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Abstract: This paper discusses definitions and properties of q-analogues of the gamma integral
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theorems. The convolution theorems are utilized to accomplish q-equivalence classes of generalized
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1. Introduction

A field of calculus known as quantum calculus, or q-calculus, was founded by Jack-
son [1] to replace the conventional derivative with a difference operator. The quantum
theory of calculus and symmetric calculus has been applied in various fields of science
including number theory [2], orthogonal polynomials [3], geometric function theory [4,5],
differential subordination [6], Daehee polynomials [7], zeta type functions [8], Bessel
functions [9], univalent functions [5], fractional calculus [10–12] and generalized special
functions [13]. In addition, the quantum theory of calculus connects, among other mathe-
matical fields, mathematics and physics and draw the interest of numerous researchers from
the literature [9,14,15]. Consequently, numerous advances in the area of q-hypergeometric
functions and polynomials in the field of partitions and integral transforms have been
accomplished by the relevant theory [16–19]. Moreover, the domains of vector spaces, par-
ticle physics, Lie theory, nonlinear electric circuit theory and heat conductions employ the
q-hypergeometric functions as an illustration of their respective subjects (see, e.g., [20,21]
and references therein). The q-derivative of a function φ, for 0 < q < 1, is defined by [1]

(
Dq φ

)
(τ) =

φ(τ)− φ(qτ)

(1 − q)τ
, τ ̸= 0. (1)

The complex number τ ∈ C, the natural number j ∈ N and the factorial of the natural
number have q-analogues provided by [2]
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[τ]q =
1 − qτ

1 − q
, [j]q =

1 − qj

1 − q
and [j]q! = [j]q[j − 1]q . . . [2]q[1]q and [0]q! = 1, (2)

respectively. Conversely, the shifted factorials have obtained q-analogues specified as [2]

(τ; q)j =
j−1

∏
i=0

(
1 − τqi

)
, (τ; q)0 = 1 and (τ; q)∞ = limj→∞(τ; q)j. (3)

The two methods for defining the q-analogues of the exponential function of a real number
are introduced in terms of (2) and (3) as [22]

Eq(τ) =
∞

∑
j=0

q
j(j−1)

2
τ j

[k]q!
= (τ; q)∞, τ ∈ R, (4)

and

eq(τ) =
∞

∑
j=0

τ j

[j]q!
=

1
(τ; q)∞

, |τ| < |1 − q|−1. (5)

On the other hand, the definite and improper integrals are, respectively, assigned q-
analogues given as [2] ∫ γ

0
ψ(γ)dqγ = (1 − q) ∑

i≥0
ψ
(

qiγ
)

γqi (6)

and ∫ ∞

0
ψ(γ)dqγ = (1 − q) ∑

i∈Z
qiψ

(
qi
)

. (7)

On the basis of the q-exponential functions (4) and (5), the gamma function has two
q-analogues defined as

Γq(δ) =
∫ 1

1−q

0
γδ−1Eq(q(1 − q)γ)dqγ (8)

and

Γ∗
q(δ) = k(w; δ)

∫ ∞
w(1−q)

0
γδ−1eq(−(1 − q)γ)dqγ, (9)

where

k(w; δ) = wδ−1 (−q/w; q)∞(−w; q)∞(
−qδ/w; q

)
∞

(
−wq1−δ; q

)
∞

. (10)

However, we turn to [9,15,23] and the sources given therein for definitions and preliminary
information about differentiation and integration by parts.

In this paper, Sections 1 and 2 go over the foundations of the q-calculus theory and
the abstract structure of Boehmians. Certain q-convolution products are presented and
q-convolution theorems are established in Section 3. The q-delta sequences are derived in
Section 4 in order to examine many important assumptions for creating the spaces H and B
of q-generalized functions. An inversion formula and other generic properties along with a
specific extension of ĝj,q are derived in Section 5.

2. The Class of Boehmian Spaces

Assume that S forms a subspace of a linear space L. Then, for any pair of elements

f ∈ (L,
q
∗) and ω1 ∈ (S, †), the products

q
∗ and † are assigned such that

(i) ω1, ω2 ∈ S ⇒ ω1†ω2 ∈ S, ω1†ω2 = ω2†ω1. (11)
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(ii) θ ∈ L, ω1, ω2 ∈ S ⇒
(

θ
q
∗ ω1

)
q
∗ ω2 = θ

q
∗ (ω1†ω2). (12)

(iii)θ1, θ2 ∈ L, ω1 ∈ S, r ∈ R ⇒ (θ1 + θ2)
q
∗ ω1 = θ1

q
∗ ω1 + θ2

q
∗ ω1, r

(
θ1

q
∗ ω1

)
= (rθ1)

q
∗ ω1. (13)

Let ∆(0, ∞) be a family of sequences contained in S. Then, if ∆(0, ∞) meets the two
characteristics ∆1 and ∆2, it is considered a family of delta sequences (approximating
identities) provided that

∆1 : For θ1, θ2 ∈ L, (δn) ∈ ∆ and θ1
q
∗ δn = θ2

q
∗ δn, we have θ1 = θ2, ∀n ∈ N. (14)

∆2 : (ωn), (δn) ∈ ∆ ⇒ (ωn†δn) ∈ ∆. (15)

If A = {(θn), (ωn), (θn) ∈ L, (ωn) ∈ ∆, ∀n ∈ N}, then ((θn), (ωn)) is a pair of quotients of
sequences in A iff

θn
q
∗ ωm = θm

q
∗ ωn,

for all natural numbers n and m. The pairs ((θn), (ωn)) and ((gn), (δn)) satisfying (11)–(15)
are equivalent pairs of quotients according to the notation ∼ iff

θn
q
∗ δm = gm

q
∗ ωn,

for all natural numbers n and m. In this regard, ∼ forms an equivalent relation on the set A
and therefore θn/ωn constitutes an equivalence class called the Boehmian. The resulting
space of such Boehmians is denoted by B.

In order to obtain the comprehensive narrative of Boehmians, please consult [12,24–27].

3. q-Convolution Theorem

In the framework of q-calculus, the current part presents convolution theorems and
suggests new q-analogues of the q-gamma integral operator.

Let δ ∈ [0, ∞) and k ∈ N. Then, the gamma integral operator is defined for a function
φ under specific exponential growth conditions as follows [28]:

(Gkθ)(δ) =
kk

δkΓ(k)

∫ ∞

0
θ(τ)τk−1e

−kτ
δ dτ (16)

when the integral converges. The q-analogue is assigned to the gamma operator Gk in a
context of quantum calculus theory in the form [29]

Gk,q(θ; δ) =
kk

δkΓq(k)

∫ ∞

0
θ(τ)τk−1eq

(
−qkτ

δ

)
dqτ. (17)

Hereafter, to enable further inspection that differs from that given in (16) and (17), we
provide q-analogues for the the assigned gamma integral transform as follows.

Definition 1. Let θ be a function of certain exponential growth conditions. Then, we define the
first-kind q-analogue of the gamma integral transform in terms of the q-analogue (4) and the
q-gamma function (8) in the form

gk,q(θ; δ) =
kk

(1 − q)δkΓq(k)

∫ ∞

0
θ(τ)τk−1Eq

(
qkτ

δ

)
dqτ, (18)
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where δ ∈ [0, ∞). Instead, for δ ∈ [0, ∞), we present a second-type q-analogue for the gamma
integral transform in terms of the q-analogue (5) and the q-gamma function (8) as

ĝk,q(θ; δ) =
kk

(1 − q)δkΓq(k)

∫ ∞

0
θ(τ)τk−1eq

(
−qkτ

δ

)
dqτ. (19)

Indeed, the operators gk,q and ĝk,q are positive and linear, and satisfy the relations gk,q
and ĝk,q → Gk as q → 1.

In [6], Grőchenig and Zimmermann established a Schwartz space of slow growth test
functions and proved an analogue of Hardy’s theorem. Hereafter, we study our obtained q-
analogues on certain new function spaces of generalized functions. Therefore, by following
[30], we introduce the following definitions.

Definition 2. By Dq(0, ∞), we indicate those functions of compact supports on (0, ∞) such that
for k ∈ N the following holds:

Dq(0, ∞) =

{
θ : sup

0<ξ<∞

∣∣∣Dk
qθ(ξ)

∣∣∣ < ∞

}
. (20)

Definition 3. By Sq(0, ∞), we indicate the space of those q-differentiable functions θ such that

sup
0<ξ<∞

∣∣∣ξαDβ
q θ(ξ)

∣∣∣ < ∞ (21)

for real numbers α, β ∈ R.

It is clear that Dq(0, ∞) ⊆ Sq(0, ∞) and, hence, in the duality sense, S
′
q(0, ∞) ⊆

D
′
q(0, ∞), where S

′
q(0, ∞) is the space of q-tempered (slow growth) distributions while

D
′
q(0, ∞) represents the space of q-distributions of compact supports; we refer to [9] for

further details.
For seeking concrete analysis, we introduce the following definitions.

Definition 4. Denote by
q
∗ the q-convolution product between the functions θ1 and θ2 provided the

integral equation
q
∗ : Sq(0, ∞)× Dq(0, ∞) → Sq(0, ∞)(

θ1
q
∗ θ2

)
(ϵ) =

∫ ∞

0
θ1

(
ϵt−1

)
θ2(t)t−1dqt (22)

exists for ϵ ∈ (0, ∞) and θ1, θ2 ∈ Sq(0, ∞).

We are now going to provide certain specific q-convolution product that aligns with

the previous q-convolution
q
∗.

Definition 5. Let θ1 ∈ Sq(0, ∞) and θ2 ∈ Dq(0, ∞). Then, we define a q-convolution product †
between θ1 and θ2 as

† : Sq(0, ∞)× Dq(0, ∞) → Sq(0, ∞)

(θ1†θ2)(ϵ) =
∫ ∞

0
tk−1θ1

( ϵ

t

)
θ2(t)dqt. (23)

With the help of the aforementioned integral Equations (22) and (23), we obtain the
q-convolution theorem for ĝk,q in the following manner. Discussing the q-analogue gk,q is
quite similar. Hence, details have been avoided.



Symmetry 2024, 16, 1294 5 of 12

Theorem 1. Let θ1 ∈ Sq(0, ∞) and θ2 ∈ Dq(0, ∞). Then, the q-convolution theorem of ĝk,q is
given by

ĝk,q

(
θ1

q
∗ θ2

)
(ϵ) =

(
ĝk,qθ1†θ2

)
(ϵ)

in Sq(0, ∞).

Proof. Using the hypothesis of the present theorem and the definition of
q
∗ given by (22),

we write

ĝk,q

(
θ1

q
∗ θ2

)
(ϵ) =

kk

ϵkΓq(k)

∫ ∞

0

(
θ1

q
∗ θ2

)
(ξ)ξk−1Eq

(
−kqξ

ϵ

)
dqξ

=
kk

ϵkΓq(k)

∫ ∞

0

(∫ ∞

0
t−1θ1

(
ξ

t

)
θ2(t)dqt

)
ξk−1Eq

(
−kqξ

ϵ

)
dqξ. (24)

Therefore, using the change in variables
ξ

t
= w, performing basic calculations, we obtain

ĝk,q

(
θ1

q
∗ θ2

)
(ϵ) =

kk

ϵkΓq(k)

∫ ∞

0

∫ ∞

0
t−1
1 θ(w)θ2(t)dqtwk−1Eq

(
−kqwt

ϵ

)
dqw

=
kk

ϵkΓq(k)

∫ ∞

0
tk−1θ2(t)

(∫ ∞

0
θ1(w)wk−1Eq

(
−kqwt

ϵ

)
dqw

)
dqt.

Therefore, taking into account the definition of † gives

ĝk,q

(
θ1

q
∗ θ2

)
(ϵ) =

∫ ∞

0
tk−1θ2(t)ĝk,qθ1

( ϵ

t

)
dqt

=
(

ĝk,qθ1†θ2

)
(ϵ).

Therefore, all we need to finish our demonstration is to demonstrate that, for any θ1 ∈
Sq(0, ∞) and θ2 ∈ Dq(0, ∞), we have

θ1†θ2 ∈ Sq(0, ∞). (25)

Let β, α ∈ (0, ∞). Then, by the induced topology on Sq(0, ∞), we write∥∥∥ϵαDβ
ϵ (θ1†θ2)(ϵ)

∥∥∥
Sq(0,∞)

=

∣∣∣∣ϵαDβ
ϵ

(∫ ∞

0
tk−1θ2(t)θ1

( ϵ

t

)
dqt

)∣∣∣∣
≤

∫
K⊆(0,∞)

∣∣∣tk−1θ2(t)
∣∣∣∣∣∣ϵαDβ

ϵ θ1

( ϵ

t

)∣∣∣dqt

≤ ∥θ1∥Sq(0,∞)

∫
K⊆(0,∞)

∣∣∣tk−1θ2(t)
∣∣∣dqt

≤ A∥θ1∥Sq(0,∞)

K ⊆ (0, ∞) is a compact set and A is a positive real number. In reality, the last inequality is
derived from the boundedness condition of θ2 and our knowledge that θ1 ∈ Sq(0, ∞).
This ends the proof.

4. q-Boehmians of Rapid Decay

The axioms for furnishing the q-Boehmian spaces formed from rapidly decaying
spaces of test functions are covered in this section. By using the sets

(
Sq(0, ∞), †

)
and
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(
Dq(0, ∞),

q
∗
)

as well as the subset ∆q(0, ∞) of Dq(0, ∞) of delta sequences (δn), let us now

build the space B, where the delta sequences satisfy the following identities [30]:

(i)
∫ ∞

0
δn(x)dqx = 1, (ii)|δn(x)| ≤ M (M > 0), (iii)suppδn ⊂ (an, bn), (26)

provided an, bn → 0 as n → ∞.
The associativity axiom can be proved as follows.

Theorem 2. Let f ∈ Sq(0, ∞) and θ1, θ2 ∈ Dq(0, ∞). Then, the associativity axiom is given by(
f †
(

θ1
q
∗ θ2

))
(ϵ) = (( f †θ1)†θ2)(ϵ).

Proof. Let f ∈ Sq(0, ∞) and θ1, θ2 ∈ Dq(0, ∞). With the benefit of Definition 5 we write(
f

q
†
(

θ1
q
∗ θ2

))
(ϵ) =

∫ ∞

0
tk−1 f

( ϵ

t

)(
θ1

q
∗ θ2

)
(t)dqt.

Therefore, by utilizing Definition 4, the preceding integral equation can be written as(
f †
(

θ1
q
∗ θ2

))
(ϵ) =

∫ ∞

0
tk−1 f

( ϵ

t

)(∫ ∞

0
y−1θ1

(
y−1t

)
θ2(y)dqy

)
dqt. (27)

Now, assuming
t
y
= z implies dqz =

1
y

dqt. Therefore, by employing the definitions of the

convolution products and pursuing straightforward computations, we obtain

(
f †
(

θ1
q
∗ θ2

))
(ϵ) =

∫ ∞

0
θ2(y)y−1

(∫ ∞

0
θ1

(
y−1t

)
tk−1 f

( ϵ

t

))
dqydqt

=
∫ ∞

0
θ2(y)y−1y

(∫ ∞

0
θ1(z)yk−1zk−1 f

(
ϵ

yz

))
dqzdqy

=
∫ ∞

0
θ2(y)yk−1

∫ ∞

0
θ1(z)zk−1 f


ϵ

y
z

dqz

dqy

=
∫ ∞

0
θ2(y)yk−1

∫ ∞

0
f


ϵ

y
z

θ1(z)zk−1dqz

dqy.

Thus, we have obtained(
f †
(

θ1
q
∗ θ2

))
(ϵ) =

∫ ∞

0
θ2(y)yk−1

(
f †θ1

(
ϵ

y

))
dqy. (28)

This ends the proof.

Theorem 3. Let f , f1, f2 ∈ Sq(0, ∞), γ ∈ R and θ ∈ Dq(0, ∞). Then, the following hold true.

(i) (( f1 + f2)†θ)(ϵ) = ( f1†θ)(ϵ) + ( f2†θ)(ϵ).
(ii) γ( f †θ)(ϵ) = (γ f †θ)(ϵ).
(iii) If fn → f as n → ∞ then fn†θ → f †θ as n → ∞ in Sq(0, ∞).
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Proof. The proofs for (i) and (ii) may be easily obtained from using basic integral calculus.
From (5), the proof of (iii) can also be established yielding∣∣∣ϵαDβ

x ( fn†θ − f †θ)(ϵ)
∣∣∣ =

∣∣∣ϵαDβ
ϵ (( fn − f )†θ)(ϵ)

∣∣∣
=

∣∣∣∣ϵαDβ
ϵ

(∫ ∞

0
tk−1( fn − f )

( ϵ

t

)
θ(t)dqt

)∣∣∣∣
≤

∫ b

a
tk−1

∣∣∣ϵαDβ
ϵ ( fn − f )

( ϵ

t

)∣∣∣θ(t)dqt,

where the supports of θ are contained in a compact interval [a, b]. Thus, it follows∣∣∣ϵαDβ
ϵ ( fn†θ − f †θ)(ϵ)

∣∣∣ ≤ A∥ fn − f ∥Sq(0,∞) → 0

as n → ∞. This concludes the theorem’s proof.

Theorem 4. Let f ∈ Sq(0, ∞) and (θn) ∈ ∆q(0, ∞). Then, f †θn → f as n → ∞ in Sq(0, ∞).

Proof. Let ϵ ∈ (0, ∞) and β, α ∈ R. Then, by making use of (6), we obtain∣∣∣ϵαDβ
ϵ ( f †θn − f )(ϵ)

∣∣∣ =

∣∣∣∣ϵαDβ
ϵ

(∫ ∞

0
tk−1 f

( ϵ

t

)
θn(t)dqt − f (ϵ)

)∣∣∣∣
=

∣∣∣∣ϵαDβ
ϵ

(∫ ∞

0
tk−1 f

( ϵ

t

)
θn(t)dqt − f (ϵ)

∫ ∞

0
θn(t)dqt

)∣∣∣∣.
Thus, the previous equation can rewritten as∣∣∣ϵαDβ

ϵ ( f †θn − f )(ϵ)
∣∣∣ ≤ ∫ ∞

0

∣∣∣ϵαDβ
ϵ

(
f
( ϵ

t

)
− f (ϵ)

)∣∣∣∣∣∣tk−1θn(t)
∣∣∣dqt. (29)

Hence, from (29) and the compact support of the delta sequences (θn), we establish that∣∣∣ϵαDβ
ϵ ( f †θn − f )(ϵ)

∣∣∣ ≤
∫ bn

an

∣∣∣ϵαDβ
ϵ

(
f
( ϵ

t

)
− f (ϵ)

)∣∣∣∣∣∣tk−1θn(t)
∣∣∣dqt

≤ M(bn − an) → 0,

as n → ∞, for some positive constant M.
This ends the proof.

The Boehmian space B with
(
Sq(0, ∞), †

)
,
(

Dq(0, ∞),
q
∗
)

, ∆q(0, ∞) is therefore generated.

The two q-Boehmians φn/δn and gn/εn can be added in B by the equation

(φn/δn) + (gn/εn) = (φn†δn + gn†δn)/
(

δn
q
∗ εn

)
. (30)

The q-Boehmian φn/δn can be multiplied in B by γ ∈ R as γ(φn/δn) = (γφn)/δn,
whereas the expansion of † and Dα to B are expressed as

(φn/δn)†(gn/εn) = (φn†gn)/
(

δn
q
∗ εn

)
and Dα(φn/δn) = (Dα φn)/δn, α ∈ (0, ∞).

The product † can be extended to B†Sq(0, ∞) as

(φn/δn)†ω = (φn†ω)/δn, where φn, ω ∈ Sq(0, ∞), (φn/δn) ∈ B. (31)
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Let (βn) ∈ B. Then, βn
δ→ β in B, if there can be found a delta sequence (δn) such that, for

(βn†δk) and (β†δk) ∈ Sq(0, ∞) (n, k ∈ N),

lim
n→∞

βn†δk = β†δk in Sq(0, ∞) for every k ∈ N. (32)

An alternative way of expressing (32) is as follows: βn
δ→ β as n → ∞ ⇔ there are φn,k,

φk ∈ Sq(0, ∞) and (δk) ∈ ∆q(0, ∞), βn = (φn,k/δk), β = (φk/δk) and to every k ∈ N we
have limn→∞ φn,k = φk in Sq(0, ∞).

The other type convergence is that βn
∆→ β ( as n → ∞) if there can be found a

(δn) ∈ ∆q(0, ∞) such that (βn − β)†δn ∈ Sq(0, ∞) (∀n ∈ N) and limn→∞(βn − β)†δn = 0
in Sq(0, ∞).

Defining the space H with
(

Sq(0, ∞),
q
∗
)

,
(

Dq(0, ∞),
q
∗
)

and ∆q(0, ∞) is quite analo-

gous. Hence, we avoid repeating the same analogues.

In H, two Boehmians added, applying
q
∗ are respectively introduced as

(φn/δn) + (gn/εn) =

(
φn

q
∗ δn + gn

q
∗ δn

)
/
(

δn
q
∗ εn

)
and

(φn/δn)
q
∗ (gn/εn) =

(
φn

q
∗ gn

)
/
(

δn
q
∗ εn

)
.

Multiplying a Boehmian in H by α ∈ R is explained as α(φn/δn) = (αφn)/δn. The Dα in H
is explained as Dα(φn/δn) = (Dα φn)/δn, α ∈ (0, ∞). To all (φn/δn) ∈ H and ω ∈ Sq(0, ∞),
q
∗ can be extended to B†Sq(0, ∞) by (φn/δn)

q
∗ ω =

(
φn

q
∗ ω

)
/δn. βn

δ→ β in H, if there can

be found a delta sequence (δn) such that, for
(

βn
q
∗ δk

)
and

(
β

q
∗ δk

)
∈ Sq(0, ∞), n, k ∈ N,

we have limn→∞ βn
q
∗ δk = β

q
∗ δk in Sq(0, ∞) for every k ∈ N. Or it can be expressed in

H as follows: βn
δ→ β ( as n → ∞) ⇐⇒ φn,k, φk ∈ Sq(0, ∞) and (δk) ∈ ∆, βn = φn,k/δk,

β = φk/δk and to every k ∈ N we have limn→∞ φn,k = φk in Sq(0, ∞). βn
∆→ β ( as n → ∞)

⇐⇒ there can be found a (δn) ∈ ∆q(0, ∞) such that (βn − β)
q
∗ δn ∈ Sq(0, ∞) (∀n ∈ N) and

limn→∞(βn − β)
q
∗ δn = 0 in Sq(0, ∞).

Hence, we assert that the q-gamma integral of the Boehmian fn/δn can be given as

ĝb
k,q( fn/δn) =

(
ĝk,q fn

)
/δn (33)

which falls in the space H, as ĝk,q fn ∈ Sq(0, ∞). Definition (33) is well defined in the sense

that, if fn/δn = gn/ϵn ∈ B, then fn
q
∗ ϵm = gm

q
∗ δn. Applying (33) and the convolution

theorem ( Theorem 1), we obtain(
ĝk,q fn

)
†ϵm =

(
ĝk,qgm

)
†δn.

Thus, it follows that (
ĝk,q fn

)
/δn ∼

(
ĝk,qgn

)
/ϵn

in H. That is, (
ĝk,q fn

)
/δn =

(
ĝk,qgn

)
/ϵn.

By this, our assertion is fulfilled.
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The space Sq(0, ∞) can be identified as a subspace of B through the following mapping

IB : Sq(0, ∞) → B
IB( f ) = ( f †δn)/δn

(34)

where (δn) ∈ ∆q(0, ∞), whereas its identification as a subspace of the q-Boehmian space H
is given by the mapping

IH : Sq(0, ∞) → H

IH( f ) =
(

f
q
∗ ϵn

)
/ϵn

(35)

where (ϵn) ∈ ∆q(0, ∞).

5. Generalized q-Gamma Operator

The following theorems summarize several features of the extension ĝb
k,q of ĝk,q. They

discuss linearity, continuity with respect to the δ and ∆q- convergence, isomorphic property,
and some inversion formula for the ĝb

k,q transform.
Although the following theorem is straightforward yet crucial, we provide its detailed

proof.

Theorem 5. Let IB and IH have their usual meaning given in (34) and (35), respectively. Then,
we have

IB

(
ĝk,q

)
= ĝb

k,q(IH).

Proof. Let f ∈ Sq(0, ∞) and (δn) ∈ ∆q(0, ∞); then, by Equation (34) and the convolution
theorem, we derive

IB

(
ĝk,q

)
( f ) = IB

(
ĝk,q f

)
=

(
ĝk,q f †δn

)
/δn.

Therefore, Equation (35) and the convolution theorem yield

IB

(
ĝk,q

)
( f ) =

(
ĝk,q

(
f

q
∗ δn

))
/δn

= ĝb
k,q

((
f

q
∗ δn

)
/δn

)
= ĝb

k,q(IH)( f ).

This ends the proof.

Theorem 6. The mapping ĝb
k,q is sequentially continuous from B into H, in the sense of ∆q-

convergence.

Proof. To prove the theorem, we prove that if ∆q − limn→∞ βn = β in B then ∆q −
limn→∞ ĝb

k,qβn = ĝb
k,qβ in H. Let ∆q − limn→∞ βn = β in B; then, there is (δn) ∈ ∆q(0, ∞)

such that
∆q − lim

n→∞
(βn − β)

q
∗ δn = 0 in Sq(0, ∞). (36)

Continuity of the gamma integral operator suggests writing

∆q − lim
n→∞

ĝb
k,q

(
(βn − β)

q
∗ δn

)
= ∆q − lim

n→∞

((
ĝb

k,qβn − ĝb
k,qβ

)
†δn

)
= 0.

Thus, we obtain that ∆q − limn→∞ ĝb
k,qβn = ĝb

k,qβ in H.
This finishes the proof.
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Theorem 7.

(i) The mapping ĝb
k,q is a linear mapping on H.

(ii) The mapping ĝb
k,q defines an isomorphism from the q-Boehmian space H onto the q-Boehmian

space B.
(iii) The mapping ĝb

k,q is continuous with respect to δ and ∆q- convergences.

(iv) The mapping ĝb
k,q coincides with the classical ĝk,q.

Proof. Since comparable proofs for Parts (i) through (iii) are already published in the

literature, see [12,20,24]. So, we prove Part (iv). Let σ ∈ Sq(0, ∞) and
(

σ
q
∗ δn

)
/δn be its

representation in B, where (δn) ∈ ∆q(0, ∞) (∀n ∈ N). In order to demonstrate the final
portion of the theory, it is evident that (δn) is independent of the representative for every
n ∈ N. Thus, using the convolution theorem, we obtain

ĝb
k,q

((
σ

q
∗ δn

)
/δn

)
= ĝk,q

(
σ

q
∗ δn

)
/δn =

(
ĝk,qσ†δn

)
/δn =

(
ĝk,qσ

)
†(δn/δn).

Consequently, the q-Boehmian
(

ĝk,qσ†δn

)
/δn forms a representation to ĝk,qσ in the classical

space Sq(0, ∞).

This ends proof.

Next, we present an inversion formula of ĝb
k,q as follows.

Definition 6. Let
(

ĝb
k,q φn

)
/δn ∈ H. Then, in H, we define the inverse integral operator of ĝb

k,q of

the q-Boehmian
(

ĝb
k,q φn

)
/δn as

Ie
g

((
ĝk,q φn

)
/δn

)
= :

(
ĝ−1

k,q

(
ĝk,q φn

))
/δn

= : φn/δn ∈ B,

for each (δn) ∈ ∆q(0, ∞).

Theorem 8. Let
(

ĝk,q φn

)
/δn ∈ H and φ ∈ Sq(0, ∞). Then, we have

Ie
g

(((
ĝk,q φn

)
/δn

)
†φ

)
= (φn/δn)

q
∗ φ (37)

and

ĝb
k,q

(
(φn/δn)

q
∗ φ

)
=

((
ĝk,q φn

)
/δn

)
†φ.

Proof. Assume
(

ĝk,q φn

)
/δn ∈ H. For every φ ∈ Sq(0, ∞), we have

Ie
g

(((
ĝk,q φn

)
/δn

)
†φ

)
= Ie

g

(((
ĝk,q φn

)
†φ

)
/δ

)
= Ie

g

(((
ĝk,q φn

)
†φ

)
/δn

)
. (38)

We reach the proof of the first part by using the convolution theorem. The proof of the
second part is nearly identical. We leave out specifics.

This ends the proof.

We declare without proof the following result.
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Theorem 9. Let β and β∗ be in B and ρ and ρ∗ be in H; then, we have

(i) ĝb
k,q

(
β

q
∗ β∗

)
= ĝb

k,qβ†β∗, (ii) Ie
g(ρ†ρ∗) = Ie

gρ
q
∗ ρ∗.

The proof of the theorem has been removed since it is easy to establish.

Theorem 10. Let
(

ĝk,qρn

)
/ξn be a q-Boehmian in H, (ξn) ∈ ∆q(0, ∞) and α ∈ Sq(0, ∞). Then,

we have

ĝb
k,q

(
(ρn/ξn)

q
∗ α

)
=

(
ĝk,qρn/ξn

)
†α and Ie

g

((
ĝk,qρn/ξn

)
†α

)
= (ρn/ξn)

q
∗ α. (39)

Proof. Assume ĝk,qρn/ξn ∈ H, (ξn) ∈ ∆q(0, ∞) and α ∈ Sq(0, ∞). Then, by the convolution
theorem and (33), we have

ĝb
k,q

(
(ρn/ξn)

q
∗ α

)
= ĝb

k,q

((
ρn

q
∗ α

)
/ξn

)
= ĝk,q

(
ρn

q
∗ α

)
/ξn

=
(

ĝk,qρn†α
)

/ξn

=
((

ĝk,qρn

)
/ξn

)
†α.

Also, by Definition 5, the convolution theorem and the extension of the operation
q
∗ suggest

writing

Ie
g

(((
ĝk,qρn

)
/ξn

)
†α

)
= Ie

g

((
ĝk,qρn†α

)
/ξn

)
= Ie

g

(
ĝk,q

(
ρn

q
∗ α

)
/ξn

)
= Ie

g

(
ĝk,q

(
ρn

q
∗ α

)
/ξn

)
=

(
ρn

q
∗ α

)
/ξn

= (ρn/ξn)
q
∗ α.

Hence, the proof is ended.

6. Conclusions

This article introduces and discusses two q-analogues of the gamma operator, focusing
on various finite products of different types of q-Bessel functions. This paper discusses
definitions and properties of q-analogues of the gamma integral operator and its extension
to classes of generalized distributions. Several convolution theorems are established and
proven, including q-convolution products, symmetric q-delta sequences and q-quotients
of sequences. The q-equivalence classes of generalized distributions, or q-Boehmians, are
achieved through the application of the convolution theorems. Thus, the q-gamma opera-
tors are performed to correspond with the classical integral operator and are thus extended
to the generalized spaces. Furthermore, it is demonstrated that, when equipped with the
generalized spaces, the generalized q-gamma integral is linear, sequentially continuous
and continuous with respect to some involved convergence.
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