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Abstract: This paper explores a new class of mappings and presents several fixed-point results for
these mappings. We define these mappings by combining well-known mappings in the literature,
specifically the large contraction mapping and Chatterjea’s mapping. This combination allows us
to achieve significant fixed-point results in complete metric spaces, both in a continuous and a non-
continuous sense. Additionally, we provide an explicit example to validate our findings. Furthermore,
we discuss a general model for fractional differential equations using the Caputo derivative. Finally,
we outline the benefits of our study and suggest potential areas for future research.
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1. Introduction

The Banach fixed-point theorem [1], commonly known as the contraction mapping
theorem in mathematics, plays a crucial role in studying metric spaces. It guarantees the
presence and distinctiveness of fixed points for certain self-maps of metric spaces, and
additionally provides a practical method for determining these fixed points. In science
and engineering, fractional differential equations have experienced significant growth in
recent decades due to their extensive range of applications [2–4]. The basis of the theory
of fractional differential equations lies in the existence of solutions, prompting numerous
researchers to employ fixed point theory as a valuable approach for proving the existence
and uniqueness of solutions [5–13].

In 1972, Chatterjea [14] obtained a fixed point result that is a generalization of the
Khanan fixed point (See [15,16]). Several mathematicians have generalized and extended
Chatterjea’s Theorem and Banach’s Theorem of fixed points; for example, the authors in [17]
presented necessary and sufficient conditions to establish the existence and uniqueness
of fixed points of Chatterjea’s maps in b-metric space. The authors in [18] introduced
the notion of cyclic weakly Chatterjea-type contraction. In [19], the authors formulated
Chatterjea contractions using graphs in metric spaces endowed with a graph. The fixed
point results for large-Kannan mappings which are a combination of Kannan and large
contraction mappings, have been introduced in [20]. Some other papers in this field are
presented in [21–25].
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Burton [26,27] noted that Banach’s theorem gains greater significance when subjected
to specific alterations in practical contexts. Consequently, he rephrased it in the sense
of large contraction mapping. For this purpose, we have written this paper to combine
Chatterjea’s mapping with large contraction mapping to extract a new fixed point theorem
for a new mapping.

The rest of this paper is divided as follows: Section 2 presents some preliminary results
to help the analysis. In Section 3, we give our main results with an illustrative example. An
application of our study to fractional differential equations is given in Section 4. Finally, we
end this paper with a conclusion.

2. Preliminaries

This section presents a set of previous results on which our subsequent work is based.

Theorem 1 ([1]). Consider the complete metric space (Ω, ρ) and a contraction mapping
S : Ω → Ω, i.e.,

ρ(Su, Sv) ≤ λρ(u, v),

for all u, v ∈ Ω, where λ ∈ (0, 1). Then, there is a unique fixed point v0 in Ω for the map S. In
addition, for each u0 ∈ Ω, the sequence of iterates {Snu0}n converges to v0.

Theorem 2 ([14]). Consider the complete metric space (Ω, ρ) and an application S : Ω → Ω . If
we consider the existence of λ ∈

[
0, 1

2

)
such that

ρ(Su, Sv) ≤ λ[ρ(u, Sv) + ρ(v, Su)], (1)

for all u, v ∈ Ω, then we assure the existence of a unique fixed point w0 in Ω for the map S. In
addition, for each u0 ∈ Ω, the sequence of iterates {Snu0}n converges to w0.

Definition 1 ([26]). Consider a metric space (Ω, ρ) and let S : Ω → Ω be an application on
Ω. We say that the application S is a large contraction, if for u, v ∈ Ω, with u ̸= v, we have
ρ(Su, Sv) < ρ(u, v), and if for all ε > 0, there exists ς < 1 such that

[u, v ∈ Ω, ρ(u, v) ≥ ε] =⇒ ρ(Su, Sv) ≤ ςρ(u, v).

Note that every contraction application is a large contraction. The following example
in [26] shows that, in general, the converse is not true.

Example 1. Let (Ω, ρ) = (R, |.|) and let S : R −→ R, defined by Su = u − u3. Then for
u1, u2 ∈ R, by using the Mean Value Theorem, we obtain

|Su1 − Su2| =
∣∣∣u1 − u3

1 − u2 + u3
2

∣∣∣ ≤ ∣∣∣1 − 3c2
∣∣∣|u1 − u2|,

where c ∈ (min{u1, u2}, max{u1, u2}).
Subsequently, it becomes apparent from the inequality mentioned above that there is a ς which

is small enough, such that for any u1, u2 ∈ [−ς, ς] (u1 ̸= u2), we have |Su1 − Su2| < |u1 − u2|.
Additionally, it was proved in [26] that for a given ε > 0, if |u1 − u2| ≥ ε, then

|Su1 − Su2| ≤
∣∣∣∣1 − ε2

4

∣∣∣∣|u1 − u2|.

Moreover, since S0 = 0 and limu→0

∣∣∣ u−u3

u

∣∣∣ = 1, we deduce that S is not a contraction
application on [−ς, ς].
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Theorem 3 ([26]). Consider a complete metric space (Ω, ρ) and let the application S : Ω → Ω,
which is a large contraction. If there exists u0 ∈ Ω and a constant L > 0, such that

ρ(u0, Snu0) ≤ L for all n ≥ 1, (2)

then the application S has a unique fixed point in Ω.

In [20], the authors noted the following:

(i) If (Ω, ρ) is a compact metric space, then condition (2) can be neglected. Indeed,
Edelstein’s theorem guarantees the existence and uniqueness of the fixed point in this
particular case.

(ii) If (Ω, ρ) is a complete metric space that is bounded, then condition (2) is satisfied,
since ρ(u0, Snu0) ≤ ς(Ω), where ς(Ω) is the diameter of Ω.

3. Main Results

Motivated by [15,20,26], we introduce large-Chatterjea mappings in metric spaces in
two senses.

Definition 2. Consider the metric space (Ω, ρ) and let the application S : Ω → Ω. We say that
S is a large-Chatterjea contraction application (with continuous manner), if for u, v ∈ Ω, with
u ̸= v, we have ρ(Su, Sv) < ρ(u, v), and if for all ε > 0, there exists ς < 1

2 such that

[u, v ∈ Ω, ρ(u, v) ≥ ε] =⇒ ρ(Su, Sv) ≤ ς[ρ(u, Sv) + ρ(v, Su)].

It is worth noting that the condition ρ(Su, Sv) < ρ(u, v), (u ̸= v) does not give the
existence of the fixed point. To perceive this, it is sufficient to acquire (Ω, ρ) = (R, |·|) and
Su =

√
u2 + 1.

The following lemma reveals that the set of contraction mappings encompasses an
infinite subset of Chatterjea mappings.

Lemma 1. Consider the metric space (Ω, ρ). If we assume S : Ω → Ω satisfies

ρ(Su, Sv) ≤ αρ(u, v), α ∈
[

0,
1
3

)
,

then the application S is a Chatterjea mapping with a constant of contraction equal to α
1−α .

Proof. Let u, v ∈ Ω. Then, by assumption, we have

ρ(Su, Sv) ≤ αρ(u, v),

where the constant α is within the interval
[
0, 1

3

)
. However, when the triangle inequality is

applied, we have
ρ(u, v) ≤ ρ(u, Sv) + ρ(Sv, Su) + ρ(Su, v).

After multiplying the inequality by α as mentioned earlier, we can conclude the following

ρ(Su, Sv) ≤ αρ(u, v) ≤ α(ρ(u, Sv) + ρ(Sv, Su) + ρ(Su, v)),

which implies that

ρ(Su, Sv) ≤ α

1 − α
(ρ(u, Sv) + ρ(v, Su)).

Since α ∈
[
0, 1

3

)
, then α

1−α ∈
[
0, 1

2

)
. Consequently, S is a Chatterjea mapping.

By the above lemma, we also conclude that if S : Ω → Ω is a large contraction
application on Ω with ς ∈

[
0, 1

3

)
, then S is a large-Chatterjea contraction mapping on Ω.
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In the following, we will present the first result of fixed point theorem concerning
large-Chatterjea contraction applications in the continuous sense.

Theorem 4. Consider the complete metric space (Ω, ρ) and let the application S : Ω → Ω be a
large-Chatterjea contraction mapping (with continuous manner). Then, the application S possesses
a unique fixed point in Ω.

Proof. Given u0 ∈ Ω, if there exists m ∈ N, such that Sm(u0) = Sm+1(u0), then S(Smu0) = Smu0,
and Smu0 is a fixed point of S.

Now, assume that Snu0 ̸= Sn+1u0 for every n ∈ N. Since the application S is large-
Chatterjea contraction (with continuous manner), then

ρ
(

Sn+1u0, Snu0

)
< ρ

(
Snu0, Sn−1u0

)
< ... < ρ(Su0, u0).

This shows that ζn = ρ
(
Sn+1u0, Snu0

)
is a strictly decreasing sequence; therefore,

lim
n−→+∞

ζn = γ ≥ 0. If γ > 0, then for every n ∈ N, we have

ρ
(

Sn+1u0, Snu0

)
≥ γ.

Consequently, there exists ς < 1
2 such that

ρ
(

Sn+1u0, Sn+2u0

)
= ρ

(
S(Snu0), S

(
Sn+1u0

))
≤ ς

[
ρ
(

Snu0, Sn+2u0

)
+ ρ
(

Sn+1u0, Sn+1u0

)]
= ςρ

(
Snu0, Sn+2u0

)
≤ ς

[
ρ
(

Snu0, Sn+1u0

)
+ ρ
(

Sn+1u0, Sn+2u0

)]
.

This implies that

(1 − ς)ρ
(

Sn+1u0, Sn+2u0

)
≤ ςρ

(
Snu0, Sn+1u0

)
.

Thus, we conclude that

ρ
(

Sn+1u0, Sn+2u0

)
≤ ς

1 − ς
ρ
(

Snu0, Sn+1u0

)
≤
(

ς

1 − ς

)2
ρ
(

Sn−1u0, Snu0

)
· ··

≤
(

ς

1 − ς

)n
ρ
(

Su0, S2u0

)
≤
(

ς

1 − ς

)n+1
ρ(u0, Su0). (3)

Since ς < 1
2 , then k = ς

1−ς < 1. So, by using (3), it follows that

lim
n→∞

ρ
(

Snu0, Sn+1u0

)
= 0, (4)

and this gives us a contradiction; so, γ = 0.
Next, we will show that {un}n defined by un = Snu0 is a Cauchy sequence in Ω. For

this purpose, we assume the opposite, meaning we assume that {un}n is not a Cauchy
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sequence. Then, there exist a real number ε > 0 and subsequences (Nk) , (nk), and (mk) of
integers such that

mk > nk > Nk, Nk → ∞,

and
ε ≤ ρ

(
umk , unk

)
. (5)

Since S is large-Chatterjea mapping, there exists ς < 1
2 such that

ρ
(
umk , unk

)
= ρ

(
Sumk−1, Sunk−1

)
≤ ς

[
ρ
(
umk−1, Sunk−1

)
+ ρ
(
unk−1, Sumk−1

)]
= ς

[
ρ
(
umk−1, unk

)
+ ρ
(
unk−1, umk

)]
≤ ς

[
ρ
(
umk−1, umk

)
+ ρ
(
umk , unk

)
+ ρ
(
unk−1, unk

)
+ ρ
(
unk , umk

)]
;

then, by using (5), we have

ε ≤ ρ
(
umk , unk

)
≤ ς

1 − 2ς

[
ρ
(
umk−1, umk

)
+ ρ
(
unk−1, unk

)]
.

Letting k → ∞, from (4), it follows that

lim
k→∞

ρ
(
umk−1, umk

)
= lim

k→∞
ρ
(
unk−1, unk

)
= 0.

Hence, lim
k→∞

ρ
(
umk , unk

)
= 0, which is a contradiction. Thus, {un}n is a Cauchy sequence

in the complete metric space Ω; then, there exists w ∈ Ω such that lim
n→∞

un = lim
n→∞

Snu0 = w.

By the continuity of the application S, we deduce that S(w) = w, which shows that w is a
fixed point of the application S.

Now, to prove the uniqueness, we suppose that there is another fixed point, denoted
by w′, for the application S such that w ̸= w′. Thus, ρ(w, w′) ≥ ε0 for some ε0 > 0. By the
definition that the application S is a large-Chatterjea, there exists ς0 < 1

2 such that

ρ
(
w, w′) = ρ

(
S(w), S

(
w′))

≤ ς0
[
ρ
(
w, S

(
w′))+ ρ

(
w′, S(w)

)]
= 2ς0ρ

(
w, w′).

Since 1 − 2ς0 > 0, we deduce that ρ(w, w′) = 0, and this is a contradiction. Therefore,
we must have w = w′.

Corollary 1. Consider the complete metric space (Ω, ρ) and the application S : Ω → Ω such that
for some integer m0 ≥ 1, Sm0 is a large-Chatterjea mapping (with continuous manner). Then, the
application S possesses a unique fixed point in Ω.

Proof. By using Theorem 4, we assure the existence of w0 ∈ Ω such that Sm0 w0 = w0, then

S(Sm0 w0) = Sm0+1w0 = Sw0.

This gives Sm0(Sw0) = Sw0, which proves that Sw0 is a fixed point for the applica-
tion Sm0 .

Second, by Theorem 4, the application S possesses a unique fixed point w0 which
satisfies Sw0 = w0; so, if w1 is another fixed point of the application S, then w1 is a fixed
point for the application Sm0 . Consequently, w0 = w1, which finishes the proof.
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Example 2. Consider the application S : [0, 1] → R, given by S(u) = −u4 and set

Ω =

{
(u1, u2) ∈ [0, 1]2 : |u1 + u2|2 +

1
2
|u1 − u2|2 ≤ 1

2

}
.

If u1, u2 ∈ Ω, then

|u1| = u1 ≤ u1 −
(
−u4

2

)
= |u1 − S(u2)| and u2

1 + u2
2 ≤ u1 + u2.

Hence,

|S(u1)− S(u2)| =
∣∣∣−u4

1 + u4
2

∣∣∣
≤ |u1 − u2|

∣∣∣(u1 + u2)
(

u2
1 + u2

2

)∣∣∣
≤ (|u1|+ |u2|)

∣∣∣(u1 + u2)
(

u2
1 + u2

2

)∣∣∣
≤ (|u1 − S(u2)|+ |u2 − S(u1)|)|u1 + u2|2

≤
(

1 − |u1 − u2|2

2

)
[|u1 − S(u2)|+ |u2 − S(u1)|].

Therefore, for a given (sufficiently small) ε > 0, if u1, u2 ∈ Ω satisfy that |u1 − u2| ≥ ε,
we obtain

|S(u1)− S(u2)| ≤ [|u1 − S(u2)|+ |u2 − S(u1)|]
(

1 − ε2

2

)
.

To conclude that the application S is a large-Chatterjea, it suffices to take ς(ε) = 1−ε2

2 , which
finishes the proof.

Now, we turn our attention to study the uniqueness fixed point for the large-Chatterjea
applications in which the continuity is not necessary.

Definition 3. Consider the metric space (Ω, ρ) and let the application S : Ω → Ω. We say that
S is a large-Chatterjea contraction application (with noncontinuous manner), if for u, v ∈ Ω, such
that u ̸= v, we have

ρ(Su, Sv) <
1
2
[ρ(u, Sv) + ρ(v, Su)], (6)

and if for all ε > 0, there exists ς < 1
2 such that we have

[u, v ∈ Ω, ρ(u, v) ≥ ε] =⇒ ρ(Su, Sv) ≤ ς[ρ(u, Sv) + ρ(v, Su)]. (7)

The following application given in [21] proves that an application satisfying that
ρ(Su, Sv) < 1

2 (ρ(u, Su) + ρ(v, Sv)) may fail to have fixed points. By the same example, we
can see that the mappings satisfying the inequality ρ(Su, Sv) < 1

2 (ρ(u, Sv) + ρ(v, Su)) may
have no fixed points.

Example 3. Consider the set Ω = {1 + 1
n , n = 1, 2, ...} and ρ0 : Ω × Ω −→ [0,+∞), a metric

given by

ρ0(u, v) =
{

0, if u = v,
u + v, if u ̸= v.

Thus, (Ω, ρ0) is a complete metric space. Moreover, let the application S : (Ω, ρ0) −→ (Ω, ρ0) be
defined by S(1 + 1

n ) = 1 + 1
n+1 . Then, S satisfies the inequality ρ0(Su, Sv) < 1

2 (ρ0(u, Sv) + ρ0(v, Su)) for
u ̸= v, but S has no fixed points.
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Theorem 5. Consider the complete metric space (Ω, ρ) and let the application S : (Ω, ρ) −→ (Ω, ρ)

be a large-Chatterjea (with noncontinuous manner). Then, the application S possesses a unique
fixed point.

Proof. First, we begin by proving the uniqueness. If the application S possesses two fixed
points u1, u2 ∈ Ω, u1 ̸= u2, then

ρ(u1, u2) = ρ(Su1, Su2)

<
1
2
[ρ(u1, Su2) + ρ(u2, Su1)]

=
1
2
[ρ(u1, u2) + ρ(u2, u1)]

= ρ(u1, u2),

which is a contradiction.

Second, we will prove the existence in the following steps:
Step 1:Given u0 ∈ Ω and consider the sequence {un}n by un = Snu0 for all integers n ∈ N.
If there exists m0 ∈ N that satisfies Sm0 u0 = Sm0+1u0, then Sm0 u0 is a fixed point for the
application S.

Next, suppose that un = Snu0 ̸= Sn+1u0 = un+1 for n ∈ N. We will show that the
sequence εn = ρ(un, un+1) is strictly decreasing.

ρ(un, un+1) = ρ
(

Snu0, Sn+1u0

)
= ρ

(
S
(

Sn−1u0

)
, S(Snu0)

)
<

1
2

[
ρ
(

Sn−1u0, Sn+1u0

)
+ ρ(Snu0, Snu0)

]
=

1
2

[
ρ
(

Sn−1u0, Snu0

)
+ ρ
(

Snu0, Sn+1u0

)]
.

So, we conclude that ρ(un, un+1) < ρ(un−1, un), which proves that εn = ρ(un−1, un) is a
strictly decreasing sequence. Therefore, there exists ε0 ≥ 0 such that lim

n−→+∞
ρ(un, un+1) = ε0.

Step 2: Now, assume that ε0 > 0; because the sequence εn = ρ(un, un+1) is decreasing, we
obtain ε0 < ρ(un, un+1) for n ∈ N. Then, by assumption there exists 0 < ς0 < 1

2 such that

ρ(un, un+1) = ρ
(

Snu0, Sn+1u0

)
= ρ

(
S
(

Sn−1u0

)
, S(Snu0)

)
≤ ς0

[
ρ
(

Sn−1u0, Sn+1u0

)
+ ρ(Snu0, Snu0)

]
= ς0

[
ρ
(

Sn−1u0, Snu0

)
+ ρ
(

Snu0, Sn+1u0

)]
,

which gives

ρ(un, un+1) ≤
ς0

1 − ς0
ρ(un−1, un).

By induction, it follows that

ρ(un, un+1) ≤
(

ς0

1 − ς0

)n
ρ(u0, u1).

Afterwards, since 0 < ς0 < 1
2 , then ς0

1−ς0
< 1. This proves that lim

n−→+∞
(

ς0

1 − ς0
)n = 0

and implies lim
n−→+∞

ρ(un, un+1) = 0, which is the opposite information to ε0 > 0 . Conse-

quently, ε0 = 0.

Step 3: Showing that {un}n is a Cauchy sequence in Ω:
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If we have the contrary case, then there exists a real number α0 and subsequences
{Nk}, {nk}, and {mk} such that

mk > nk > Nk and α0 ≤ ρ(unk , umk ) = ρ(Sunk−1, Sumk−1),

which leads to the deduction that umk−1 ̸= unk−1.

Thus, by the same method used in the proof of Theorem 4, we obtain

α0 ≤ ρ
(
umk , unk

)
≤ ς

1 − 2ς

[
ρ
(
umk−1, umk

)
+ ρ
(
unk−1, unk

)]
,

and by letting k → ∞, it follows that

lim
k→∞

ρ
(
umk−1, umk

)
= lim

k→∞
ρ
(
unk−1, unk

)
= 0.

Then, limk→∞ ρ
(
umk , unk

)
= 0, which informs us that this is a contradiction. Therefore,

{un}n is a Cauchy sequence, and because Ω is a complete metric space, there exists w0 ∈ Ω
such that lim

n−→+∞
un = w0.

Step 4: w0 is a fixed point for S:

For this step, we suppose that un ̸= w0. Thus,

ρ(w0, Sw0) ≤ ρ(w0, Sun) + ρ(Sun, Sw0)

< ρ(w0, Sun) +
1
2
[ρ(un, Sw0) + ρ(Sun, w0)]

≤ ρ(w0, Sun) +
1
2
[ρ(un, w0) + ρ(w0, Sw0) + ρ(Sun, w0)],

then,
0 ≤ ρ(w0, Sw0) ≤ 3ρ(un+1, w0) + ρ(un, w0).

Letting n −→ +∞, we deduce

0 ≤ ρ(w0, Sw0) ≤ lim
n−→+∞

3ρ(un+1, w0) + lim
n−→+∞

ρ(un, w0) = 0.

Hence ρ(w0, Sw0) = 0. As a consequence, w0 is a fixed point of the application S, which
ends the proof.

Corollary 2. Consider the complete metric space (Ω, ρ) and an application S : Ω → Ω such
that Sm0 is a large-Chatterjea (with noncontinuous manner) for m0 ∈ N. Then, the application
S possesses a unique fixed point in Ω.

4. Application

The utilization of our previously established results in the preceding section empowers
us to effectively address a range of fractional differential problems, as demonstrated in
this concluding section. So, we consider a Caputo derivative operator in the following
fractional differential equation{ cDα(w(t)− µw(t − θ)) = ϕ(t, w(t)), t ∈ (0, 1]

w(t) = ψ(t), t ∈ [−θ, 0]
(8)

where α ∈ (0, 1), µ ∈
(

0, 1
3

)
, θ > 0, w : [0, 1] → R, and ϕ(t, w(t)) : [0, 1]×R → (0, ∞) is

continuous. Then, Equation (8) is immediately inverted as the very familiar integral equation

w(t) = ψ(0)− µψ(−θ) + µw(t − θ) +
1

Γ(α)

∫ t

0
(t − r)α−1ϕ(r, w(r))dr,
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where Γ is the Gamma function.
Consider now the operator S defined on the Banach space E = C([0, 1],R) as

(Sw)(t) = ψ(0)− µψ(−θ) + µw(t − θ) + (Fw)(t),

such that SW ⊂ W, where
W = {w ∈ E : 0 ≤ w ≤ 1},

and

(Fw)(t) =
1

Γ(α)

∫ t

0
(t − r)α−1ϕ(r, w(r))dr.

Under these assumptions, the following apply:

• The mapping F satisfies

∥Fw1 − Fw2∥ < (1 − µ)∥w1 − w2∥, ∀w1, w2 ∈ W, (w1 ̸= w2);

• ∀ε > 0, ∃ς < 1−3µ
2 such that if w1, w2 ∈ W and ∥w1 − w2∥ ≥ ε, we have for all t ∈ [0, 1]

|(Fw1)(t)− (Fw2)(t)| ≤ ς(|w1(t)− (Sw2)(t)|+ |w2(t)− (Sw1)(t)|),

and the operator S has a unique fixed point in W. Indeed, let w1, w2 ∈ W such that
∥w1 − w2∥ ≥ ε. Following this, with the help of our hypotheses, we acquire

|(Sw1)(t)− (Sw2)(t)|
≤ µ|w1(t − θ)− w2(t − θ)|+ |(Fw1)(t)− (Fw2)(t)|
≤ µ|w1(t − θ)− w2(t − θ) + (Sw1)(t − θ)− (Sw2)(t − θ) + (Sw2)(t − θ)− (Sw1)(t − θ)|
+ ς(|w1(t)− (Sw2)(t)|+ |w2(t)− (Sw1)(t)|)
≤ µ(∥w1 − Sw2∥+ ∥w2 − Sw1∥+ ∥Sw1 − Sw2∥)
+ ς(∥w1 − Sw2∥+ ∥w2 − Sw1∥),

which gives that

∥Sw1 − Sw2∥ ≤ µ∥Sw1 − Sw2∥+ (µ + ς)(∥w1 − Sw2∥+ ∥w2 − Sw1∥).

Hence, we have

∥Sw1 − Sw2∥ ≤ µ + ς

1 − µ
(∥w1 − Sw2∥+ ∥w2 − Sw1∥).

Since 0 < ς < 1−3µ
2 , then µ+ς

1−µ < 1
2 and the end result stems directly from Theorem 4.

5. Conclusions

This research issues new fixed point theorems based on the Chatterjea-type large con-
tractions applications. Our results have been divided into two cases, the first is continuous
and the second is noncontinuous. The benefit of this research is finding a particular appli-
cation type that enables us to study some complex equations, as each Chatterjea mapping
is a large-Chatterjea mapping, and each large contraction mapping is a large-Chatterjea
mapping. However, the opposite is not valid in general.

The results are applied to delay equations with fractional derivatives to prove the exis-
tence of a unique solution. We look forward to larger applications of this work, especially
for other spaces such as the b-metric space, ordered metric space, and so on.
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