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Abstract
Accurate node localization is essential in wireless sensor networks (WSNs) for 
effective data analysis and the successful operation of applications like environmen-
tal monitoring and disaster management. Range-free methods like the distance vec-
tor-hop (DV-hop) algorithm are often used due to hardware and cost constraints, but 
they face challenges in accuracy and stability. The NP-hard nature of the localization 
problem has led to the integration of metaheuristic algorithms in previous studies 
to enhance performance. This paper presents EMGODV-Hop, a novel approach for 
node localization in multi-hop networks that combines the DV-Hop algorithm with 
the mountain gazelle optimization (MGO) algorithm to enhance localization preci-
sion. The EMGODV-Hop method operates in two phases: First, it uses an improved 
variant of the DV-Hop algorithm to more accurately estimate distances between 
unknown and anchor nodes by incorporating a correction factor. Next, it employs an 
enhanced version of MGO algorithm, referred to as EMGO, to determine the posi-
tions of WSN nodes. The improved DV-Hop version enhances accuracy by incor-
porating a correction factor for better estimation of hop distances, while the EMGO 
algorithm addresses the limitations of the original MGO algorithm and improves its 
search capabilities. Extensive simulations assessed the effectiveness of the proposed 
method across various factors, including anchor node ratios, total node count, and 
communication ranges. The results demonstrate significant accuracy improvements 
with the proposed algorithm, showing enhancements of 48.69%, 26.22%, 19.33%, 
28.21%, and 40.47% compared to DV-Hop, MGODV-Hop, PSODV-Hop, WSODV-
Hop, and SSADV-Hop, respectively.
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1  Introduction

Wireless sensor networks (WSNs) consist of small, cost-effective, battery-
powered sensor nodes capable of wireless communication and self-organiza-
tion, allowing them to operate effectively in challenging conditions [1]. These 
networks are used in applications such as disaster monitoring, wildfire surveil-
lance, water quality assessment, and pollution detection [2, 3]. In some cases, 
large numbers of nodes must be deployed randomly in hostile environments, such 
as during natural disasters when sensors are dispersed from an aircraft without 
known locations. Installing GPS in each node is cost-prohibitive, and the lack of 
precise location data limits the utility of the sensor information. Accurate loca-
tion information is crucial to interpret sensor data and implement location-sen-
sitive data aggregation and routing algorithms [4], making the node localization 
process essential in WSN applications [5, 6].

Localization techniques in WSNs are classified into range-based and range-
free algorithms [7]. Range-based algorithms estimate node positions using direct 
measurements like distance, angle, or signal strength, such as Radio Signal 
Strength Indicator (RSSI) [8], Time Difference of Arrival (TDoA) [9], and Angle 
of Arrival (AoA) [10]. Although these methods provide high accuracy, they 
require additional hardware and increase power consumption. In contrast, range-
free algorithms, such as distance vector-hop (DV-hop) [11], centroid [12], amor-
phous [13], and approximate point in triangle (APIT) [14], rely on connectiv-
ity information and network topology without direct measurements. Range-free 
methods are generally more energy efficient and suitable for nodes with limited 
resources, although they may be less accurate.

DV-Hop algorithm is widely used in WSNs for localization due to its simplic-
ity, low resource requirements, and adaptability to various network sizes, making 
it suitable for a wide range of WSN applications [15]. It estimates the positions of 
unknown nodes by calculating hop distances between anchor nodes (with known 
locations) and unknown nodes. The process involves gathering distance information 
based on hop counts among anchor nodes, estimating distances between anchors and 
unknown nodes, and computing positions using multilateration [16]. Although DV-
Hop is easy to implement and energy efficient, its accuracy can be compromised 
by cumulative errors in hop distance estimation, which significantly affects the pre-
cision of position estimates through multilateration [17]. These errors can notably 
impact localization accuracy, particularly in large-scale networks.

Due to the complexity of node localization problems, it is formulated as an NP-
hard optimization problem, leading to the adoption of various soft computing meth-
ods for its solution. For example, Cheng et  al. [18] employed gradient techniques 
such as the Gauss–Newton algorithm for node localization. However, gradient-based 
techniques have the potential to be trapped in local minima and also require appro-
priate initial conditions for desired parameters. Annepu et  al. [19] proposed the 
use of highly nonlinear artificial neural network (ANN) models, such as multilayer 
perceptron (MLP) and radial basis function (RBF), for nonlinear node localization 
tasks, emphasizing their effectiveness for stationary and mobile nodes.
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As nonlinearity and constraints increase, traditional optimization techniques 
often struggle to find global optimal solutions. To address this challenge, the lit-
erature extensively explores the use of metaheuristic algorithms to improve node 
localization accuracy in WSNs. These algorithms, inspired by biological, physi-
cal, and social principles, are designed to tackle complex optimization problems 
effectively. For example, the genetic algorithm (GA) [20] simulates biological 
evolution, particle swarm optimization (PSO) [21] mimics the behavior of bird 
flocks or fish schools, and ant colony optimization (ACO) [22] emulates the food-
searching behavior of ants. By incorporating these nature-inspired strategies, 
researchers have developed various approaches to enhance localization precision 
in WSNs. For example, studies like [23–26] focus on single-objective optimiza-
tion algorithms, aiming to improve localization by optimizing a single criterion, 
such as accuracy. In contrast, works such as [27–31] employ multi-objective opti-
mization models, which account for multiple factors like accuracy, energy effi-
ciency, and communication overhead, offering a more balanced approach to node 
localization in WSNs.

Mountain gazelle optimizer (MGO) algorithm is a new metaheuristic algorithm 
inspired by the social life and hierarchy of wild mountain gazelles [32]. MGO 
incorporates four key components from the mountain gazelles’ life cycle, includ-
ing bachelor male herds, maternity herds, solitary territorial males, and movement 
for foraging. The developers of the MGO algorithm have underscored its competi-
tive performance relative to established and contemporary metaheuristic algorithms. 
The algorithm’s effectiveness has been rigorously validated through comprehensive 
statistical and convergence analyses, along with the Wilcoxon rank test, applied to a 
suite of 52 benchmark functions. In addition, the applicability of the MGO has been 
thoroughly evaluated in seven different engineering challenges. Experimental results 
show that MGO consistently outperforms or matches other leading algorithms in 
terms of accuracy, convergence speed, and robustness across various optimization 
problems. Moreover, due to its simplicity and efficiency, MGO has found successful 
applications in various domains, including medical feature selection [33], parameter 
extraction of photovoltaic models [34], neural networks [35, 36], and reactive power 
dispatch [37].

Although the MGO algorithm has demonstrated strong performance in address-
ing various optimization problems, it does have certain drawbacks. These include: 
(1) insufficient solution accuracy and slower convergence rates when applied to spe-
cific non-convex and high-dimensional numerical optimization tasks and (2) a ten-
dency to stagnate in local optima, highlighting the need to enhance MGO’s local 
and global search strategies for escaping local optima and improving overall solu-
tion quality.

This paper proposes a new localization method called EMGODV-Hop that is spe-
cifically designed for multi-hop networks. The technique combines two algorithms, 
the DV-Hop algorithm and the MGO algorithm, to improve the accuracy and effi-
ciency of node localization in these networks. In phase one, an improved version 
of the DV-Hop algorithm estimates distances between anchor nodes and unknown 
nodes. In phase two, the enhanced variant of the MGO algorithm determines the 
precise positions of the WSN nodes. Through this integration of DV-Hop and MGO, 
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the EMGODV-HOP technique aims to enhance node localization in multi-hop net-
works significantly. This research paper makes several significant contributions:

•	 An improved version of DV-Hop is proposed to calculate the mean hop distances 
of unknown nodes more accurately. This enhancement involves introducing a 
correction factor to optimize the hop distances by aligning them with the actual 
distances between the anchor nodes.

•	 An enhanced version of the MGO, named EMGO, is proposed that addresses 
certain shortcomings and enhances its search capabilities.

•	 A new localization method, EMGODV-Hop, is introduced, integrating improved 
DV-Hop for distance estimation and EMGO for estimating the coordinates of 
sensor nodes within WSNs.

•	 The simulation results demonstrate the superior performance of the proposed 
algorithm, outperforming other methods in terms of localization accuracy, stabil-
ity, and scalability in different scenarios.

The paper follows a clear structure, starting with an exploration of existing issues 
and relevant research in Sect. 2. The original DV-Hop algorithm and the MGO algo-
rithm are introduced in Sect. 3. The EMGODV-Hop algorithm is described in Sect. 4 
in detail. The performance assessment and experimental results of the EMGODV-
Hop algorithm are discussed in Sect. 5. Finally, Sect. 6 provides a concise summary 
of the study’s findings, covering challenges, methodologies, algorithm details, per-
formance evaluation results, and concluding insights.

2 � Literature review

Substantial advancements have been made in the realm of range-free localization 
techniques for WSNs. DV-Hop algorithm, a notable example in this category, is 
noted for its simplicity, robustness, and adaptability across various network sizes. 
Numerous studies have aimed to enhance the accuracy of the original DV-Hop 
algorithm, which generally achieves an accuracy level of approximately 60–70%. 
These studies approach localization as an optimization problem, employing various 
metaheuristic algorithms to refine performance. This section concisely reviews the 
integration of metaheuristic algorithms with the DV-Hop method, highlighting the 
unique characteristics of our proposed EMGODV-Hop method and distinguishing 
it from other advanced algorithms. Table 1 provides a summary of recent research 
papers on the DV-Hop localization algorithm.

Cui et  al. [25] proposed a new approach to improve DV-Hop performance for 
localization in cyber-physical systems. The approach utilizes an oriented cuckoo 
search (OCS) algorithm to optimize anchor placement and hop distance estimation 
in the DV-Hop algorithm. The authors compared the OCS-DV-Hop algorithm with 
the other methods, showing that OCS-DV-Hop achieves better localization accuracy, 
robustness, reduced computational complexity, and communication overhead. How-
ever, these studies focused on location performance in large areas while neglect-
ing positioning performance in complex terrain. Mehrabi et al. [38] introduced the 
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SFLADV-Hop algorithm, simplifying the identification of a feasible region for the 
unknown node’s location. Enhancements in the average hop distance approxima-
tion are made using the Shuffled Frog Leaping Algorithm (SFLA), while position 
estimation employs a hybrid Genetic-PSO algorithm. Despite its outperformance of 
existing algorithms in localization accuracy and energy efficiency, the method faces 
increased complexity.

Cui et al. [39] proposed DECHDV-Hop to improve hop count accuracy in locali-
zation. By utilizing common one-hop nodes, DECHDV-Hop transformed discrete 
hop count values into continuous ones, resulting in precise location estimations and 
reduced errors. The Differential Evolution (DE) algorithm was used for the loca-
tion estimation process. Evaluation of DECHDV-Hop demonstrated superior perfor-
mance over other DV-Hop methods across four network simulation scenarios, par-
ticularly in C-shaped topologies where it reduced localization error by around 70%. 
While DECHDV-Hop boasts improved accuracy, it comes at the cost of increased 
computational time during processing. In another context, Liu et al. [40] presented 
HDCDV-Hop as a technique that combines the distributed DV-Hop algorithm with 
an enhanced DE method. This method divides the effective communication range 
of nodes into two segments by utilizing fractional hop counts and adjusting fac-
tors to enhance hop distance and minimize localization errors. The utilization of 
the improved DE method contributes to more precise localization results. However, 
one major drawback of this method is the increased computational complexity, as it 
requires conducting additional computations on each resource-constrained node.

Song et al. [41] proposed a hybrid strategy integrating glowworm swarm optimi-
zation (GSO) with DV-hop to enhance its accuracy and efficiency. The algorithm 
optimizes the selection of anchor nodes using the GWO algorithm while introducing 
a chaotic strategy to increase population diversity. Although it outperforms other 
algorithms in terms of localization accuracy, it may exhibit poor performance in cer-
tain cases due to being trapped in local optima rather than global optima. Chai et al. 
[24] proposed a parallelized version of Whale Optimization Algorithm (WOA) for 
improving the performance of DV-Hop in WSNs. The parallel approach optimizes 
anchor node placements and enhances information flow among multiple instances 
of PWOA, resulting in improved localization accuracy and faster convergence speed 
compared to traditional methods. Additionally, the use of communication techniques 
reduces overhead and improves scalability, although challenges may arise in large-
scale networks due to memory limitations on individual nodes.

Ghafour et  al. [23] introduced SSIDV-Hop by improving the estimation of the 
mean hop distance for unknown nodes to enhance accuracy. Unlike traditional DV-
Hop, SSIDV-Hop calculates the mean hop distance based on the improved values 
from neighboring anchor nodes, resulting in increased precision. The localization 
process is carried out directly using the Squirrel Search Algorithm (SSA), eliminat-
ing the use of least square method. SSA incorporates a fitness function that consid-
ers weighted squared error between anchor and unknown node distances. Simulation 
results indicate that SSIDV-Hop surpasses other algorithms in terms of accuracy, 
stability, and convergence; however, it does come with a significant increase in com-
putational overhead. Li et al. [42] introduced the Parallel Compact Cat Swarm Opti-
mization (PCCSO) algorithm tailored for optimizing anchor node placement in the 
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DV-Hop method. This algorithm mitigates observed limitations in traditional CSO 
algorithms, such as slow convergence and susceptibility to local optima. The authors 
conducted a comparative analysis between PCCSO-DV-Hop and other methods. 
Simulation results suggest that PCCSO-DV-Hop achieves improved localization 
accuracy while reducing computational complexity and minimizing communication 
overhead. However, it is essential to note that CSO algorithm still faces challenges 
related to convergence rates and resource utilization.

Ou et  al. [43] introduced the Improved Cuckoo Search algorithm with Fuzzy 
Logic and Gauss-Cauchy strategy (ICS-FG) to minimize DV-Hop localization errors 
in by integrating fuzzy logic and the Gauss–Cauchy strategy. This algorithm dynam-
ically adjusts parameters using population diversity-based fuzzy logic and enhances 
search accuracy through the Gauss–Cauchy strategy. Experimental results demon-
strate the superior performance of the ICS-FG approach in reducing positioning 
errors, although there is potential for further enhancement in stability and search 
capability. Jia et al. [44] proposed CAFOA-DV-Hop, an algorithm that combines the 
DV-Hop method with adaptive step variation chaotic fruit fly optimization algorithm 
(CAFOA). This algorithm uses an adaptive search step size strategy to improve 
global search ability and find a balance between global and local optimization. A 
unique chaotic strategy helps in faster convergence by avoiding local optimal solu-
tions. Extensive simulations show that CAFOA-DV-Hop achieves high accuracy and 
fast convergence compared to other methods, although it has increased complexity 
and computational overhead as drawbacks.

Cao and Xu [45] proposed OANSDV-Hop, which utilized optimum anchor node 
subsets obtained through a binary PSO algorithm (BPSO). This approach recalcu-
lated the hop distance of each anchor node using OANS and shared this information 
with nearby unknown nodes to improve localization accuracy. The fitness function 
based on OANS was further optimized using continuous PSO to enhance accu-
racy. Results showed that OANSDV-Hop outperformed DV-Hop and other methods 
across various network settings. However, it comes with the drawback of increas-
ing node computational burden and energy consumption. Sun et al. [46] proposed 
2DHYP-GADV-Hop that combined the 2D hyperbolic localization method with an 
improved adaptive GA (IAGA) to improve node coordinate estimation and localiza-
tion accuracy. It also considered the radio irregularity model for performance evalu-
ation in anisotropic networks. Simulation results showed that this algorithm outper-
formed other methods in terms of accuracy and stability. However, due to its use of 
the hyperbolic approach and IAGA for position estimation, 2DHYP-GADV-Hop is 
computationally intensive.

Tagne et  al. [47] introduced an enhanced PSO for indoor localization issues in 
WSN. In this version, each particle utilizes tabu search to find its best local neighbor 
and improve convergence toward a better solution. Additionally, limit and perfor-
mance checks are included in the algorithm to evolve with superior particles within 
the constraint analysis space around the initial trilateration-based solution. This 
approach, named FPSOTS, employs the received signal strength indicator method to 
assess inter-sensor distances. Peng et al. [48] introduced TSMA, an adaptive chaotic 
slime mold algorithm for WSN node localization. TSMA integrates adaptive chaos 
to enhance population diversity and combines global and local search capabilities 
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using an adaptive chaotic oscillation factor. Simulation results demonstrate an aver-
age improvement in localization performance of 28% to 46% across three diverse 
environments.

Previous studies have aimed to improve node localization accuracy but faced 
challenges due to high computational and communication demands, as well as 
limited search capabilities in metaheuristic algorithms. Therefore, this paper pre-
sents a new localization method, called EMGODV-Hop, which incorporates sev-
eral enhancements. First, it applies a correction factor based on real distances 
between anchor nodes to adjust the average hop distances, leading to more accurate 
hop distance estimations for unknown nodes. Second, it incorporates an improved 
metaheuristic algorithm with enhanced search capabilities to further improve locali-
zation accuracy.

3 � Background

This section introduces two algorithms: the traditional DV-Hop and MGO 
algorithms.

3.1 � DV‑Hop algorithm

DV-Hop is a widely used localization algorithm in WSNs that estimates node posi-
tions without relying on direct distance measurements. As a range-free method, it 
leverages connectivity information and distance vector routing to estimate the posi-
tions of unknown nodes using anchor nodes with known coordinates. DV-Hop 
approximates distances by multiplying the average hop distance from an anchor 
node by the hop count and then applies the least squares method (LSM) to deter-
mine the node positions relative to the anchors [11]. Due to its scalability and dis-
tributed operation, DV-Hop is particularly suitable for large-scale sensor networks. 
The algorithm operates in three main steps:

•	 Step 1 (Objective: Obtaining hop counts): Anchor nodes broadcast beacon pack-
ets containing their positions and an initial hop count set to zero. Upon receiving 
a beacon, each node checks its packet table. If the anchor node is not already 
recorded, the node adds the anchor’s position and hop count to its table. If the 
anchor is already recorded, but the received hop count is lower, the node updates 
its table with the new hop count. This process of message forwarding and table 
updating continues, allowing nodes to determine the minimum hop count to each 
anchor node.

•	 Step 2 (Objective: Computation of average hop distance): In the second step, 
each anchor node computes its average hop distance as follows: 

(1)HopDisi =

∑
dsij∑
hcij

=

∑m−1

j=1,j≠i

��
xi − xj

�2
+
�
yi − yj

�2
∑m

j=1,j≠i
hcij
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 where m refers to the count of neighboring anchors for anchor i, while hci,j signi-
fies the minimum hop count between anchor i and j. Once the average hop dis-
tance is computed, each anchor node broadcasts this value throughout the WSN. 
Unknown nodes, upon receiving the broadcast, adopt the first received average 
hop distance as their own ( HopDisu ). Using this value, an unknown node can 
then estimate its distance to every anchor node in the network with the following 
equation: 

 where d̂sui and hcui represent the estimated distance and minimum hop count 
between an unknown node u and an anchor node i.

•	 Step 3 (Objective: position estimation): In this step, the computed distance values 
are used to estimate the positions of unknown nodes using the LSM in conjunc-
tion with trilateration or multilateration [11]. When an unknown node detects at 
least n anchor nodes ( n > 2 ), it solves a set of nonlinear equations to determine 
its coordinates, xu and yu : 

 To linearize these nonlinear equations, the last equation is subtracted from each 
of the preceding n − 1 equations, resulting in: 

 This system of linear equations can be expressed in matrix form as: 

 where X represents the coordinates (xu, yu) of the unknown node to be esti-
mated. D is a vector containing constants derived from the equations and includ-
ing distances squared. F is a matrix of coefficients representing the positions 
of the anchor nodes. The matrices F, X, and D are given by Eqs.  6, 7, and 8, 
respectively. 

(2)d̂sui = HopDisu × hcui

(3)

(
xu − x1

)2
+
(
yu − y1

)2
= ds2

u1(
xu − x2

)2
+
(
yu − y2

)2
= ds2

u2

⋮

(
xu − xn

)2
+
(
yu − yn

)2
= ds2

un
.

(4)

2xu
(
x1 − xn

)
+ 2yu

(
y1 − yn

)
=x2

1
+ y2

1
+ ds2

u,n
− ds2

u,1
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n
− y2

n
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(
x2 − xn

)
+ 2yu

(
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=x2

2
+ y2

2
+ ds2
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n
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⋮
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(
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+ y2
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n
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(5)FX = D

(6)F =

⎡⎢⎢⎢⎣

2
�
x1 − xn

�
2
�
y1 − yn

�
2
�
x2 − xn

�
2
�
y2 − yn

�
⋮ ⋮

2
�
xn−1 − xn

�
2
�
yn−1 − yn

�

⎤⎥⎥⎥⎦
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 The LSM is then applied to solve this inconsistent system of equations, resulting 
in the estimated position X∗ of the unknown node: 

 where the superscript T denotes matrix transposition.

3.2 � Mountain gazelle optimizer (MGO)

MGO is a metaheuristic algorithm inspired by the social structure and behavior of 
mountain gazelles in the wild [32]. MGO incorporates four key factors from gazelle 
life: bachelor male herds, maternity herds, territorial males, and migration for food 
search. It selects mature male gazelles in the herd territory as the best global solu-
tion, because bachelor herds cannot procreate or rule. The algorithm picks the low-
est cost one-third of the population for modeling and categorizes the rest as gazelles 
in maternity herds. MGO balances exploration and exploitation through speed and 
position adjustments, avoidance of poor solutions, and searching for new solutions.

3.2.1 � Territorial solitary males (TSM)

MGO algorithm emulates the territorial behavior of adult male gazelles, capable of 
defending themselves and establishing isolated, well-defended territories against 
younger males. This behavior is incorporated into the algorithm by assigning higher 
fitness values to solutions closer to the best one, thus promoting convergence to 
optimal solutions and discouraging the exploration of less promising regions. This 
behavior is mathematically modeled as follows:

where the best global solution is denoted by malegazelle . The parameters ri1 and ri2 
are random integers selected from 1 or 2. The young male herd coefficient vector, 
BH, is calculated using Eq.  11, and F is computed using Eq.  12. The coefficient 
vector Cofr , randomly selected and updated in each iteration, is used to increase the 
search capability and calculated using Eq. 13.

(7)D =

⎡
⎢⎢⎢⎢⎣

x2
1
+ y2

1
+ d2

u,n
− d2

u,1
− x2

n
− y2

n

x2
2
+ y2

2
+ d2

u,n
− d2

u,2
− x2

n
− y2

n

⋮

x2
n−1

+ y2
n−1

+ d2
u,n

− d2
u,n−1

− x2
n
− y2

n

⎤
⎥⎥⎥⎥⎦

(8)X =

[
xu
yu

]

(9)X∗ =
(
FTF

)−1
FTD

(10)TSM = malegazelle −
|||
(
ri1 × BH − ri2 × X(t)

)
× F

||| × Cofr
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Equation 11 computes the coefficient vector for the young male herd, where Xra rep-
resents a random solution within the ra interval and Mpr represents the average num-
ber of search agents that are randomly selected. Additionally, N denotes the total 
number of gazelles, while r1 and r2 are random values between 0 and 1.

In Eq. 12, N1 is a normal-distributed random number, and exp represents the expo-
nential function. MaxIter denotes the total number of iterations, and Iter represents 
the current iteration.

Equation 13 calculates a using Eq. 14, and r3 , r4 , and rand are random values from 
0 to 1. N2 , N3 , and N4 are random numbers in the normal range and the dimensions 
of the problem. r4 is also a problem-dimensional random number between 0 and 1.

3.2.2 � Maternity herds (MH)

Maternity herds play a critical role in the life cycle of the mountain gazelle because 
they are responsible for producing robust male offspring. Male gazelles may also 
contribute to the process of delivering offspring, as well as engage in competition 
with other males in their attempts to possess females for mating purposes. This 
behavior is modeled as follows:

where BH represents the vector indicating the impact factor of young males, com-
puted using Eq. 11. Cof1,r and Cof2,r are randomly selected coefficient vectors, inde-
pendently calculated using Eq.  13. ri3 and ri4 are integer values randomly set to 
either 1 or 2. Finally, Xrand is a randomly selected gazelle’s position.

3.2.3 � Bachelor male herds (BMH)

As male gazelles reach maturity, they assert dominance by establishing territories 
and competing with other males for control over females. This competitive nature 
sometimes leads to aggressive encounters. This behavior is modeled mathematically 
as follows:

(11)BH = Xra × ⌊r1⌋ +Mpr × ⌈ r2⌉, ra =
��

N

3

�
…N

�

(12)F = N1(D) × exp
(
2 − Iter ×

(
2

MaxIter

))

(13)Cofi =

⎧
⎪⎨⎪⎩

(a + 1) + r3,

a × N2(D),

r4(D),

N3(D) × N4(D)
2 × cos

��
r4 × 2

�
× N3(D)

�
,

(14)a = −1 + Iter ×
(

−1

MaxIter

)

(15)MH =
(
BH + Cof1,r

)
+
(
ri3 × malegazelle − ri4 × Xrand

)
× Cof2,r
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where X(t) is the gazelle’s position in the current iteration and D is determined using 
Eq. 17. ri5 and ri6 are random integers from 1 or 2.

where r6 is also a random number between 0 and 1.

3.2.4 � Migration to search for food (MSF)

Mountain gazelles have a persistent foraging behavior, often embarking on long 
journeys for sustenance and migration. On the other hand, these gazelles boast rapid 
running speeds and formidable leaping capabilities. This behavior is mathematically 
modeled as follows:

where ub and lb are the problem’s upper and lower boundaries. r7 is a random inte-
ger between 0 and 1.

4 � Proposed EMGODV‑Hop algorithm

This section presents the proposed localization method EMGODV-Hop for multi-
hop networks. The method involves two phases:

•	 The first phase estimates unknown anchor node distances using an improved DV-
Hop algorithm.

•	 Based on the calculated distances from the first phase, an enhanced MGO algo-
rithm (EMGO) is utilized to estimate WSN node positions.

This approach integrates the best features of both techniques to boost localization 
precision in multi-hop networks.

4.1 � Phase 1: improvements in average hop distance calculation

DV-Hop algorithm is a widely used localization method known for its simplicity 
and broad applicability. However, it has limitations related to the accuracy of dis-
tance estimates between anchor nodes and unknown nodes, primarily due to errors 
in average hop distance estimation at the anchor nodes. To address this issue, an 
improved version of the DV-Hop algorithm has been proposed, which integrates a 
correction factor to adjust the hop distance of anchor nodes during the second phase 
of the algorithm [49]. This adjustment aims to improve the precision of the localiza-
tion process by correcting variations in hop distance, thereby enhancing the overall 

(16)BMH = (X(t) − D) +
(
ri5 × malegazelle − ri6 × BH

)
× Cofr

(17)D =
(|X(t)|+ ∣ malegazelle ∣

)
×
(
2 × r6 − 1

)

(18)MSF = (ub − lb) × r7 + lb
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performance of the DV-Hop algorithm. The calculation of this correction factor is 
outlined as follows:

•	 In the DV-Hop algorithm’s initial phase, nodes determine the minimum hop 
counts to anchor nodes. The coordinates of anchor nodes allow the computation 
of distances between them, reflecting their actual physical distances as follows: 

 where (xi, yi) and (xj, yj) are the coordinates of anchor nodes i and j.
•	 Additionally, the estimated distance between two anchor nodes, denoted as d̂sij , 

is computed by multiplying the hop count hcij connecting them by the hop dis-
tance of either anchor node as follows: 

 where HopDisi is the average hop distance of anchor i.
•	 The distance error, denoted as de

ij
 , is defined as the difference between the esti-

mated distance and the actual distance, and it is computed as follows: 

•	 The distance error de
ij
 related to an anchor node i is used to calculate the correc-

tion factor �i for that anchor node, which can be expressed as: 

•	 The hop distances of anchor nodes are adjusted by applying a correction factor, 
resulting in an improved average hop distance HopDisl

i
 . This adjustment entails 

adding the correction factor to the previously computed hop distance as follows: 

The hop distance for the unknown node is computed by averaging the improved hop 
distance gains of all neighboring anchor nodes, providing an improved average hop 
distance for the unknown node.

Then, calculate the estimated distance d̂sui between a specific anchor node (i) and an 
unknown node (u) as follows:

(19)dsij =

√(
xi − xj

)2
+
(
yi − yj

)2

(20)d̂sij = HopDisi × hcij

(21)de
ij
=
|||dsij − d̂sij

|||

(22)�i =

∑
i≠j d

e
ij∑

i≠j hcij

(23)HopDisl
i
= HopDisi + �i

(24)HopDisI
u
=

∑n

i=1
HopDisI

i

n

(25)d̂sui = HopDisI
u
× hcui
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4.2 � Phase 2: enhanced mountain gazelle optimizer (EMGO)

This section provides the proposed EMGO algorithm. It discusses the shortcom-
ings of the conventional MGO algorithm and presents the EMGO framework, which 
focuses on evolving a population of problem solutions.

4.2.1 � Limitation of original MGO algorithm

MGO algorithm, inspired by the group dynamics of mountain gazelles, utilizes four 
optimization strategies. However, the initial version of this algorithm encountered 
challenges such as slow and premature convergence and difficulty escaping local 
optima due to the limited exploration and exploitation capabilities and its depend-
ence on greedy search. To address these issues, an enhanced version of MGO, called 
EMGO, has been introduced. EMGO aims to effectively evolve the solution popula-
tion, mitigating constraints and addressing the shortcomings of the original MGO 
algorithm.

4.2.2 � Architecture of the proposed EMGO method

This section presents the EMGO algorithm, which aims to address the limitations of 
the original MGO method. These limitations include slow convergence, susceptibil-
ity to suboptimal solutions, and an imbalance between exploration and exploitation. 
Algorithm 1 provides the pseudocode for EMGO, while its flowchart is depicted in 
Fig. 1. The main enhancements in EMGO involve:

•	 Control randomization parameter: Randomization is important in metaheuris-
tic algorithms to prevent stagnation and early convergence to local solutions. 
To control this randomization, EMGO uses the parameter � , which balances 

Fig. 1   Flowchart of the proposed EMGO algorithm
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exploration and exploitation, reducing the chance of getting stuck in local 
optima. By generating both positive and negative random numbers, � allows 
a directional shift in the search process. This capability helps avoid get-
ting trapped at suboptimal solutions and avoids premature convergence. The 
parameter � is defined as follows: 

•	 Transition factor (TF) parameter: The original MGO method lacks a transition 
parameter for a smooth shift between the exploration and exploitation stages, 
leading to unstable search behavior. To address this issue, a transition factor 
(TF) is introduced in the proposed EMGO algorithm. TF serves as a time-
based balance, gradually shifting agents from exploration to exploitation as 
time passes. It can be expressed as follows: 

 where MaxIter represents the total number of iterations and Iter represents the 
current iteration. TF starts at one and gradually decreases as the search pro-
gresses, facilitating a smooth transition of agents from exploration to exploita-
tion. This enables EMGO algorithm to achieve a more stable and efficient search 
process, enhancing its performance in various optimization problems.

•	 Proposed diversification operator: In the proposed EMGO algorithm, a por-
tion of the new population undergoes diversification, controlled by a proba-
bility parameter called the probability of diversification (pd). The diversifica-
tion operator in EMGO follows five strategies: (1) updating positions based 
on boundary constraints to explore new regions, (2) updating positions rela-
tive to the best MGO in the population, (3) modifying positions using archive 
information and a randomly selected MGO, with a control parameter aj that 
is initialized randomly and decreases with problem size by being multiplied 
by another random number in the range [0,1], (4) selecting from a random 
archive pool (archiveMGO), and (5) retaining the current MGO without 
changes. This diversification operator helps the algorithm escape local optima 
and avoid stagnation in suboptimal solutions. The proposed diversification 
operator, as shown in Eq.  28, aims to prevent the algorithm from becoming 
trapped in local solutions. By introducing these five cases, the EMGO algo-
rithm can explore different regions of the solution space and discover more 
effective solutions. 

 where Li and Ui are the lower and upper bounds, respectively.

(26)� = 2 × rand − 1

(27)TF = exp
(
−

Iter

MaxIter

)

(28)newMGOi,j =

⎧
⎪⎪⎨⎪⎪⎩

Lj + r1 ×
�
Uj − Lj

�
pd < 0.3

bestGazelle,j pd < 0.4�
1 − aj

�
× archiveMGOk,j + aj × randMGOj pd < 0.5

archiveMGOk,j pd < 0.8

MGOi,j otherwise
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•	 New exploitation phase: The original MGO algorithm lacked an exploitation 
phase, relying solely on randomization as per Eq. 10 for position updates. This 
approach led to suboptimal performance due to an imbalance in exploration and 
exploitation. To enhance efficiency, a new method was introduced that involves 
generating a temporary agent for each individual in every iteration to increase the 
chances of exploitation. If the temporary agent outperforms the current one, it 
will take its place. The temporary solution is generated using the following equa-
tion: 

 where xi(t) stands for the current individual and xr(t) represents a randomly 
selected agent.

The EMGO process can be summarized as follows: 

1.	 Initialization: An initial population of solutions is generated, and key parameters, 
such as the randomization control parameter ( � ) and transition factor (TF), are 
set.

2.	 Iteration process: The algorithm iteratively improves the population over a pre-
determined number of iterations, focusing on:

•	 Fitness evaluation: Calculating the fitness of each solution based on the objec-
tive function.

•	 Exploration and exploitation: Dynamically balancing exploration (searching 
new areas) and exploitation (refining existing solutions) using the TF param-
eter. A random number determines whether the focus is on exploration or 
exploitation.

•	 Diversification: Applying a diversification operator to introduce variability 
and prevent stagnation, aiding in escaping local optima.

3.	 Best solution identification: The algorithm continuously updates and tracks the 
best solution based on fitness values throughout the iterations.

4.	 Termination: The process concludes when the specified number of iterations is 
reached, returning the best solution and its corresponding fitness value as the final 
output.

(29)temp = xi(t) + � × TF × ||xr(t) − xi(t)
||
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Algorithm 1   EMGO algorithm.

4.3 � EMGODV‑Hop‑based localization steps

In this section, we introduce the proposed localization method, EMGDV-Hop, for 
multi-hop networks. The method consists of two phases: An improved version of the 
DV-Hop algorithm is used to estimate distances between unknown nodes and anchor 
nodes, and the EMGO algorithm is employed to estimate WSN node positions based 
on the estimated distances in phase one.

Traditional distance estimation method in node localization typically involves 
multiplying hop count values by anchor nodes’ hop distances. However, this method 
often results in inaccurate distance estimates, especially as the hop count between 
the anchor and unknown nodes increases, leading to decreased localization accuracy. 
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To improve precision, an improved DV-Hop algorithm is introduced, aiming to 
reduce errors and enhance accuracy in node localization. In addition, the EMGO 
algorithm is applied to estimate the positions of unknown nodes, replacing tradi-
tional trilateration or multilateration methods. The EMGO algorithm minimizes the 
squared error of the computed distances, transforming the position estimation pro-
cess into a minimization task. By minimizing an objective function, the algorithm 
effectively calculates the coordinates of unknown nodes, improving localization 
accuracy.

The squared error of the estimated distances is defined as the sum of the squared 
differences between the estimated distance dsui and the Euclidean distance between 
the unknown node u and the anchor node i, which can be expressed as follows:

Note: n is greater than 2, indicating at least three neighboring anchors within the 
communication range of the unknown node u. Figure  2 displays the EMGODV-
Hop node localization flowchart, while Algorithm  2 provides the pseudocode for 
EMGODV-Hop. The EMGODV-Hop algorithm determines the coordinates of N tar-
get nodes through the following steps:

•	 Step 1: Initialization.

(30)f (x, y) = 1∕n

n∑
i=1

(√(
x� − xi

)2
−
(
y� − yi

)2
− dui

)2

Fig. 2   Flowchart of the proposed EMGODV-Hop method
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Initialize the parameters of the WSN, such as the dimension of the deployment 
area, communication range (R), and the total number of nodes.
Initialize the parameters of the metaheuristic algorithms: Population size 
(N), maximum iterations (MaxIter), problem dimension (D), upper bound 
(Ub), lower bound (Lb), and the objective function f().

•	 Step 2: Network configuration. Configure the network with U unknown nodes 
and M anchors, where anchors may be equipped with GPS or deployed at 
known locations.

•	 Step 3: Estimate the distances between unknown nodes and anchors. This step 
is done as follows:

Anchor nodes send out an overwhelming number of beacon packets contain-
ing their coordinates.
Find the minimum hop counts between nodes in the entire network.
Compute anchor node average hop distance using Eq. 1.
Determine the actual and estimated distances between anchor nodes 
(Eqs. 19, 20).
Calculate the correction factor (�i) of each anchor node using Eq. 22.
Compute each anchor node’s improved average hop distance HopDisl

i
 using 

Eq. 23.
Calculate the hop distance for the unknown node by averaging the improved 
average hop distance of the anchor nodes nearby using Eq. 24.
Use Eq. 25 to estimate an unknown node’s distance from the anchor.

•	 Step 4: Position estimation using EMGO algorithm. This step is performed by 
each unknown node to localize itself by running the EMGO algorithm inde-
pendently as follows:

Step 4.1: An initial random population is generated in a 2-dimensional 
deployment area using the formula X = lb + r × (ub − lb) , where r ∈ [0, 1] , 
and lb and ub represent the lower and upper bounds, respectively.
Step 4.2: The fitness value is then calculated for every individual by consid-
ering its location as the coordinates of the unknown node using Eq. 30.
Step 4.3: The EMGO phases are performed to generate a new population 
that tries to minimize the fitness function.
Step 4.4: The previous procedures are repeated until the maximum number 
of iterations is reached. The location of the individual with the least fitness 
value is assumed to be the estimated location of the unknown node.
After getting localized, each unknown node starts acting as an anchor node 
and helps other localizable nodes get localized, indicating an increase in the 
number of anchor nodes as the iteration count progresses.
Repeat steps 4.1−4.5 until all the nodes become localized.

•	 Step 5: Evaluate the performance of EMGODV-Hop. The performance of the 
node localization process is analyzed in terms of ALE and localization ratio.
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Algorithm 2   EMGODV-Hop algorithm

5 � Simulation results and discussion

This paper presents two sets of experiments that illustrate the efficiency and robust-
ness of the EMGO algorithm. The first set employs the algorithm as a global opti-
mization tool to identify optimal values for the IEEE Congress on Evolutionary 
Computation 2020 (CEC’20) benchmark functions. The second set concentrates on 
evaluating the proposed localization algorithm, known as EMGODV-Hop, which is 
built upon EMGO, with the aim of assessing its capability to achieve highly precise 
node localization within WSNs. The experiments were carried out on a PC equipped 
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with an IntelⓇ CoreTM i7 3.40 GHz processor, 16GB of RAM, and Microsoft Win-
dows 11. The experiments were carried out using MATLAB 2022b.

5.1 � Experimental series 1: CEC’20

This experiment aims to assess the effectiveness of the EMGO algorithm in solving 
complex mathematical functions. The performance of EMGO is compared against 
other optimization algorithms using the CEC’20 test suite [50], which encompasses 
diverse types of mathematical functions, including unimodal (F1), multimodal (F2-
F4), composition (F5-F7), and hybrid (F8-F10) functions designed specifically to 
evaluate its capacity for exploration and exploitation as well as its ability to escape 
local optima. Each benchmark function was evaluated with a dimension of 10 over 
30 separate runs, with a maximum of 1000 iterations set for each run.

The performance of the algorithms was evaluated using the mean and stand-
ard deviation (STD) of fitness values. The experimental findings are presented in 
Table 2, where the bold values indicate the optimal solutions obtained. Furthermore, 
the final row illustrates the Friedman rank of each method. The results of the EMGO 
are compared with several state-of-the-art metaheuristic algorithms. These include 
Archimedes Optimization Algorithm (AOA) [51], Equilibrium Optimizer (EO) [52], 
Harris Hawks Optimization (HHO) [53], Dandelion Optimizer (DO) [54], PSO [21], 
WOA [55], Fick’s Law Algorithm (FLA) [56], and Coati Optimization Algorithm 
(CoatiOA) [57]. All experiments used the default values specified in the original 
publications for the parameters of the comparing algorithms.

5.1.1 � Exploration and exploitation evaluation

Unimodal test functions are a reliable benchmark for evaluating optimization algo-
rithms, particularly in assessing their ability to effectively exploit the search space 
and identify the global optimum. Conversely, multimodal functions, characterized 
by multiple local minima, provide a more challenging evaluation, testing an algo-
rithm’s exploration capabilities and its effectiveness in avoiding entrapment in local 
optima. For the unimodal test function (F1), PSO demonstrates the best performance 
with a mean value of 1558.567, followed by MGO, which achieves a mean value 
of 2433.78. EMGO ranks fourth with a mean value of 3583.6, indicating its com-
petitive ability to locate optimal solutions. Despite being surpassed by PSO and 
MGO, EMGO significantly outperforms many other algorithms, showcasing its 
strong capability to efficiently exploit the search space to approach the global opti-
mum. This underscores EMGO’s potential and strength in various problem domains 
requiring high exploitation capabilities.

EMGO shows a marked improvement on multimodal functions (F2-F4), dem-
onstrating its superiority over other algorithms. For function F2, EMGO achieves 
the best mean value of 1356.55, reflecting its robust exploration capabilities, 
followed by EO and FLA with means of 1522.28 and 1609.6, respectively. The 
lowest performance is by CoatiOA at 2615. In function F3, EMGO again leads 
with the lowest mean value of 720.67, underscoring its effectiveness in navigating 
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complex search spaces. FLA and EO rank closely with means of 722.73 and 
723.5, while CoatiOA shows the weakest performance at 801.52. Similarly, for 
Function F4, EMGO secures the best mean value of 1901.08, slightly outperform-
ing PSO and MGO, with means of 1901.08 and 1901.14, respectively. CoatiOA 
remains the least effective, with a significantly higher mean of 40376.7. EMGO’s 
strong performance in multimodal functions highlights its effectiveness in tack-
ling problems requiring extensive exploration across diverse regions of the solu-
tion space and identifying multiple optimal solutions.

5.1.2 � Evaluation of local optima avoidance

Composition and hybrid functions are specifically designed to test an optimiza-
tion algorithm’s ability to effectively escape local optima. Applying EMGO to 
these functions highlights its ability to avoid being trapped in suboptimal solu-
tions. Moreover, these functions provide benchmarks for evaluating the algo-
rithm’s balance between exploration and exploitation.

The results presented in Table 2 clearly demonstrate the superiority of EMGO 
in most hybrid functions (F5-F7). For Function F5, PSO achieves the best mean 
value of 3666.79, followed by MGO, EO, DO, and EMGO with means of 5516.8, 
6049.5, 7388.1, and 8060.92, respectively. For Function F6, EMGO secures 
the best mean value of 1669.23, outperforming EO and MGO, with means of 
1679.58 and 1711.28, respectively. CoatiOA remains the least effective, with 
a significantly higher mean of 2053.79. For Function F7, EO demonstrates the 
best performance with a mean value of 2565.07, followed by PSO and EMGO, 
which achieves a mean value of 3326.83 and 3580.14, respectively. Additionally, 
Table  2 displays the solutions obtained by EMGO and other algorithms when 
tackling composition functions (F9-F10), firmly establishing EMGO’s domi-
nance over its counterparts. These findings highlight the superior performance of 
EMGO, demonstrating an effective balance between exploration and exploitation. 
This balance enhances its ability to avoid local optima, establishing EMGO as a 
robust optimization algorithm well suited for navigating complex problem spaces.

5.1.3 � Statistical analysis

The experimental evaluation demonstrates that the EMGO algorithm outperforms 
other comparable algorithms. To validate and confirm the rankings obtained 
from these experiments, Friedman’s test and Wilcoxon’s rank-sum tests were 
employed. These statistical tests were conducted to establish and substantiate the 
superior performance of EMGO relative to its counterparts.

Friedman test (Ftest) , as proposed by Derrac et  al. [58], is a nonparametric 
statistical method used in this experiment to rank EMGO relative to other algo-
rithms based on their achieved fitness values. The ranking procedure is conducted 
as follows:
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where k represents the number of algorithms, Rj denotes the mean rank of the j − th 
algorithm, and n signifies the number of case tests. This statistical test initially 
determines the rank of each algorithm independently and subsequently computes 
the average rank to derive the final rank for each algorithm concerning the specific 
problem under consideration. The results in Table 2 clearly indicate that the EMGO 
algorithm achieves the highest rank according to the Friedman test. This compre-
hensive ranking highlights the superior performance of the proposed EMGO algo-
rithm compared to all other algorithms considered in the evaluation.

Wilcoxon’s rank-sum test is a nonparametric statistical method used to compare 
the performance of competing algorithms. By calculating a p-value, this test allows 
the analysis of whether there is a statistically significant difference in performance 
between two algorithms. The results of the Wilcoxon test that compares EMGO 
with its competitors are presented in Table 3. The alternative hypothesis is accepted, 
as the majority of the p-values in the table are below 5%, indicating a significant 
difference between the performance of EMGO and the other algorithms. Thus, the 
findings and discussion in this study validate the effectiveness of the exploration and 
exploitation capabilities of EMGO.

5.1.4 � Convergence performance analysis

Convergence curve is a graphical representation that depicts the algorithm’s pro-
gression toward the optimal solution across successive iterations. Figure 3 illustrates 
a comparative analysis of convergence curves involving the EMGO algorithm and 
its counterparts for the CEC’20 test functions. This visualization enables an assess-
ment of how rapidly and efficiently each algorithm converges to an optimal or near-
optimal solution through iterative improvements.

The figure demonstrates the EMGO’s capacity to rapidly approach near-optimal 
solutions, achieving this with high efficiency by requiring significantly fewer itera-
tions. The convergence curves for EMGO consistently and rapidly decrease across 
various optimization stages, encompassing diverse test function families-unimodal, 
multimodal, composition, and hybrid functions. This visual evidence underscores 
EMGO’s superiority over competing algorithms in terms of convergence speed and 
efficiency. This performance advantage is attributed to the algorithm’s well-balanced 
exploration and exploitation strategies. EMGO’s effective integration of these strate-
gies enables it to navigate complex search spaces efficiently, avoid local optima, and 
converge quickly to high-quality solutions.

5.1.5 � Boxplot behavior analysis

The boxplot is a visual aid that efficiently summarizes statistical data by dis-
playing important metrics such as the median, quartiles, and possible outliers. It 
offers an overview of the distribution of numerical variables, providing valuable 

(31)Ftest =
12n

k(k + 1)

[∑
j

R2
j
−

k(k + 1)2

4

]
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insights into the data’s spread and central tendency. Figure 4 depicts the boxplot 
of EMGO alongside other algorithms. It is evident that EMGO’s boxplots exhibit 
notably lower values and a narrower range across the ten functions assessed for 
dim = 10. This feature signifies EMGO’s superior performance compared to the 
other algorithms tested. The narrower range implies a higher level of consistency 
among data points, indicating EMGO’s consistency in achieving the same results 
across various runs. Moreover, the lower values in EMGO’s boxplots emphasize 
its ability to produce more optimal solutions when compared to its counterparts. 
These characteristics within EMGO’s boxplot highlight its strong performance 
and consistent proficiency, illustrating its effectiveness in handling diverse func-
tions or problems.

Fig. 3   Proposed EMGO and competing methods’ convergence curves across the CEC’20 test suite at 
Dim = 10
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5.2 � Experimental series 2: node localization in WSNs

Extensive simulations are performed in this section to evaluate the performance 
of the proposed EMGODV-Hop localization algorithm using various commonly 
used measures. Its effectiveness is validated through the comparison with the 
original DV-Hop algorithm under similar network conditions. Furthermore, 
various metaheuristics, including PSO [21], white shark optimizer (WSO) [59], 
salp swarm algorithm (SSA) [60], and original MGO algorithm, are selected 
and evaluated to ensure a fair comparison with the proposed EMGO. It is worth 

Fig. 4   Proposed EMGO and competing methods’ boxplot curves across the CEC’20 test suite at 
Dim = 10
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highlighting that all algorithms are evaluated under uniform conditions, utilizing 
30 search agents and a fixed maximum of 50 iterations.

5.2.1 � Simulation parameters

During the simulation, nodes are randomly distributed within a 100m × 100m deploy-
ment area, as depicted in Fig. 5. The results presented are the average of 50 independ-
ent runs. The WSN settings are listed in Table 4. The parameters of the metaheuristic 
algorithms used in the comparison are set according to their original papers.

5.2.2 � Performance measures

The performance of the proposed EMGODV-Hop algorithm is evaluated using two 
key metrics: average localization error (ALE) and localization success ratio. These 
measures are defined as follows:

Fig. 5   WSN sensor node distribution

Table 4   WSN settings Setting parameter Value

Domain of networks 100 × 100 (m2)
Node count 100–400
Total anchor nodes 20–60
Communication range 20–60 (m)
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•	 Average Localization Error (ALE) is a straightforward metric that quantifies the 
accuracy of the algorithm by measuring the average difference between the esti-
mated and actual positions of the nodes. A lower ALE indicates higher precision 
in the node localization process. ALE is calculated as follows: 

 The estimated location of an unknown node u is denoted by 
(
x∗
u
, y∗

u

)
 , while (

xu, yu
)
 represents its true location. Nu is the number of unknown nodes that can 

be localized, and R is the communication range.
•	 The localization success ratio metric represents the proportion of nodes success-

fully localized by the algorithm relative to the total number of nodes. A higher 
localization ratio signifies the algorithm’s effectiveness in accurately determining 
the positions of a greater number of nodes.

The evaluation of all algorithms involves 50 independent runs of random WSN node 
distributions. Several statistical metrics are employed to gauge the effectiveness of 
the proposed algorithms. 

1.	 Mean: To ensure an accurate evaluation, the algorithms are tested on 50 different 
and independent random distributions of WSN nodes (M = 50) . The average of 
the ALE, as defined in Eq. 33, is calculated to obtain a reliable estimate of the 
localization accuracy. 

 where f i
∗
 indicates the ALE value of the optimal solution generated at the i − th 

run.
2.	 Standard deviation (STD) : The algorithm’s stability and robustness can be evalu-

ated with STD. Consistent convergence to the same solution by the optimization 
method, as measured by a small STD, is preferable to the more unpredictable 
behavior that can be expected from an approach with a large STD. The following 
equation is used to calculate the STD: 

5.2.3 � Influence of anchor ratio variation

The accuracy of the localization algorithm is significantly affected by the number 
of anchor nodes within the network. This section examines how variations in the 
anchor ratio influence localization accuracy. In this experiment, a total of 100 sensor 
nodes were randomly distributed within a sensing area of 100 m × 100m , with each 

(32)ALE =

∑Nu

u=1

��
x∗
u
− xu

�2
+
�
y∗
u
− yu

�2
R × Nu

(33)Mean =
1

M

M∑
i=1

f i
∗

(34)STD =

√
1

M − 1

∑
(f i
∗
−Mean)

2
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node having a communication range of 30 m. The experiment evaluated the impact 
of increasing the anchor ratio from 20% to 60%, in increments of 10%, on the locali-
zation error. The findings are summarized in Fig. 6 and Table 5.

Figure 6 presents the variation in ALE with a 97% confidence interval (CI), plot-
ted against the number of anchor nodes. The CI serves as an indicator of the reli-
ability and stability of the localization algorithm, with narrower intervals suggest-
ing greater consistency and reliability in its performance. This analysis reveals the 
impact of varying the anchor ratios on the accuracy and stability of the localization 
method. As illustrated in Fig. 6, the accuracy of all algorithms in estimating posi-
tions improves with an increasing number of anchor nodes. As the number of anchor 
nodes increases, both the distance and hop count between them decrease, leading to 
a more accurate measurement of the average hop distance. This improved accuracy 
in the average hop distance reduces errors in estimating distances between unknown 
and anchor nodes, resulting in more precise estimates. These accurate distance esti-
mations are crucial for enabling the metaheuristic algorithm to find optimal solu-
tions to locate unknown nodes.

Table 5 displays the ALE of different algorithms, including the EMGODV-Hop 
algorithm, for varying anchor ratios. The results demonstrate that the EMGODV-
Hop algorithm achieves a lower localization error rate compared to other methods. 
Specifically, as the anchor ratio ranges from 20% to 60%, the localization error 
decreases from 0.47 to 0.29 for EMGODV-Hop, from 0.55 to 0.44 for MGODV-
Hop, from 0.51 to 0.37 for PSODV-Hop, from 0.54 to 0.46 for WSODV-HOP, 
0.65 to 0.56 for SSADV-HOP, and from 0.73 to 0.65 for DV-hop algorithms. The 
EMGODV-Hop algorithm demonstrates the lowest STD values compared to other 
evaluated algorithms, indicating a high degree of consistency in its results across 
independent runs. In addition, Table 5 presents the average ALE values for vari-
ous localization algorithms, along with their corresponding tolerance (TOL) lev-
els. These tolerances are set to achieve 97% accuracy when comparing the aver-
age value to the specified tolerance. The EMGODV-Hop method demonstrates 
superior localization accuracy compared to other algorithms. On average, there is 

Fig. 6   ALE of the comparative 
algorithm for different numbers 
of anchor nodes
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a significant improvement in accuracy, with an enhancement of 48.69% compared 
to DV-Hop, 26.22% improvement compared to MGODV-Hop, 19.33% improve-
ment compared to PSODV-Hop, 28.21% improvement compared to WSODV-
Hop, and 40.47% improvement compared to SSADV-Hop.

The experiment demonstrates that with fewer than 30 anchor nodes, the aver-
age hop distance error increases, and the available localization information 
decreases, leading to a higher ALE. In contrast, with more than 50 anchor nodes, 
the accuracy of the average hop distance improves, providing more information 
for localization and resulting in a lower ALE. However, increasing the number of 
anchor nodes also incurs additional network costs. Therefore, it is crucial to find 
a balance between the number of anchor nodes and the acceptable localization 
error, based on specific application requirements.

In assessing the localization ratio, a threshold-based approach is used to distin-
guish between successfully and unsuccessfully located nodes. After the localiza-
tion algorithm is executed, the estimated positions are compared with the actual 
positions of the nodes. If the error, calculated as the Euclidean distance between 
the true and estimated positions, exceeds a predefined threshold, the node is cat-
egorized as not located; otherwise, it is considered successfully located. In this 
experiment, successful localization is defined when the error falls within 5% of 
the communication range, equivalent to 1.5 ms.

The localization ratio of the EMGODV-Hop method is compared with other 
methods across various anchor ratios in Table  6 and Fig.  7. The results high-
light the superior localization capabilities of the EMGODV-Hop method, which 
achieves a higher localization ratio than its counterparts. By employing 20% 
anchor nodes, the EMGODV-Hop method showed successful localization with a 
higher ratio of 0.85, surpassing the ratios achieved by the MGODV-Hop, PSODV-
Hop, WSODV-Hop, SSADV-Hop, and DV-Hop methods, which were 0.75, 0.81, 
0.76, 0.74, and 0.66, respectively. Furthermore, the EMGODV-Hop method dem-
onstrated efficient localization with 60% anchors, reaching a maximum ratio of 1, 
while the methods of MGODV-Hop, PSODV-Hop, WSODV-Hop, SSADV-Hop, 
and DV-Hop yielded lower ratios of 0.91, 0.91, 0.89, 0.87, and 0.7, respectively.

Table 6   Examination of the localization ratio under different ratios of anchors

# anchor 
nodes

EMGODV-
Hop

MGODV-Hop PSODV-Hop WSODV-Hop SSADV-Hop DV-Hop

20% 0.85 0.75 0.81 0.76 0.74 0.66
30% 0.98 0.79 0.85 0.8 0.77 0.68
40% 1 0.85 0.87 0.84 0.8 0.71
50% 1 0.88 0.88 0.88 0.82 0.74
60% 1 0.91 0.91 0.89 0.87 0.77
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5.2.4 � Influence of communication range variation

This experiment aims to evaluate the effect of different communication ranges 
on the localization accuracy. The experimental configuration consists of 100 
unknown nodes and 30 anchor nodes. The communication range varies from 
20 m to 60 m, with increments of 10 m. The findings are illustrated in Fig. 8 and 
summarized in Table 7.

The results illustrated in Fig.  8 demonstrate that increasing the communica-
tion range from 20 m to 60 m significantly enhances the accuracy of all locali-
zation algorithms. This improvement is due to the greater number of single-hop 
nodes, which reduces the hop count between nodes and consequently decreases 
the localization error for unknown nodes. Notably, when the communication 
range exceeds 50 m, there is no significant effect on ALE for the EMGODV-Hop 

Fig. 7   Investigation of the proposed EMGODV-Hop method’s localization ratio under anchor ratio vari-
ation

Fig. 8   ALE of the comparative 
algorithm for variety of com-
munication ranges
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algorithm, indicating that its performance remains stable despite further increases 
in communication range.

Table 7 examines the comparative analysis of EMGODV-Hop in terms of locali-
zation error across varying communication ranges. The findings demonstrate that 
the EMGODV-Hop method achieved the lowest localization error compared to other 
localization models. Specifically, as the communication range ranged from 20 m to 
60 m, the localization error reduced from 0.38, 0.45, 0.45, 0.49, 0.50, and 0.62 to 
0.24, 0.29, 0.31, 0.33, 0.35, and 0.40 for EMGODV-Hop, MGODV-Hop, PSODV-
Hop, WSODV-Hop, SSADV-Hop, and DV-Hop algorithms, respectively. Moreover, 
based on the average values of ALE for various localization algorithms and their 
corresponding tolerance values demonstrated in Table 7, the EMGODV-Hop locali-
zation algorithm exhibits superior accuracy, with a 39.8% improvement compared 
to DV-Hop, 21.09% in comparison to MGODV-Hop, 18.88% in comparison to 
PSODV-Hop, 26.21% in comparison to WSODV-Hop, and 29.76% in comparison 
to SSADV-Hop.

5.2.5 � Influence of varying the total number of nodes

This section evaluates the performance of the EMGODV-Hop algorithm with vary-
ing numbers of nodes and provides a comparative analysis against existing methods. 
The experiment was conducted with a fixed number of 30 anchor nodes and a com-
munication range of 30 m, with the total number of nodes ranging from 100 to 400. 
This setup enabled a comprehensive evaluation of the EMGODV-Hop algorithm’s 
effectiveness. The simulation results are presented in Fig. 9 and Table 8.

Figure 9 provides a visual representation of the simulation results, highlighting 
the accuracy of various algorithms with different numbers of nodes. The results 
indicate that as the total number of nodes increases, all algorithms show a reduction 
in localization error. A higher density of unknown nodes improves network connec-
tivity by increasing the average number of nodes within each node’s communication 
range. This results in more direct hop paths between nodes, improving the precision 
of distance measurements to anchor nodes and reducing localization inaccuracies. 

Fig. 9   ALE of the comparative 
algorithm for different numbers 
of sensors nodes
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However, all six methodologies show a slight decrease in ALE when the total num-
ber of nodes increases to 300 or more. This stability can be attributed to the fixed 
count of anchor nodes, regardless of the overall node count. As more nodes are 
added, the proportion of anchor nodes decreases, and the information available for 
locating unknown nodes is insufficient. Consequently, adding excessive nodes may 
incur additional costs without significantly improving localization accuracy. There-
fore, adopting a balanced approach is essential, taking into account the application’s 
specific requirements and constraints to optimize both the localization accuracy and 
the associated costs.

Table 8 presents a comparative analysis of the EMGODV-Hop model regarding 
localization error across varying numbers of unknown nodes. The findings highlight 
the superior performance of the EMGODV-Hop technique compared to other locali-
zation models. Specifically, as the node density varied from 100 to 400, the locali-
zation error reduced from 0.45, 0.50, 0.55, 0.57, 0.60, and 0.70 to 0.29, 0.40, 0.44, 
0.46, 0.50, and 0.57 for EMGODV-Hop, MGODV-Hop, PSODV-Hop, WSODV-
Hop, SSADV-Hop, and DV-Hop algorithms, respectively. In addition, based on the 
average values of ALE for various localization algorithms and their correspond-
ing tolerance values demonstrated in Table  8, the localization accuracy is signifi-
cantly improved by using the EMGODV-Hop algorithm compared to the DV-Hop, 
MGODV-Hop, PSODV-Hop, WSODV-Hop, and SSADV-Hop algorithms. On aver-
age, the improvement in accuracy achieved by EMGODV-Hop is 40.36%, 16.66%, 
23.93%, 26.64%, and 30.90%, respectively.

5.2.6 � Computation and communication requirements analysis

This section discusses the computation and communication requirements of the 
EMGODV-Hop algorithm within the context of WSNs:

The EMGODV-Hop algorithm is designed to be computationally efficient while 
achieving accurate localization. It includes two main components: an improved DV-
Hop algorithm for initial distance estimations and the EMGO algorithm for optimiz-
ing node positions.

•	 Improved DV-Hop phase: This phase focuses on calculating and refining hop 
distances with minimal computational complexity, utilizing straightforward 
arithmetic operations that leverage existing node data to adjust and correct dis-
tance estimates, minimizing additional computational overhead.

•	 EMGO optimization phase: This phase employs a metaheuristic approach to fine-
tune node positions. The EMGO algorithm is designed for rapid convergence, 
achieved by strategically balancing exploration and exploitation. This balance is 
critical because it enables the algorithm to efficiently navigate the solution space 
to identify optimal or near-optimal solutions without excessive computational 
effort. Consequently, this efficiency makes the EMGO algorithm particularly 
effective in resource-constrained environments typical of WSNs.

The EMGODV-Hop algorithm’s communication requirements are kept within rea-
sonable limits. Beacon packets are periodically sent by anchor nodes, containing 
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essential information such as node identifiers, coordinates, and hop counts. This 
periodic transmission is designed to minimize network congestion and communi-
cation overhead. Additionally, the algorithm employs a distributed approach where 
each unknown node performs localization independently based on the information 
received from nearby anchors. This reduces the overall communication burden com-
pared to centralized methods.

5.3 � Discussion

The accuracy of localization algorithms improves as the number of anchor nodes 
increases, reducing both the distance and hop count between them. This enhance-
ment leads to more precise distance estimations, which are essential for optimiz-
ing node localization. This enhancement leads to more precise distance estimations, 
which are essential for optimizing node localization. The EMGODV-Hop algo-
rithm achieves a lower localization error rate compared to the others. Furthermore, 
increasing the communication range improves accuracy by decreasing the hop count 
between nodes. In particular, when the range exceeds 50 m, there is no further effect 
on ALE for EMGODV-Hop, demonstrating its resilience. Additionally, as the total 
node count increases, all algorithms exhibit decreased localization error due to 
improved network connectivity and precision in anchor node distances, resulting in 
reduced location inaccuracies. This clearly reveals that the proposed EMGODV-Hop 
method outperforms the other techniques in terms of node localization efficiency.

In any WSN application, the ability to accurately localize nodes sensing specific 
events is critical. For instance, consider deploying sensor nodes across a farm to 
monitor environmental conditions and optimize crop yield. Precision in node locali-
zation is essential for accurate data collection and analysis in such scenarios. By 
applying our proposed localization algorithm to agricultural monitoring, farmers 
can leverage data-driven insights to enhance crop yield, resource conservation, and 
environmental sustainability. This algorithm also finds application in environmental 
monitoring contexts like forestry and wildlife conservation, facilitating the monitor-
ing of various environmental factors. In infrastructure monitoring, such as assess-
ing the health of structures like bridges and buildings, our localization algorithm 
can aid in identifying the exact locations of sensor nodes for precise data collection. 
Moreover, in industrial automation, our algorithm can support tasks like monitoring 
industrial processes, tracking assets, and conducting predictive maintenance. These 
diverse applications underscore the significance and versatility of our node localiza-
tion algorithm across various domains.

6 � Conclusions and future works

WSNs play a vital role in gathering environmental data through sensor nodes. How-
ever, accurate localization of these nodes is crucial to interpreting the collected 
data effectively. Node localization holds significance across various applications, 
and range-free techniques are favored because of their compatibility with hardware 
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constraints and cost considerations. While the DV-Hop algorithm is a widely 
known range-free approach for localization, it grapples with accuracy and stability 
concerns. To address these issues, this paper introduced a novel technique called 
EMGODV-Hop, designed specifically for localizing nodes in multi-hop networks. 
This technique comprises two phases: the initial stage utilizes an improved DV-Hop 
algorithm to estimate distances between unknown and anchor nodes, followed by a 
second phase, which employs an improved variant of the MGO algorithm, referred 
to as EMGO, to estimate WSN node positions. The primary aim of this approach is 
to minimize localization errors and enhance accuracy in determining the coordinates 
of unknown nodes. The study performed a comprehensive experimental analysis 
to validate the proposed method’s effectiveness and compare the results with other 
techniques. The findings demonstrated that the proposed EMGODV-Hop method 
outperforms the other techniques in terms of node localization efficiency. Given 
the superior performance of our proposed EMGODV-Hop method in terms of node 
localization efficiency, we believe in its applicability across a diverse range of appli-
cations in different domains. In future research, we will focus on enhancing localiza-
tion performance by investigating advanced algorithms for dynamic network adjust-
ment. Additionally, we will explore integrating factors such as energy efficiency and 
robustness to varying network conditions into a multi-objective optimization frame-
work. This comprehensive approach aims to improve localization accuracy while 
simultaneously addressing energy consumption and network resilience.
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