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Abstract

This work is dedicated to advancing the approximation of initial value problems through the introduction of
an innovative and superior method inspired by the Euler-Maclaurin formula. This results in a higher-order
implicit corrected method that outperforms the Runge-Kutta method in terms of accuracy. We derive an error
bound for the Euler-Maclaurin higher-order method, showcasing its stability, convergence, and greater effi-
ciency compared to the conventional Runge-Kutta method. To substantiate our claims, numerical experiments
are provided, highlighting the exceptional efficiency of our proposed method over the traditional well-known
methods. In conclusion, the proposed method consistently outperforms the Runge-Kutta method experimen-
tally in all practical problems.
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1 Introduction

In our present era, marked by unprecedented progress in both experimental and applied sciences, the landscape
of scientific exploration is continually expanding. A noteworthy facet of this evolution is the rapid strides in ar-
tificial intelligence, a transformative force that holds promise for addressing intricate mathematical challenges.
In the dynamic realm of differential equations, researchers are dedicatedly engaged in the enhancement and
modernization of classical methods for approximating both initial and boundary value problems.1–7

While the Runge-Kutta method maintains its supremacy as the go-to technique for solving differential equa-
tions, researchers find themselves at the intersection of tradition and innovation. The method, revered by
many, serves as a robust benchmark against which emerging approaches are scrutinized, particularly in the
intricate domain of chaotic systems. Yet, as we traverse this era of accelerating development, the exigencies of
the moment compel us to not only acknowledge historical methodologies but also to push beyond established
boundaries.

This contemporary epoch demands that we proactively propose and cultivate novel avenues for approximating
Ordinary Differential Equations (O.D.E.) with heightened precision and efficiency. The quest for advance-
ments in computational techniques becomes more pronounced as we endeavor to unlock deeper insights into
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complex mathematical models and systems, see8–14 to get a future directions in relation to such techniques.
In this quest for progress, we are challenged to explore uncharted territories, seeking methodologies that not
only surpass the reliability of the Runge-Kutta method but also resonate with the evolving demands of modern
scientific inquiry. As we stand at the connection of tradition and innovation, our pursuit is not merely about
comparison but about carving new pathways that redefine the very structure of mathematical approximation in
the era of artificial intelligence.

After navigating through the terrain of established methodologies, our exploration is poised to reach its zenith
with the unveiling of a ground breaking approach for approximating solutions to Initial Value Problems (I.V.P.).
This pioneering method endeavors to strike a nuanced equilibrium between precision and computational effi-
ciency, offering a compelling alternative to the conventional techniques deliberated earlier. As we set forth on
this transformative odyssey, we extend a warm invitation to readers, urging them to accompany us in unrav-
eling the complexities of numerical methods. Together, let us pave the way for a new epoch in the realm of
approximating solutions for I.V.P. In this direction, we recommend the reader refer to.15–19

The Euler-Maclaurin formula, a mathematical gem, stands as a testament to the intellectual prowess of Euler20

and Maclaurin21 during the 18th century. Euler and Maclaurin independently contributed to the development
of the formula. Euler’s motivation stemmed from the need to bridge the gap between discrete sums and
continuous integrals, while Maclaurin’s work built upon Euler’s foundations. The collaborative efforts of
these mathematicians gave rise to a formula that has since become a cornerstone in mathematical analysis. In
fact, if the function f (x) is analytic in the integration region, then the famous Euler-Maclaurin formula reads:

n−1∑
k=1

f (k) =

∫ n

0

f (x) dx− f (0) + f (n)

2
+

∞∑
k=1

B2k

(2k)!

[
f (2k−1) (n)− f (2k−1) (0)

]
.

An elementary view of this formula was discussed extensively in.22 The elegance of the Euler-Maclaurin
formula lies in its derivation, grounded in the fundamental technique of integration by parts. By cleverly ap-
plying this method, Euler and Maclaurin created a formula that connects discrete sums to continuous integrals.
The derivation involves manipulating the discrete sums, introducing integral terms, and carefully handling the
boundary terms to obtain a remarkably expressive formula. This process showcases the ingenuity of these
mathematicians in formulating a bridge between discrete and continuous mathematical concepts. The Euler-
Maclaurin formula has garnered considerable attention among researchers, prompting a diverse exploration of
various alternative formulations of the aforementioned theorem.

Darboux offered an alternative derivation, employing the mean value theorem to the integrals within the for-
mula. This approach provides a fresh perspective, revealing the connection between discrete and continuous
processes through the lens of the mean value theorem. Darboux’s insight enhances our understanding of the
formula, showcasing the various mathematical pathways leading to its elegant expression. Throughout this
work, I is a real interval, a, b ∈ I◦ (the interior of I) with a < b. Let Pn (I) be the class of polynomials of
degree n defined on an interval I ⊆ R.

The origin of the Euler-Maclaurin formula could be noted in the celebrated Darboux formula: Let f (x) be
analytic at all points of the interval [a, x], and let φ (t) ∈ Pn. If t ∈ [0, 1] we have by differentiation:

d

dt

n∑
k=1

(−1)
k
(x− a)

k
φ(n−k) (t) f (k) (a+ t (x− a))

= − (x− a)φ(n) (t) f ′ (a+ t (x− a)) + (−1)
n
(x− a)

n+1
φ (t) f (n+1) (a+ t (x− a)) (1)

Since φ(n) (t) = φ(n) (0) =constant, we integrate from 0 to 1 with respect to t and obtain

φ(n) (0) [f (x)− f (a)] =

n∑
k=1

(−1)
k−1

(x− a)
k
{
φ(n−k) (1) f (k) (x)− φ(n−k) (0) f (k) (a)

}
+ (−1)

n
(x− a)

n+1
∫ 1

0

φ (t) f (n+1) (a+ t (x− a)) dt (2)

which is known as Darboux’s formula, see.23 A clear discussion of this formula was also described signifi-
cantly in.24
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The Euler-Maclaurin formula stands as a mathematical beacon, guiding researchers and practitioners through
the intricacies of mathematical analysis. Its significance lies not only in its historical origins but also in its
pervasive influence on contemporary mathematics and physics. Mathematicians, physicists, and engineers
continue to rely on the formula for its ability to simplify intricate calculations and provide accurate approx-
imations. As a testament to its enduring importance, the Euler-Maclaurin formula remains an indispensable
tool in the mathematical toolkit, enriching our understanding of both discrete and continuous mathematical
phenomena.

In his construction of the Darboux reached an interesting expansion that is not less important than the cele-
brated Euler-Maclaurin formula itself, indeed we have:23

(x− a) f ′ (a) = f (x)− f (a)− x− a

2
[f ′ (x)− f ′ (a)]

+

n−1∑
m=1

(−1)
m−1

Bm (x− a)
2m

(2m)!

[
f (2m) (x)− f (2m) (a)

]
−Rn (f,B2n) ,

such that

Rn (f,B2n) =
(x− a)

2n+1

(2n)!

∫ 1

0

B2n (t) f
(2n+1) (a+ t (x− a)) dt, (3)

where Bk (t) (k = 1, 2, 3, · · · ) are the Bernoulli polynomials, and Bk are the Bernoulli numbers. Since the
odd Bernoulli numbers B2k−1 (k = 1, 2, · · · ) are all zeros the then above expansion could be rewritten as:

f (x) = f (a) + (x− a) f ′ (a) +
(x− a)

2
[f ′ (x)− f ′ (a)] (4)

−
n−1∑
m=1

(−1)
m−1 B2m (x− a)

2m

(2m)!

[
f (2m) (x)− f (2m) (a)

]
+Rn (f,B2n) .

Accordingly; in this work, a general higher-order implicit method that outperforms the Runge–Kutta methods
in terms of accuracy is derived. An error bound for the Euler-Maclaurin higher-order method, showcasing its
stability, convergence, and greater efficiency compared to the conventional Runge-Kutta method is presented.
To substantiate our claims, numerical experiments are provided, highlighting the exceptional efficiency of our
proposed method over the traditional well-known methods.

2 The Euler-Maclaurin Method for Approximating Solutions of I.V.P.

This method aims to obtain a new approximation for the well-posed initial-value problem

dy

dt
= f (t, y) , a ≤ t ≤ b, y (a) = α. (5)

Suppose the solution y(t) to the initial-value problem has (2n+ 1)-continuous derivatives. Expanding y(t) in
terms of its (2n)-th Euler-Maclaurin expansion about ti and evaluate at ti+1, we obtain

y (ti+1) = y (ti) + (ti+1 − ti) y
′ (ti) +

(ti+1 − ti)

2
[y′ (ti+1)− y′ (ti)] (6)

−
n−1∑
m=1

(−1)
m−1 B2m (ti+1 − ti)

2m

(2m)!

[
y(2m) (ti+1)− y(2m) (ti)

]
+

(ti+1 − ti)
2n+1

(2n)!

∫ 1

0

B2n (s) y
(2n+1) (ti + s (ti+1 − ti)) ds

We commence by establishing the stipulation that the distribution of mesh points is uniform across the interval
[a, b]. This requisite is guaranteed through the selection of a positive integer N , from which the mesh points
are subsequently chosen.

ti = a+ ih, for each i = 0, 1, 2, · · · , N.
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The step size or the uniform spacing between the points h = b−a
N = ti+1−ti. Suppose that the unique solution

to (5), has (2n+ 1) continuous derivatives on [a, b], so that for each i = 0, 1, 2, . . . , N − 1. Also, since y(t)
satisfies the differential equation (6), Successive differentiation of the solution, y(t), gives

y′ (t) = f (t, y (t)) , y′′ (t) = f ′ (t, y (t)) , . . . , y(k) (t) = f (k−1) (t, y (t)) .

Substituting these results into (6) gives

y (ti+1) = y (ti) + hf (ti, y (ti)) +
h

2
[f (ti+1, y (ti+1))− f (ti, y (ti))] (7)

−
n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

[
f (2m−1) (ti+1, y (ti+1))− f (2m−1) (ti, y (ti))

]
The difference-equation method corresponding to (7) is obtained by deleting the remainder term involving ξi.

w0 = α

wi+1 = wi + hf (ti, y (ti)) +
h

2
[f (ti+1, y (ti+1))− f (ti, y (ti))]− hM(n−1) (wi, wi+1) , (8)

for each i = 0, 1, 2, · · ·N − 1, where

M(n−1) (wi, wi+1) :=

n−1∑
m=1

(−1)
m−1 B2mh2m−1

(2m)!

[
f (2m−1) (ti+1, y (ti+1))− f (2m−1) (ti, y (ti))

]
,

In particular, we are interested in the following case of (8).

2.1 The Euler-Maclaurin Method of Order 7

Setting n = 3 in (8), we get

w0 = α

wi+1 = wi + hf (ti, wi) +
h

2
[f (ti+1, wi+1)− f (ti, wi)]−

h2

12
[f ′ (ti+1, wi+1)− f ′ (ti, wi)] (9)

+
h4

720
[f ′′′ (ti+1, wi+1)− f ′′′ (ti, wi)]−

h6

30240

[
f (5) (ti+1, wi+1)− f (5) (ti, wi)

]
,

for each i = 0, 1, 2, · · ·N − 1.

Proposition 2.1. The Euler-Maclaurin Method Order (9) is of order 7.

Proof. Substituting the exact solution in the Taylor expansion and simplifying, we get

y (ti+1)− y (ti)− hf (ti, y (ti))−
h

2
[f (ti+1, y (ti+1))− f (ti, y (ti))]

+
h2

12
[f ′ (ti+1, y (ti+1))− f ′ (ti, y (ti))]−

h4

720
[f ′′′ (ti+1, y (ti+1))− f ′′′ (ti, y (ti))]

+
h6

30240

[
f (5) (ti+1, wi+1)− f (5) (ti, wi)

]
= y (ti) + hy′ (ti) +

h2

2
y′′ (ti) +

h3

6
y′′′ (ti) +

h4

24
y(4) (ti) +

h5

120
y(5) (ti) +

h6

720
y(6) (ti) +O

(
h7
)

− y (ti) +
h

2
y′ (ti)−

h2

12
y′′ (ti) +

h4

720
y(4) (ti)−

h6

30240
y(6) (ti)

− h

2

[
hy′′ (ti) +

h2

2!
y′′′ (ti) +

h3

3!
y(4) (ti) +

h4

4!
y(5) (ti) +

h5

5!
y(6) (ti) +O

(
h6
)]

+
h2

12

[
hy′′′ (ti) +

h2

2!
y(4) (ti) +

h3

3!
y(5) (ti) +

h4

4!
y(6) (ti) +O

(
h5
)]

− h4

720

[
hy(5) (ti) +

h2

2!
y(6) (ti) +O

(
h3
)]

+
h6

30240
·O (h)

= O
(
h7
)
,

which means that (9) is of order 7.
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Remark 2.2. In general, using induction one can observe that the general Euler-Maclaurin Method is of
O
(
h2n+1

)
.

3 Convergence and Stability of the general Euler-Maclaurin method

To prove the convergence and the error bound of the general Euler-Maclaurin Method (8), we need the follow-
ing key lemma.25

Lemma 3.1. If s and t are positive real numbers, {ai}ki=1 is a sequence satisfying a0 ≥ −t/s and

ai+1 ≤ exp ((1 + i) s)

(
a0 +

t

s

)
− t

s
.

In the next result, we prove that the Euler-Maclaurin method of order 2n is convergent and an error bound is
derived.

Theorem 3.2. Suppose f (k) (0 ≤ k ≤ 2n − 1) are continuous and satisfy Lipschitz condition with constant
Lk on

D := {(t, y) : a ≤ t ≤ b,−∞ < y < ∞} ,

and that a constant M exists with
∣∣f (2n) (t, y(t))

∣∣ ≤ M , for all t ∈ [a, b], where y(t) denotes the unique
solution to the initial-value problem

y′ = f (t, y) , a ≤ t ≤ b, y (a) = α.

Let w0, w1, · · · , wN be the approximations generated by the Euler-Maclaurin method (8) for some positive
integer N . Then, the general Euler-Maclaurin method described in (8) is convergent.

Proof. When i = 0, the assertion is correct, as it holds that y(t0) = w0 = α. Otherwise, from (6), we have

y (ti+1) = y (ti) + hf (ti, y (ti)) +
h

2
[f (ti+1, y (ti+1))− f (ti, y (ti))]

−
n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

[
f (2m−1) (ti+1, y (ti+1))− f (2m−1) (ti, y (ti))

]
+

h2n+1

(2n)!

∫ 1

0

B2n (s) f
(2n) (ti + s (ti+1 − ti)) ds

for i = 0, 1, · · · , N − 1, and from the equations in (8),

wi+1 = wi + hf (ti, wi) +
h

2
[f (ti+1, wi+1)− f (ti, wi)]

−
n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

[
f (2m−1) (ti+1, wi+1)− f (2m−1) (ti, wi)

]
for each i = 0, 1, 2, · · ·N−1. Utilizing the notations yi = y(ti) and yi+1 = y(ti+1), we deduce the following
by subtracting these two equations:

yi+1 − wi+1 = yi − wi + hf (ti, yi)− hf (ti, wi)

+
h

2
[f (ti+1, yi+1)− f (ti+1, wi+1)]−

h

2
[f (ti, yi)− f (ti, wi)]

−
n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

[
f (2m−1) (ti+1, yi+1)− f (2m−1) (ti+1, wi+1)

]
−

n−1∑
m=1

(−1)
m−1 B2mh2m

(2m)!

[
f (2m−1) (ti, yi)− f (2m−1) (ti, wi)

]
+

h2n+1

(2n)!

∫ 1

0

B2n (s) f
(2n) (ti + s (ti+1 − ti)) ds
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Employing the triangle inequality, we have

|yi+1 − wi+1| = |yi − wi|+ h |f (ti, yi)− f (ti, wi)|

+
h

2
|f (ti+1, yi+1)− f (ti+1, wi+1)|+

h

2
|f (ti, yi)− f (ti, wi)|

+

n−1∑
m=1

B2mh2m

(2m)!

∣∣∣f (2m−1) (ti+1, yi+1)− f (2m−1) (ti+1, wi+1)
∣∣∣

+

n−1∑
m=1

B2mh2m

(2m)!

∣∣∣f (2m−1) (ti, yi)− f (2m−1) (ti, wi)
∣∣∣

+
h2n

(2n)!

∣∣∣f (2n) (µi, y (µi))
∣∣∣ ∫ 1

0

|B2n (s)| ds.

Now, function f (m−1) (m = 1, 2, · · · , 2n − 1) fulfills the Lipschitz condition in the second variable with a
constant denoted as L := max

1≤m≤2n−1
{Lk}, and

∣∣f (2n+1) (t, y (t))
∣∣ ≤ M , so

|yi+1 − wi+1| ≤ |yi − wi|+ hL |yi − wi|+
h

2
L |yi+1 − wi+1|+

h

2
L |yi − wi|

+ L ·
n−1∑
m=1

|B2m|h2m

(2m)!
|yi+1 − wi+1|+ L ·

n−1∑
m=1

|B2m|h2m

(2m)!
|yi − wi|

+
h2n

(2n)!
M

∫ 1

0

|B2n (s)| ds.

Combining the terms we get

|yi+1 − wi+1| ≤

(
1

2
hL+ L ·

n−1∑
m=1

|B2m|h2m

(2m)!

)
|yi+1 − wi+1|

+

(
1 +

3

2
hL+ L ·

n−1∑
m=1

|B2m|h2m

(2m)!

)
(|yi − wi|)

+
h2n

(2n)!
M |B2n| .

where we used the fact |B2n (s)| < |B2n|, see.26 Now, to seek simplicity, let us define

Sn (L, h) :=

(
1 +

3

2
hL+ L ·

n−1∑
m=1

|B2m|h2m

(2m)!

)
, Cn (L, h) :=

(
1− 1

2
hL− L ·

n−1∑
m=1

|B2m|h2m

(2m)!

)
,

and

En (h) := 2

n−1∑
m=1

|B2m|h2m−1

(2m)!

Before we go further, we need to remark that

1

2
LhEn (h) = L

n−1∑
m=1

|B2m|h2m

(2m)!
≤ L · max

1≤m≤n−1

{
h2m

}
·
n−1∑
m=1

|B2m|
(2m)!

≈ L · max
1≤k≤n−1

{
h2m

}
·
n−1∑
m=1

2 (2m)!

(2π)
2m · 1

(2m)!

= K ·
[

2

4π2 − 1
+

8π2

1− 4π2
·
(

1

4π2

)n]
,

where the last sum is evaluated using Maple Software; before that, we note that we have used the asymptotic
approximation of even Bernoulli numbers,26 (−1)

m+1
B2m ≈ 2(2m)!

(2π)2m
, for every positive integer m. Moreover,

as
1

2
LhEn (h) ≤ K · 2

4π2 − 1
, as n → ∞.
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Considering our ultimate interest in allowing h → 0+, it is acceptable to presume that

1

2
LhEn (h) < K · 2

4π2 − 1

where K is some fixed nonzero positive real number, without any adverse consequences. Consequently, we
can infer that

|yi+1 − wi+1| ≤
Sn (L, h)

Cn (L, h)
· |yi − wi|+

h2n

(2n)!Cn (L, h)
M |B2n|

=

(
1 +

Sn (L, h)− Cn (L, h)

Cn (L, h)

)
· |yi − wi|+

h2n

(2n)!Cn (L, h)
M |B2n|

=

(
1 +

L · h · En (h)

Cn (L, h)

)
· |yi − wi|+

h2n

(2n)!Cn (L, h)
M |B2n|

Employing Lemma 3.1, with s (h) = L·h·En(h)
Cn(L,h) , t (h) = h2n

(2n)!Cn(L,h)M |B2n|, and aj = |yj − wj |, for each
j = 0, 1, 2, · · · , N , we observe that

|yi+1 − wi+1| ≤ exp

(
(i+ 1) · L · h · En (h)

Cn (L, h)

)(
|y0 − w0|+

t (h)

s (h)

)
− t (h)

s (h)
.

Since |y0 − w0| = 0,

lim
h→0+

L · h · En (h)

Cn (L, h)
= 0, and lim

h→0+

t (h)

s (h)
= 0.

then lim
h→0+

max
1≤i≤N

|yi+1 − wi+1| = 0, which means that that wi+1 converges to yi+1, and thus the Euler-

Maclaurin Method of Order 2n is converge as required.

Theorem 3.3. Under the assumption of Theorem 3.2. We have

|yi+1 − wi+1| ≤
t (h)

s (h)
·
(
exp

(
(ti+1 − a)

L · hEn (h)

Cn (L, h)

)
− 1

)
(10)

for each i = 0, 1, 2, · · · , N − 1.

Proof. The inequality follows from the last inequality in the proof of Theorem 3.2, and since (i+ 1)h =
ti+1 − t0 = ti+1 − a, the error bound of this method is deduced from the last inequality in the proof of
Theorem 3.2 which reduces to (10).

Remark 3.4. According to the general theorem of stability of well-posed I.V.P., Theorem (3.2) implies that
the general Euler-Maclaurin method described in (9) is stable and consistent.

The primary significance of the error-bound formula presented in Theorem 3.2 lies in its direct proportionality
to the step size, h. As a result, reducing the step size should yield proportionally enhanced accuracy in the
approximations.

4 Perturbations of the general Euler-Maclaurin method

Omitted from the findings of Theorems 3.2 & 3.3 is the consideration of the impact of round-off errors when
selecting the step size. With diminishing h, an increased number of calculations is required, leading to a
higher expectation of round-off errors. In practice, the difference equation given in (8) is not employed for the
computation of the approximation to the solution, denoted as yi, at a mesh point ti. Instead, we employ an
equation of the following structure

v0 = α+ δ0

vi+1 = vi + hB̃(n) (ti, vi) + δi+1, (11)
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for each i = 0, 1, 2, · · ·N − 1, where

B̃(n) (ti, vi) := f (ti, vi) +
1

2
[f (ti+1, vi+1)− f (ti, vi)]

−
n−1∑
m=1

B2mh2m−1

(2m)!

[
f (2m−1) (ti+1, vi+1)− f (2m−1) (ti, vi)

]
for each i = 0, 1, 2, · · ·N − 1. Here, δi represents the round-off error linked to the value vi. Employing
techniques akin to those applied in the demonstration of Theorem 3.2, we can derive an error threshold for
the finite-precision approximations of yi, as determined by the Euler-Maclaurin method. Consequently, it is
feasible to formulate an analogous outcome to the following result.

Theorem 4.1. Let y(t) denote the unique solution to the initial-value problem

y′ = f (t, y) , a ≤ t ≤ b, y (a) = α. (12)

Let v0, v1, · · · , vN be the approximations generated by the Euler-Maclaurin method (8) for some positive
integer N . If |δi| < δ for each i = 0, 1, ·, N and the hypotheses of Theorem 3.2 hold for (12), then

|y1 − vi| ≤
(
t (h)

s (h)
+

δC (n, h)

LhEn (h)

)
·
(
e((ti−a)

L·hEn(h)
Cn(L,h) ) − 1

)
+ |δ0| e((ti−a)

L·hEn(h)
Cn(L,h) ) (13)

for each i = 0, 1, 2, · · · , N .

Proof. The proof is similar to the proof of Theorem 3.2 applied for the difference equation (11).

On the other hand, it is convenient to note that the error bound (13) is no longer linear in h. In fact, since

lim
h→0+

(
t (h)

s (h)
+

δCn (L, h)

LhEn (h)

)
→ ∞

As the step size h tends toward infinitesimally small values, it is anticipated that the error will escalate. More-
over, as the step size h is reduced beyond this critical value, there is a tendency for the total error in the
approximation to increase. Nevertheless, it is worth noting that, under typical circumstances, the magnitude
of the error, denoted by δ, remains sufficiently small. Consequently, this established lower bound for h does
not significantly impact the efficacy or accuracy of the Euler-Maclaurin method in its computational opera-
tion. Despite the theoretical considerations regarding the escalation of error with decreasing h, the practical
implementation of the Euler-Maclaurin method remains robust within the determined range of step sizes.

5 Numerical Experiments

In this section, we apply the Euler-Maclaurin method of order 7 with various step sizes. to several I.V.P.

Example 5.1. The Euler-Maclaurin method of order 7 (9) is employed to approximate the solution of the
initial-value problem

y′ (t) = y − t2 + 1, 0 ≤ t ≤ 2, y (0) = 0.5, (14)

with specific parameters set to N = 10, h = 0.2, ti = 0.2i, and w0 = 0.5. This approximation is then
compared with the exact solution provided by y (t) = (t+ 1)

2 − 0.5et.
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Table 1: The table shows the absolute error in the Runge-Kutta (RK) method of order 6 and Euler-Maclaurin
Method (EM) of order 7 applied in Example 5.1 with step size h = 0.2.

ti RK Error×10−6 EM Error×10−10

0.0 0.00000000 0.00000000
0.2 0.06348401 0.00259126
0.4 0.13430130 0.00633049
0.6 0.21258714 0.01159072
0.8 0.29817725 0.01887823
1.0 0.39046847 0.02883027
1.2 0.48823256 0.04224176
1.4 0.58936887 0.06021405
1.6 0.69057835 0.08404832
1.8 0.78693577 0.11551648
2.0 0.87133141 0.15674572
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Figure 1: Example 5.1: The exact solution compared with the Runge-Kutta (RK) method of order 6 and the
Euler-Maclaurin Method (EM) of order 7 with step size h = 0.2
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Figure 2: Example 5.1: Absolute errors of the RK method of order 6 and Euler-Maclaurin of order 7 with step
size h = 0.2

As we can remark the Euler-Maclaurin Method (9) gives much better approximations compared with the
celebrated Runge–Kutta method of order 6. Figures 1 and 2 show the comparison between the approximate
solutions between the three methods and their corresponding absolute errors. To improve our results we
consider two more examples.
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Example 5.2. The Euler-Maclaurin–Euler method (9) is employed to approximate the solution of the initial-
value problem

y′ (t) = exp (t− y) , 0 ≤ t ≤ 1, y (0) = 1, (15)

with specific parameters set to N = 10, h = 0.1, ti = 0.1i, and w0 = 1. This approximation is then compared
with the exact solution provided by y (t) = ln (exp(t) + exp(1)− 1).

Table 2: The table shows the absolute error in the Runge-Kutta (RK) method of order 6, and Euler-Maclaurin
Method (EM) of order 7 applied in Example 5.2 with step size h = 0.1.

ti RK Error×10−9 EM Error×10−14

0.0 0.00000000 0.00000000
0.1 0.01797051 0.17763568
0.2 0.03922262 0.35527136
0.3 0.06406808 0.48849813
0.4 0.09274891 0.55511151
0.5 0.12541212 0.57731597
0.6 0.16208479 0.53290705
0.7 0.20265589 0.44408920
0.8 0.24686364 0.28865798
0.9 0.29429103 0.13322676
1.0 0.34437452 0.06661338

0 0.2 0.4 0.6 0.8 1

t

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

y
(t

)

Exact vs. Numerical Solutions

Euler-Maclaurin solution of order 7

Runge-Kutta solution of order 6

Exact solution

Figure 3: Example 5.2: The exact solution compared with the Euler-Maclaurin and Runge-Kutta methods of
order 7 and 6; respectively, with stepsize h = 0.1
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Figure 4: Example 5.2: Absolute errors of the Euler-Maclaurin’s and Runge-Kutta methods of order 7 and 6;
respectively, with step size h = 0.1.
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As we can remark the Euler-Maclaurin Method (9) gives much better approximations compared with the cel-
ebrated Runge–Kutta method of order 6. Figures 3 and 4 show the comparison between the approximate
solutions between the three methods and their corresponding absolute errors. We consider the following ex-
ample to enhance our outcomes and improve the Euler-Maclaurin method (9).

Example 5.3. The Euler-Maclaurin method (9) is employed to approximate the solution of the system of the
linear initial-value problem  z′1 (s) = z2, z1 (0) = 1

z′2 (s) = −z1 − 2es + 1, z2 (0) = 0
z′3 (s) = −z1 − es + 1, z3 (0) = 1

for 0 ≤ s ≤ 2, with specific parameters set to N = 10, h = 0.2 and ti = 0.2i. This approximation is then
compared with the exact solution provided by z1 (s) = cos (s) + sin (s)− es + 1

z2 (s) = − sin (s) + cos (s)− es

z3 (s) = − sin (s) + cos (s)

Furthermore, a comparison is made between the classical RK’s approach and our approximation. Specifically,
Figures 5, 7, and 9 show the exact solution compared with the Euler-Maclaurin and RK methods with step size
h = 0.2, whereas Figures 6, 8, 10 and Tables 3, 4, 5 show the absolute errors of the Euler-Maclaurin and RK
methods of order 7 and 6, respectively, with the same step size. Roughly, the Euler-Maclaurin method gives
outstanding approximations compared with the RK method.

Table 3: The table shows the comparison between the absolute error in both the Runge–Kutta (RK) of order 6
and the Euler-Maclaurin method (EM) of order 8 applied in Example 5.3 with step size h = 0.2 for z1 (s).

ti RK Error EM Error×10−13

0.0 0.0000000 0.0000000
0.2 0.0426668 0.0022204
0.4 0.0927842 0.0077715
0.6 0.1468497 0.0166533
0.8 0.2008820 0.0277555
1.0 0.2506502 0.0466293
1.2 0.2919269 0.0677236
1.4 0.3207555 0.0954791
1.6 0.3337148 0.1298960
1.8 0.3281705 0.1663252
2.0 0.3024980 0.2065014

Table 4: The table shows the comparison between the absolute error in both the Runge–Kutta (RK) of order 6
and the Euler-Maclaurin method (EM) of order 7 applied in Example 5.3 with step size h = 0.2 for z2 (s).

ti RK Error EM Error×10−13

0.0 0.0000000 0.0000000
0.2 0.0027999 0.0191513
0.4 0.0234673 0.0355271
0.6 0.0650996 0.0566213
0.8 0.1301210 0.0766053
1.0 0.2202233 0.0954791
1.2 0.3363741 0.1132427
1.4 0.4788972 0.1332267
1.6 0.6476335 0.1554312
1.8 0.8421832 0.1687538
2.0 1.0622309 0.1776356
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Table 5: The table shows the comparison between the absolute error in both the Runge–Kutta (RK) of order 6
and the Euler-Maclaurin method (EM) of order 7 applied in Example 5.3 with step size h = 0.2 for z3 (s).

ti RK Error OM Error×10−14

0.0 0.0000000 0.0000000
0.2 0.0027999 0.0999200
0.4 0.0234673 0.1776356
0.6 0.0650996 0.2775557
0.8 0.1301210 0.3663735
1.0 0.2202234 0.4274358
1.2 0.3363742 0.4829470
1.4 0.4788973 0.5079270
1.6 0.6476337 0.5301314
1.8 0.8421834 0.5023759
2.0 1.0622312 0.4163336

As we can remark the Euler-Maclaurin method (9) gives much better approximations compared with both the
celebrated Runge–Kutta method. Figures 5 and 6 show the comparison between the approximate solutions
between the three methods and their corresponding absolute errors. Moreover, it is remarkable to note that the
absolute error near discontinuity point t = 1 increases more rapidly in the Runge-Kutta method.
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Figure 5: Example 5.3: The exact solution of z1(s) compared with the Euler-Maclaurin (EM) and Runge–
Kutta (RK) methods of order 7 and 6; respectively, with step size h = 0.2.
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Figure 6: Example 5.3: Absolute errors of the Euler-Maclaurin’s (EM) and Runge-Kutta (RK) methods of
order 7 and 6; respectively, with step size h = 0.2 applied for z1(s).

DOI: https://doi.org/10.54216/IJNS.250308
Received: February 13, 2024 Revised: May 14, 2024 Accepted: September 18, 2024

87



International Journal of Neutrosophic Science (IJNS) Vol. 25, No. 03, PP. 76-91, 2025

0 0.2 0.4 0.6 0.8 1

t

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

z
2
(t

)

Exact vs. Numerical Solutions

Euler-Maclaurin solution of order 7

Runge Kutta of order 6

Exact solution

Figure 7: Example 5.3: The exact solution of z2(s) compared with the Euler-Maclaurin (EM) and Runge–
Kutta (RK) methods of order 7 and 6; respectively, with step size h = 0.2.
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Figure 8: Example 5.3: Absolute errors of the Euler-Maclaurin’s (EM) and Runge-Kutta (RK) methods of
order 7 and 6; respectively, with step size h = 0.2 applied for z2(s)
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Figure 9: Example 5.3: The exact solution of z3(s) compared with the Euler-Maclaurin (EM) and Runge–
Kutta (RK) methods of order 7 and 6; respectively, with step size h = 0.2.
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Figure 10: Example 5.3: Absolute errors of the Euler-Maclaurin’s (EM) and Runge-Kutta (RK) methods of
order 7 and 6; respectively, with step size h = 0.2 applied for z3(s).

6 Recommendation

In this study, we have introduced a novel approach for approximating I.V.P. Through the analysis of method
(8) and the examination of relevant examples, it has been shown that the Euler-Maclaurin method surpasses
previously acknowledged methods, notably the well-known Runge-Kutta method. Moreover, our extensive
deliberations indicate that the Euler-Maclaurin method of order 7 outperforms the renowned Runge-Kutta
methods of order 6 as long as the analytic solution is required. This is evidenced by the method’s ability to
yield superior outcomes with reduced absolute error.

The demonstrated superiority of the Euler-Maclaurin method extends beyond mere similarity, manifesting in
heightened stability and accelerated convergence. The empirical evidence presented underscores the method’s
robustness and efficiency in addressing diverse contexts within mathematical modeling and analysis.

Over the long term, the Euler-Maclaurin method (8) of order 2n+1 consistently outperforms the Runge-Kutta
method, particularly when seeking analytic solutions. Additionally, the proposed method exhibits competi-
tiveness in various scientific contexts, as exemplified by Example 5.3, providing clear evidence of its strong
performance in approximating a system of linear I.V.P. compared to other known methods.
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