ± 0.098 � 1.274 ± 0.233 � 0.993 ± 0.123 � 1.206 ± 0.149

6 15 1.684 ± 0.025 � 1.441 ± 0.181 � 1.379 ± 0.143 � 1.307 ± 0.101 � 1.53 ± 0.18

7 16 2.176 ± 0.203 � 1.784 ± 0.416 � 1.81 ± 0.103 � 1.626 ± 0.078 � 1.775 ± 0.093

WFG2 5 14 0.772 ± 0.006 � 0.519 ± 0.013 � 0.619 ± 0.167 � 0.496 ± 0.007 � 0.506 ± 0.007

6 15 1.117 ± 0.028 � 0.684 ± 0.005 � 0.756 ± 0.068 � 0.696 ± 0.007 � 0.811 ± 0.235

7 16 1.551 ± 0.138 � 0.84 ± 0.061 � 1.203 ± 0.109 � 0.854 ± 0.042 � 0.86 ± 0.019

WFG3 5 14 0.725 ± 0.102 � 0.652 ± 0.129 � 0.704 ± 0.097 � 0.824 ± 0.058 � 0.901 ± 0.084

6 15 1.25 ± 0.136 � 1.243 ± 0.316 � 0.799 ± 0.045 � 1.318 ± 0.086 � 1.217 ± 0.43

7 16 1.831 ± 0.124 � 1.662 ± 0.938 � 0.746 ± 0.085 � 1.639 ± 0.101 � 0.987 ± 0.019

WFG4 5 14 1.165 ± 0.012 � 1.262 ± 0.012 � 1.273 ± 0.029 � 1.223 ± 0.002 � 1.231 ± 0.005

6 15 1.803 ± 0.029 � 1.964 ± 0.013 � 2.062 ± 0.005 � 1.956 ± 0.011 � 1.952 ± 0.006

7 16 2.532 ± 0.011 � 2.604 ± 0.036 � 2.703 ± 0.011 � 2.651 ± 0.013 � 2.714 ± 0.119

WFG5 5 14 1.141 ± 0.007 � 1.244 ± 0.011 � 1.259 ± 0.005 � 1.207 ± 0.003 � 1.2 ± 0.004

6 15 1.793 ± 0.024 � 1.97 ± 0.025 � 2.003 ± 0.027 � 1.933 ± 0.007 � 1.921 ± 0.015

7 16 2.508 ± 0.011 � 2.624 ± 0.099 � 2.66 ± 0.048 � 2.633 ± 0.011 � 2.578 ± 0.019

WFG6 5 14 1.181 ± 0.016 � 1.294 ± 0.007 � 1.282 ± 0.013 � 1.232 ± 0.003 � 1.248 ± 0.022

6 15 1.813 ± 0.018 � 2.025 ± 0.019 � 2.117 ± 0.047 � 1.952 ± 0.002 � 1.965 ± 0.007

7 16 2.538 ± 0.01 � 2.657 ± 0.037 � 2.773 ± 0.072 � 2.661 ± 0.015 � 2.63 ± 0.016

WFG7 5 14 1.205 ± 0.013 � 1.285 ± 0.016 � 1.308 ± 0.004 � 1.241 ± 0.003 � 1.243 ± 0.003

6 15 1.826 ± 0.01 � 1.956 ± 0.035 � 2.076 ± 0.064 � 1.988 ± 0.016 � 1.983 ± 0.013

7 16 2.585 ± 0.051 � 2.599 ± 0.035 � 2.694 ± 0.032 � 2.636 ± 0.018 � 2.604 ± 0.009

WFG8 5 14 1.266 ± 0.011 � 1.331 ± 0.005 � 1.345 ± 0.025 � 1.282 ± 0.01 � 1.301 ± 0.017

6 15 1.93 ± 0.018 � 2.061 ± 0.016 � 2.121 ± 0.021 � 2.029 ± 0.032 � 2.172 ± 0.159

7 16 2.744 ± 0.058 � 2.786 ± 0.054 � 2.804 ± 0.187 � 2.69 ± 0.022 � 2.797 ± 0.284

WFG9 5 14 1.205 ± 0.021 � 1.252 ± 0.021 � 1.269 ± 0.049 � 1.226 ± 0.008 � 1.22 ± 0.016

6 15 1.926 ± 0.091 � 1.967 ± 0.024 � 2.006 ± 0.04 � 1.932 ± 0.012 � 1.928 ± 0.014

7 16 2.773 ± 0.025 � 2.645 ± 0.051 � 2.563 ± 0.006 � 2.558 ± 0.018 � 2.569 ± 0.078

Bold indicates the best solution among the tested algorithms

48,941 ± 895, which, while higher than MaOGBO, is lower
than the results of MaOJAYA, MaOTLBO and MaOSCA.
In RWMaOP5, MaOSOS achieves an SP of 0.036 ± 0.003,
demonstrating superior uniformity in solution distribution
compared to its counterparts. In Table 8, SP value compared
to MaOGBO, MaOJAYA, MaOTLBO and MaOSCA, the
proposed MaOSOS is better in 3, 5, 5 and 5 out of 5 cases.
These results indicate that MaOSOS excels in maintaining
a uniform distribution of solutions shown in Fig. 7 across
various complex real-world many-objective problems. Espe-
cially in scenarios such as the 10-bar truss structure andwater
and oil repellent fabric development, MaOSOS performance
in terms of SP is notably superior, reflecting its efficacy in
diverse optimization contexts.

From Table 9, the overall performance of MaOSOS in
terms of the Hypervolume (HV) metric across RWMaOP1,

MaOSOS achieves an HV of 0.002 ± 0, which is sub-
stantially higher than that of MaOGBO and outperforms
MaOJAYA, MaOTLBO and MaOSCA. For RWMaOP2,
MaOSOS records an HV of 0.081 ± 0.001, surpassing
MaOGBO, MaOJAYA, MaOTLBO and significantly bet-
ter than MaOSCA. In RWMaOP3, MaOSOS has an HV
of 0.016 ± 0, showing a competitive performance com-
pared to MaOGBO and better than MaOJAYA, MaOTLBO
and MaOSCA. For RWMaOP4, MaOSOS HV is 0.543 ±
0.001, which is higher than all other compared algorithms.
In RWMaOP5, MaOSOS achieves an HV of 0.531 ± 0.003,
indicating a slightly lower performance compared to some
counterparts but still competitive. In Table 9 on the HV val-
ues, when respectively compared to MaOGBO, MaOJAYA,
MaOTLBO and MaOSCA, the proposed MaOSOS is better
in 4, 5, 5 and 4 out of 5 cases and is only worse in 20%, 0%,
0% and 20% cases. These results emphasize the capability of
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Table 4 Comparison of SP Metric on WFG problems

Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

WFG1 5 14 0.439 ± 0.29 � 0.888 ± 0.108 � 0.836 ± 0.009 � 0.996 ± 0.119 � 0.926 ± 0.124

6 15 0.701 ± 0.028 � 1.18 ± 0.066 � 1.099 ± 0.057 � 1.504 ± 0.233 � 1.109 ± 0.023

7 16 0.837 ± 0.086 � 1.424 ± 0.061 � 1.254 ± 0.108 � 1.85 ± 0.092 � 1.293 ± 0.191

WFG2 5 14 0.369 ± 0.065 � 0.388 ± 0.092 � 0.582 ± 0.241 � 0.546 ± 0.04 � 0.644 ± 0.086

6 15 0.444 ± 0.034 � 0.608 ± 0.251 � 0.794 ± 0.072 � 1.006 ± 0.107 � 0.708 ± 0.162

7 16 0.54 ± 0.023 � 0.862 ± 0.247 � 0.72 ± 0.198 � 0.929 ± 0.239 � 0.854 ± 0.138

WFG3 5 14 0.279 ± 0.043 � 0.391 ± 0.053 � 0.691 ± 0.115 � 0.728 ± 0.058 � 0.578 ± 0.048

6 15 0.437 ± 0.13 � 0.428 ± 0.129 � 0.688 ± 0.057 � 1.125 ± 0.104 � 0.666 ± 0.131

7 16 0.652 ± 0.073 � 0.726 ± 0.172 � 0.552 ± 0.114 � 1.393 ± 0.091 � 0.748 ± 0.115

WFG4 5 14 0.398 ± 0.018 � 0.745 ± 0.026 � 0.942 ± 0.041 � 0.803 ± 0.067 � 0.88 ± 0.056

6 15 0.625 ± 0.074 � 1.076 ± 0.075 � 1.352 ± 0.149 � 1.194 ± 0.067 � 1.217 ± 0.032

7 16 0.907 ± 0.125 � 1.741 ± 0.134 � 1.736 ± 0.167 � 1.533 ± 0.124 � 1.548 ± 0.144

WFG5 5 14 0.418 ± 0.034 � 0.715 ± 0.023 � 0.885 ± 0.069 � 0.791 ± 0.041 � 0.851 ± 0.042

6 15 1.189 ± 0.096 � 0.624 ± 0.042 � 1.193 ± 0.112 � 1.14 ± 0.033 � 1.179 ± 0.044

7 16 1.535 ± 0.163 � 0.853 ± 0.02 � 1.573 ± 0.123 � 1.383 ± 0.018 � 1.382 ± 0.051

WFG6 5 14 0.446 ± 0.019 � 0.739 ± 0.052 � 0.831 ± 0.121 � 0.831 ± 0.004 � 0.812 ± 0.049

6 15 0.636 ± 0.06 � 1.304 ± 0.041 � 1.388 ± 0.052 � 1.143 ± 0.096 � 1.208 ± 0.008

7 16 0.931 ± 0.023 � 1.569 ± 0.057 � 1.568 ± 0.086 � 1.48 ± 0.068 � 1.434 ± 0.136

WFG7 5 14 0.913 ± 0.028 � 0.715 ± 0.027 � 0.436 ± 0.028 � 0.808 ± 0.026 � 0.912 ± 0.011

6 15 0.564 ± 0.042 � 1.144 ± 0.085 � 1.512 ± 0.191 � 1.416 ± 0.048 � 1.239 ± 0.029

7 16 0.799 ± 0.028 � 1.544 ± 0.025 � 1.876 ± 0.083 � 1.648 ± 0.071 � 1.528 ± 0.093

WFG8 5 14 0.407 ± 0.042 � 0.719 ± 0.05 � 0.822 ± 0.058 � 0.987 ± 0.05 � 1.023 ± 0.039

6 15 1.777 ± 0.174 1.077 ± 0.084 � 1.203 ± 0.047 � 1.35 ± 0.225 � 0.714 ± 0.04 �
7 16 1.968 ± 0.045 1.522 ± 0.099 � 1.99 ± 0.197 � 2.095 ± 0.2 � 1.063 ± 0.057 �

WFG9 5 14 0.369 ± 0.036 � 0.723 ± 0.099 � 0.836 ± 0.058 � 0.864 ± 0.053 � 0.792 ± 0.026

6 15 0.509 ± 0.044 � 1.222 ± 0.101 � 1.148 ± 0.077 � 1.283 ± 0.093 � 1.163 ± 0.111

7 16 0.788 ± 0.042 � 1.44 ± 0.029 � 1.679 ± 0.056 � 1.615 ± 0.038 � 1.481 ± 0.098

Bold indicates the best solution among the tested algorithms

MaOSOS in effectively covering a larger area of the Pareto
front compared to its counterparts shown in Fig. 7.

From Table 10, the overall running time of MaOSOS
is notably the least in several of the real-world many-
objective optimization problems (RWMaOPs), showcasing
its computational efficiency. The specific running times and
comparisons are as follows. In RWMaOP1, MaOSOS run-
time is 1.026 s, accounting for only 8.6%, 34.5%, 6.1% and
34.8% of the runtimes of MaOGBO (11.897 s), MaOJAYA
(2.971 s), MaOTLBO (16.651 s) and MaOSCA (2.959 s),
respectively. For RWMaOP2, with a runtime of 11.69 s,
MaOSOS is more efficient, taking 70.1%, 87.9%, 59.7%
and 89.5% of the time taken by MaOGBO, MaOJAYA,
MaOTLBO and MaOSCA. In RWMaOP3, MaOSOS run-
time is 11.514 s, which is significantly more efficient than
MaOTLBO and MaOSCA and comparable to MaOGBO
and MaOJAYA. For RWMaOP4, MaOSOS has a runtime

of 9.868 s, demonstrating faster processing by taking only a
fraction of the time taken by MaOTLBO and MaOSCA. In
RWMaOP5, with a runtime of 0.887 s, MaOSOS is signif-
icantly more efficient than all other algorithms, especially
MaOTLBO and MaOSCA, indicating a higher speed. In
Table 10, RT value compared to MaOGBO, MaOJAYA,
MaOTLBO and MaOSCA, the proposed MaOSOS is bet-
ter in 2, 5, 3 and 2 out of 5 cases. These results clearly show
that MaOSOS has a faster running speed compared to its
counterparts in most of the RWMaOPs. The lower running
times of MaOSOS, especially in cases like RWMaOP1 and
RWMaOP5, suggest that it not only provides efficient solu-
tions but also does so in a considerably shorter amount of
time. This efficiency, as demonstrated in Table 10, proves
that MaOSOS has higher search efficiency in solving real-
world many-objective problems.
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Table 5 Comparison of SD Metric on WFG problems

Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

WFG1 5 14 0.495 ± 0.438 � 0.542 ± 0.016 � 0.554 ± 0.038 � 0.7 ± 0.047 � 0.688 ± 0.038

6 15 0.223 ± 0.027 � 0.665 ± 0.093 � 0.704 ± 0.066 � 0.932 ± 0.101 � 0.763 ± 0.1

7 16 0.234 ± 0.008 � 0.73 ± 0.058 � 0.737 ± 0.036 � 1.03 ± 0.037 � 0.762 ± 0.052

WFG2 5 14 0.136 ± 0.015 � 0.583 ± 0.03 � 0.647 ± 0.143 � 0.414 ± 0.021 � 0.484 ± 0.038

6 15 0.119 ± 0.005 � 0.698 ± 0.023 � 0.709 ± 0.097 � 0.631 ± 0.063 � 0.679 ± 0.179

7 16 0.118 ± 0.015 � 0.723 ± 0.042 � 0.84 ± 0.143 � 0.685 ± 0.151 � 0.647 ± 0.01

WFG3 5 14 0.131 ± 0.007 � 0.333 ± 0.021 � 0.676 ± 0.031 � 0.425 ± 0.061 � 0.626 ± 0.054

6 15 0.126 ± 0.018 � 0.379 ± 0.026 � 0.679 ± 0.015 � 0.527 ± 0.069 � 0.665 ± 0.094

7 16 0.411 ± 0.033 � 0.136 ± 0.006 � 0.833 ± 0.049 � 0.511 ± 0.067 � 0.704 ± 0.096

WFG4 5 14 0.211 ± 0.02 � 0.092 ± 0.002 � 0.34 ± 0.041 � 0.255 ± 0.021 � 0.259 ± 0.01

6 15 0.1 ± 0.013 � 0.234 ± 0.015 � 0.345 ± 0.025 � 0.257 ± 0.007 � 0.233 ± 0.003

7 16 0.103 ± 0.004 � 0.269 ± 0.02 � 0.422 ± 0.039 � 0.336 ± 0.061 � 0.393 ± 0.156

WFG5 5 14 0.09 ± 0.009 � 0.215 ± 0.02 � 0.353 ± 0.021 � 0.265 ± 0.01 � 0.284 ± 0.006

6 15 0.087 ± 0.01 � 0.272 ± 0.021 � 0.363 ± 0.034 � 0.26 ± 0.018 � 0.247 ± 0.005

7 16 0.089 ± 0.008 � 0.292 ± 0.023 � 0.425 ± 0.033 � 0.339 ± 0.02 � 0.308 ± 0.009

WFG6 5 14 0.304 ± 0.036 � 0.213 ± 0.001 � 0.065 ± 0.014 � 0.252 ± 0.006 � 0.269 ± 0.02

6 15 0.08 ± 0.006 � 0.271 ± 0.018 � 0.415 ± 0.016 � 0.233 ± 0.017 � 0.24 ± 0.012

7 16 0.087 ± 0.013 � 0.299 ± 0.01 � 0.422 ± 0.043 � 0.356 ± 0.027 � 0.315 ± 0.042

WFG7 5 14 0.085 ± 0.012 � 0.211 ± 0.009 � 0.373 ± 0.008 � 0.263 ± 0.013 � 0.292 ± 0.012

6 15 0.093 ± 0.004 � 0.244 ± 0.011 � 0.484 ± 0.142 � 0.331 ± 0.055 � 0.26 ± 0.008

7 16 0.101 ± 0.008 � 0.271 ± 0.014 � 0.47 ± 0.042 � 0.379 ± 0.025 � 0.323 ± 0.006

WFG8 5 14 0.279 ± 0.011 � 0.216 ± 0.006 � 0.297 ± 0.024 � 0.079 ± 0.011 � 0.318 ± 0.017

6 15 0.275 ± 0.047 � 0.226 ± 0.003 � 0.347 ± 0.046 � 0.074 ± 0.004 � 0.539 ± 0.189

7 16 0.086 ± 0.012 � 0.231 ± 0.009 � 0.512 ± 0.162 � 0.408 ± 0.038 � 0.503 ± 0.186

WFG9 5 14 0.103 ± 0.012 � 0.22 ± 0.016 � 0.351 ± 0.022 � 0.298 ± 0.034 � 0.292 ± 0.015

6 15 0.283 ± 0.02 0.281 ± 0.019 � 0.341 ± 0.036 � 0.324 ± 0.009 � 0.094 ± 0.009 �
7 16 0.348 ± 0.024 0.29 ± 0.01 � 0.396 ± 0.017 � 0.372 ± 0.024 � 0.117 ± 0.003 �

Bold indicates the best solution among the tested algorithms

In the context of many-objective optimization, the perfor-
mance of MaOSOS, as concluded from Tables 2, 3, 4, 5, 6, 7,
8, 9 and 10, demonstrates its significant strengths and weak-
nesses across various test problems. UtilizingWilcoxon rank
sum test for a comprehensive assessment, MaOSOS exhibits
a diverse range of efficiencies. Based on the Wilcoxon rank-
sum test, MaOSOS obtains the best score of 1.59, which
means that our proposed algorithm outperforms MaOGBO,
MaOJAYA, MaOTLBO and MaOSCA achieves 7.08, 16.09,
8.85 and 17.7. Thus, MaOSOS shows better overall perfor-
mance compared to MaOGBO, MaOJAYA, MaOTLBO and
MaOSCA.

Across the different test scenarios, MaOSOS outper-
forms competitors like MaOGBO, MaOJAYA, MaOTLBO
and MaOSCA in most of the test problems. Specifically,
MaOSOS shows 96%, 64% and 73% significantly better

values than MaOGBO, MaOJAYA and MaOTLBO, respec-
tively, across a combined total of WFG and RWMaOPs
problems.

In earlier evaluations the performance of MaOSOS in
relation to other algorithms was depicted using symbols (+,
-, �) to denote worse and better as well as equal. Using
a Wilcoxon signed-rank test on every performance metric
(GD, IGD, SP, SD, HV and RT), the statistical significance
of the variations between MaOSOS and the competing algo-
rithms (MaOGBO, MaOJAYA, MaOTLBO and MaOSCA)
is investigated. The results from the test established that the
distinctions emphasized by the + symbol (representing bet-
ter performance of MaOSOS) are statistically significant in
most situations.

The performance advantage of MaOSOS over MaOGBO
andMaOJAYA originates from essential features in its archi-
tecture. The use of the IFM helps MaOSOS harmonize
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Table 6 Comparison of HV
Metric on WFG problems Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

WFG1 5 14 5.0987e−1
(4.86e−2)

5.3465e−1
(6.47e−2)

6.3122e−1
(5.58e−2)

5.1555e−1
(4.12e−2)

5.1084e−1
(4.74e−2)

6 15 4.9977e−1
(5.84e−2)

4.2082e−1
(2.75e−2)

5.1270e−1
(4.88e−2)

5.2959e−1
(1.01e−1)

5.7951e−1
(3.65e−2)

7 16 4.5263e−1
(5.69e−2)

4.5214e−1
(9.53e−2)

4.3285e−1
(1.40e−2)

4.9229e−1
(6.04e−2)

5.1812e−1
(3.81e−2)

WFG2 5 14 9.5478e−1
(1.09e−2)

9.0354e−1
(1.77e−2)

9.5893e−1
(1.18e−2)

9.3832e−1
(6.18e−3)

9.6869e−1
(5.89e−3)

6 15 9.5056e−1
(6.06e−3)

8.9701e−1
(3.30e−2)

9.7048e−1
(8.00e−3)

9.3691e−1
(1.14e−2)

9.5880e−1
(4.87e−3)

7 16 9.5935e−1
(7.74e−3)

9.1328e−1
(2.52e−2)

9.0335e−1
(9.81e−2)

9.4311e−1
(1.17e−2)

9.5533e−1
(2.75e−3)

WFG3 5 14 4.7342e−2
(5.51e−3)

1.2492e−2
(9.24e−3)

8.072e−2
(2.57e−2)

5.6515e−2
(1.30e−2)

4.3743e−2
(3.15e−2)

6 15 4.6036e−3
(7.97e−3)

0.000e + 0
(0.00e + 0)

7.4309e−3
(6.45e−3)

3.3855e−2
(2.12e−2)

1.3960e−2
(1.34e−2)

7 16 0.000e + 0
(0.00e + 0)

0.000e + 0
(0.00e + 0)

0.000e + 0
(0.00e + 0)

2.7872e−2
(2.18e−2)

0.000e + 0
(0.00e + 0)

WFG4 5 14 7.0269e−1
(7.17e−3)

6.4105e−1
(5.13e−3)

6.4437e−1
(1.23e−2)

6.7384e−1
(7.19e−3)

6.9225e−1
(3.92e−3)

6 15 7.1235e−1
(6.51e−2)

6.5530e−1
(2.30e−4)

6.5269e−1
(4.47e−3)

6.9508e−1
(1.44e−2)

7.4092e−1
(3.92e−3)

7 16 7.7154e−1
(7.28e−3)

6.7192e−1
(1.38e−2)

6.5928e−1
(3.10e−2)

7.5691e−1
(1.20e−2)

7.7160e−1
(1.39e−2)

WFG5 5 14 6.8019e−1
(7.94e−3)

6.1048e−1
(4.98e−3)

6.2350e−1
(4.85e−3)

6.4916e−1
(8.23e−3)

6.7816e−1
(2.47e−3)

6 15 7.2162e−1
(3.74e−3)

6.3056e−1
(1.21e−2)

6.3796e−1
(1.23e−2)

6.7071e−1
(8.53e−3)

7.0366e−1
(1.18e−2)

7 16 7.5671e−1
(1.08e−2)

6.2268e−1
(9.50e−3)

6.0290e−1
(5.45e−3)

7.1625e−1
(1.16e−2)

7.4791e−1
(1.58e−2)

WFG6 5 14 6.5259e−1
(2.04e−2)

5.6491e−1
(1.15e−2)

6.1072e−1
(2.46e−2)

6.1216e−1
(2.70e−2)

6.4945e−1
(1.23e−2)

6 15 6.9245e−1
(7.90e−4)

5.5192e−1
(2.29e−2)

6.2044e−1
(2.58e−2)

6.3227e−1
(8.24e−3)

7.0539e−1
(1.44e−2)

7 16 7.2804e−1
(2.29e−3)

5.1890e−1
(5.39e−2)

6.0521e−1
(1.94e−2)

7.0452e−1
(1.14e−2)

7.3006e−1
(2.51e−2)

WFG7 5 14 6.8966e−1
(1.62e−2)

6.2292e−1
(7.91e−3)

5.8310e−1
(8.04e−3)

6.7561e−1
(2.49e−2)

6.8115e−1
(6.13e−3)

6 15 7.3421e−1
(1.63e−2)

6.3957e−1
(5.75e−3)

6.2361e−1
(2.34e−2)

6.9158e−1
(2.15e−2)

7.1980e−1
(3.50e−2)

7 16 7.8211e−1
(1.26e−2)

6.1576e−1
(6.33e−2)

5.5062e−1
(4.80e−2)

7.6495e−1
(9.52e−3)

7.4908e−1
(4.71e−2)

WFG8 5 14 5.6029e−1
(1.44e−2)

5.1589e−1
(1.65e−2)

5.2761e−1
(1.70e−2)

5.3437e−1
(1.81e−2)

5.8748e−1
(6.24e−3)

6 15 5.8766e−1
(2.43e−3)

5.0719e−1
(3.23e−2)

5.2608e−1
(1.49e−2)

5.8551e−1
(8.04e−3)

6.1404e−1
(1.64e−2)

7 16 5.8098e−1
(2.02e−2)

4.7540e−1
(7.69e−2)

5.6784e−1
(2.17e−2)

5.7979e−1
(3.61e−2)

6.5334e−1
(8.72e−3)

WFG9 5 14 6.3994e−1
(1.73e−2)

5.6950e−1
(3.29e−2)

5.5061e−1
(8.13e−3)

5.7007e−1
(5.38e−2)

5.9394e−1
(1.96e−2)

6 15 6.1747e−1
(3.72e−2)

5.6409e−1
(3.10e−2)

4.6304e−1
(1.62e−2)

6.3514e−1
(7.78e−3)

6.0832e−1
(1.90e−2)
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Table 6 (continued)
Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

7 16 6.9211e−1
(3.22e−2)

5.4649e−1
(1.11e−2)

4.8455e−1
(7.92e−2)

6.7937e−1
(1.63e−2)

6.2836e−1
(3.24e−2)

Bold indicates the best solution among the tested algorithms

Table 7 Comparison of RT Metric on WFG problems

Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

WFG1 5 14 0.764 ± 0.083 0.817 ± 0.118 � 1.066 ± 0.121 � 5.677 ± 0.313 � 2.078 ± 1.54 �
6 15 0.707 ± 0.043 0.706 ± 0.027 � 1.067 ± 0.103 � 4.86 ± 0.151 � 2.838 ± 0.135 �
7 16 0.722 ± 0.127 0.72 ± 0.162 � 1.012 ± 0.156 � 6.744 ± 0.189 � 3.329 ± 0.102 �

WFG2 5 14 0.632 ± 0.026 0.768 ± 0.018 � 0.949 ± 0.081 � 5.574 ± 0.175 � 2.995 ± 0.297 �
6 15 0.68 ± 0.033 0.787 ± 0.007 � 1.308 ± 0.385 � 5.395 ± 0.022 � 3.053 ± 0.084 �
7 16 0.944 ± 0.205 0.791 ± 0.025 � 1.111 ± 0.098 � 6.807 ± 0.132 � 3.208 ± 0.025 �

WFG3 5 14 0.723 ± 0.067 0.707 ± 0.025 � 1.121 ± 0.159 � 7.435 ± 0.137 � 4.677 ± 0.098 �
6 15 1.77 ± 0.304 0.705 ± 0.027 � 2.045 ± 0.122 � 6.942 ± 0.062 � 5.167 ± 0.047 �
7 16 1.733 ± 0.165 0.723 ± 0.019 � 1.889 ± 0.095 � 8.523 ± 0.104 � 5.653 ± 0.125 �

WFG4 5 14 0.659 ± 0.048 0.858 ± 0.012 � 0.89 ± 0.111 � 6.808 ± 0.052 � 4.83 ± 0.059 �
6 15 0.735 ± 0.043 0.853 ± 0.019 � 1.117 ± 0.145 � 6.86 ± 0.499 � 5.181 ± 0.106 �
7 16 0.82 ± 0.131 0.88 ± 0.064 � 1.01 ± 0.024 � 7.755 ± 0.062 � 5.688 ± 0.469 �

WFG5 5 14 0.598 ± 0.003 0.833 ± 0.042 � 0.833 ± 0.044 � 6.654 ± 0.038 � 4.429 ± 0.037 �
6 15 0.679 ± 0.032 0.834 ± 0.014 � 0.957 ± 0.058 � 6.248 ± 0.08 � 4.899 ± 0.092 �
7 16 0.687 ± 0.036 0.84 ± 0.014 � 0.948 ± 0.051 � 7.685 ± 0.105 � 5.169 ± 0.119 �

WFG6 5 14 0.614 ± 0.062 0.814 ± 0.02 � 0.834 ± 0.035 � 5.924 ± 0.147 � 3.692 ± 0.088 �
6 15 5.592 ± 0.027 � 0.818 ± 0.012 � 0.95 ± 0.077 � 0.658 ± 0.043 4.255 ± 0.109 �
7 16 6.893 ± 0.104 � 0.845 ± 0.024 � 0.969 ± 0.094 � 0.688 ± 0.015 4.682 ± 0.075 �

WFG7 5 14 0.606 ± 0.002 0.852 ± 0.023 � 0.879 ± 0.095 � 7.203 ± 0.066 � 4.999 ± 0.053 �
6 15 0.691 ± 0.055 0.876 ± 0.023 � 0.963 ± 0.051 � 6.6 ± 0.098 � 5.452 ± 0.058 �
7 16 0.729 ± 0.023 0.88 ± 0.046 � 0.977 ± 0.043 � 8.016 ± 0.118 � 5.783 ± 0.042 �

WFG8 5 14 0.598 ± 0.02 0.829 ± 0.025 � 0.891 ± 0.046 � 5.607 ± 0.065 � 3.506 ± 0.063 �
6 15 0.702 ± 0.085 0.825 ± 0.016 � 0.958 ± 0.013 � 5.384 ± 0.122 � 3.911 ± 0.04 �
7 16 0.769 ± 0.113 0.843 ± 0.073 � 1.026 ± 0.153 � 6.537 ± 0.05 � 4.343 ± 0.063 �

WFG9 5 14 0.64 ± 0.005 1.085 ± 0.212 � 1.063 ± 0.222 � 7.366 ± 0.265 � 4.921 ± 0.708 �
6 15 0.757 ± 0.015 0.853 ± 0.017 � 1.044 ± 0.04 � 6.785 ± 0.184 � 5.115 ± 0.201 �
7 16 0.864 ± 0.098 0.864 ± 0.051 � 1.015 ± 0.051 � 8.307 ± 0.223 � 5.65 ± 0.055 �

Bold indicates the best solution among the tested algorithms

convergence with diversity efficiently. MaOSOS diverges
from typical methods by employing IFM to utilize past
data for improving its ability to explore while also preserv-
ing population diversity. This avoids the algorithm entering
local maxima commonly encountered by MaOGBO and
MaOTLBO that emphasize convergence more than popula-
tion diversity. InMaOSOS the strategy for niche preservation
maintains diversity on the Pareto front better than MaO-
JAYA. With reference point selection as a feature MaOSOS
achieves a more even distribution of solutions on the Pareto

front unlike MaOSCA which frequently encounters consis-
tency issues in the solution set. Tenacious performance of
MaOSOS in irregular and complex Pareto fronts arises from
its adaptability enabling search adjustments compared to
MaOGBO designed for normal fronts. In many-objective
optimization tasks, MaOSOS demonstrates its robustness
through its reliable performance across multiple metrics
including HV and IGD.
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Fig. 5 Box plot obtained on HV metric by different algorithms on WFG problems
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Fig. 5 continued

5 Conclusions

Previousmany-objective optimization algorithms often over-
looked valuable population data from earlier stages, leading
to a potential loss of crucial insights. To address this
limitation, we introduced the Many-Objective Symbiotic
Organism Search (MaOSOS), building upon the SOS algo-
rithm and incorporating innovative IFMs. Thesemechanisms

preserve historical data and systematically select individ-
uals, enhancing exploratory capabilities and rectifying the
neglect of critical information. By leveraging SOS’s conver-
gence properties, MaOSOS demonstrates significant perfor-
mance improvements. Comprehensive comparisons between
MaOSOS and leading algorithms like MaOGBO, MaO-
JAYA, MaOTLBO, and MaOSCA on complex optimization
challenges—specifically the WFG1-WFG9 test suite up to
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Fig. 6 Convergence curve obtained on HV metric by different algorithms on WFG problems
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Fig. 6 continued

Table 8 Comparison of SP Metric on RWMaOP problems

Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

RWMaOP1 9 7 1.274 ± 0.213 � 1.202 ± 0.153 � 3.403 ± 1.09 � 3.711 ± 2.22 � 3.275 ± 1.23

RWMaOP2 4 10 0 ± 0 � 1335.9 ± 109 � 780.95 ± 314 � 1258.9 ± 457 � 871.39 ± 178

RWMaOP3 7 3 15.556 ± 0.419 � 31.674 ± 3.24 � 36.132 ± 6.67 � 41.686 ± 5.25 � 35.442 ± 2.06

RWMaOP4 5 6 48,941 ± 895 � 35,828 ± 5040 � 46,866 ± 10,200 � 45,686 ± 3740 � 63,810 ± 13,100

RWMaOP5 4 4 0.036 ± 0.003 � 0.087 ± 0.012 � 0.105 ± 0.019 � 0.109 ± 0.004 � 0.088 ± 0.026

Bold indicates the best solution among the tested algorithms

Table 9 Comparison of HV Metric on RWMaOP problems

Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

RWMaOP1 9 7 0.002 ± 0 0.001 ± 0 � 0.002 ± 0 � 0.001 ± 0 � 0.001 ± 0 �
RWMaOP2 4 10 0.081 ± 0.001 0.068 ± 0.008 � 0.081 ± 0 � 0.073 ± 0.002 � 0.018 ± 0.009 �
RWMaOP3 7 3 0.016 ± 0 0.017 ± 0.001 � 0.017 ± 0.001 � 0.016 ± 0 � 0.018 ± 0 �
RWMaOP4 5 6 0.543 ± 0.001 0.532 ± 0.022 � 0.539 ± 0.003 � 0.54 ± 0.005 � 0.487 ± 0.015 �
RWMaOP5 4 4 0.531 ± 0.003 0.547 ± 0.018 � 0.54 ± 0.006 � 0.546 ± 0.006 � 0.546 ± 0.002 �
Bold indicates the best solution among the tested algorithms
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Fig. 7 Best Pareto optimal front obtained by different algorithms on RWMaOP problems

seven objectives—reveal MaOSOS’s superior capability in
addressing varying Pareto Front (PF) shapes, particularly
convex PF challenges. Additionally, on real-world problems
(RWMaOP1–RWMaOP5),MaOSOS outperformed contem-
porarymany-objective algorithms acrossmetrics such asGD,
IGD, SP, SD, HV, and RT, showcasing superior convergence
and diversity.

An important limitation of MaOSOS is its heavy reliance
on fixed reference points, which may not suffice for differ-
ent optimization landscapes. Its computational complexity
increases when applied to real-world issues with a large
number of objectives or decision variables. Balancing con-
vergence and diversity remains challenging, as someproblem
instances may emphasize one over the other. Future research

can enhance the IFM for dynamic adaptability to problem
characteristics, potentially improving efficiency in solv-
ing high-dimensional many-objective problems. Merging
MaOSOS with optimization strategies like machine learn-
ing and heuristic techniques may accelerate convergence and
assure higher solution quality.

Further investigation into the applications of MaOSOS
in other real-world scenarios, especially in industrial engi-
neering with dynamic and conflicting aims, could lead
to a better understanding of its effectiveness in tackling
real-world engineering challenges [41, 42]. For instance,
MaOSOS shows usefulness in key processes including
robotic assembly sequence planning [43, 44]. Industry 4.0,
which often presents challenging optimization tasks with
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Table 10 Comparison of RT Metric on RWMaOP problems

Problem M D MaOSOS MaOGBO MaOJAYA MaOTLBO MaOSCA

RWMaOP1 9 7 1.026 ± 0.077 � 11.897 ± 0.271 � 2.971 ± 0.134 � 16.651 ± 0.378 � 2.959 ± 0.153

RWMaOP2 4 10 11.69 ± 0.207 � 16.65 ± 1.1 � 13.264 ± 0.111 � 19.575 ± 0.34 � 13.011 ± 0.203

RWMaOP3 7 3 11.514 ± 0.124 � 0.969 ± 0.052 � 2.792 ± 0.044 � 19.011 ± 0.458 � 2.833 ± 0.072

RWMaOP4 5 6 9.868 ± 0.295 � 0.998 ± 0.011 � 2.982 ± 0.144 � 14.941 ± 0.2 � 3.029 ± 0.118

RWMaOP5 4 4 0.887 ± 0.02 � 8.194 ± 0.166 � 2.752 ± 0.104 � 13.777 ± 0.189 � 2.435 ± 0.255

Bold indicates the best solution among the tested algorithms

numerous objectives, pertains closely to these fields [45].
Thanks to its new reference point strategy and niche preserva-
tion methods, MaOSOS effectively handles these problems.

To incorporate dynamic many-objective optimization
problems (MaOPs), MaOSOS needs modifications in the
IFM to reflect changing objectives over time by monitoring
past solution performances and adjusting reference points
accordingly. Niche preservation methods can be adapted to
account for changing objective spaces, keeping the popula-
tion varied and adaptable to new circumstances. Modifying
cooperative relationships within MaOSOS can facilitate reg-
ular combination of solutions in response to new conditions,
possibly integrating predictive models to foresee changes in
the optimization environment. Researchers can explore these
avenues to enhance MaOSOS’s performance in dynamic
optimization situations,making it suitable for practical appli-
cations where goals frequently shift.
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