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ABSTRACT

The article describes a new method for malware classification, based on a Machine Learning (ML) model archi-
tecture specifically designed for malware detection, enabling real-time and accurate malware identification. Using
an innovative feature dimensionality reduction technique called the Interpolation-based Feature Dimensionality
Reduction Technique (IFDRT), the authors have significantly reduced the feature space while retaining critical
information necessary for malware classification. This technique optimizes the model’s performance and reduces
computational requirements. The proposed method is demonstrated by applying it to the BODMAS malware
dataset, which contains 57,293 malware samples and 77,142 benign samples, each with a 2381-feature vector.
Through the IFDRT method, the dataset is transformed, reducing the number of features while maintaining
essential data for accurate classification. The evaluation results show outstanding performance, with an F1 score
of 0.984 and a high accuracy of 98.5% using only two reduced features. This demonstrates the method’s ability
to classify malware samples accurately while minimizing processing time. The method allows for improving
computational efficiency by reducing the feature space, which decreases the memory and time requirements
for training and prediction. The new method’s effectiveness is confirmed by the calculations, which indicate
significant improvements in malware classification accuracy and efficiency. The research results enhance existing
malware detection techniques and can be applied in various cybersecurity applications, including real-time malware
detection on resource-constrained devices. Novelty and scientific contribution lie in the development of the IFDRT
method, which provides a robust and efficient solution for feature reduction in ML-based malware classification,
paving the way for more effective and scalable cybersecurity measures.
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1 Introduction

The security and integrity of computer systems [I-3] and networks are seriously threatened
by the spread of malware or malicious software. Malware can carry out various nefarious tasks,
including financial fraud, network disruption, system intrusion, and data theft. Effective detection
and mitigation approaches are becoming increasingly important as malware’s sophistication and
complexity continue to grow. Malicious software is classified as worms, viruses, trojan horses, rootkits,
backdoors, spyware, logic bombs, adware, and ransomware based on its behaviour and execution.
Hackers target computer systems for several objectives, such as destroying resources, gaining financial
gain, stealing private information, using resources, and disrupting system functions [4,5].

Despite recent advances in malware classification, researchers continue to encounter several
challenges. Some of the current obstacles in the field include:

1. Advanced Malware: Malware is growing more complex, with attackers continuously devising
new ways to avoid detection. As a result, it is difficult to ssrecognize and categorise new
malware effectively.

2. Big Data: The number of malware samples created continually rises, creating big data diffi-
culties that need significant processing and storage capabilities. Furthermore, the data quality
varies greatly, making it difficult to extract valuable information.

3. Adversary Evasion tactics: Attackers frequently utilise evasion tactics to avoid detection
systems, such as polymorphic code or malware encryption. These methods might make it
challenging to identify and categorise malware correctly.

4. Privacy risks: Malware classification necessitates access to sensitive data, including personal
or secret information, raising privacy risks. Researchers must balance the requirement for data
access with privacy considerations, which may limit access to specific datasets.

Researchers are adopting sophisticated Machine Learning and Deep Learning algorithms, hybrid
models, and improved feature engineering approaches to solve these issues. Furthermore, creating new
techniques for detecting emerging malware and increasing model generalisation might help progress
the area of malware classification. Interpolation is particularly utilised in the field for the first time
to overcome some annoying problems in this field. Interpolation increases the accuracy of malware
classification and categorisation in various ways. When dealing with malware samples, the data is often
represented in distinct feature spaces, making direct comparisons problematic. Interpolation bridges
the gap between distinct sets of features, allowing the model to collect more helpful information about
the samples and, hence, improve classification accuracy.

Interpolation can also help overcome challenges with missing values and outliers, typical in
malware classification datasets. By filling these gaps, the suggested technique can provide a more
comprehensive dataset, lowering noise or bias in the data and thereby boosting classification accuracy.
Furthermore, interpolation approaches prevent overfitting and increase model generalisation, allow-
ing for more accurate classification of fresh malware samples. Finally, interpolation increases malware
classification accuracy by closing feature space gaps, filling in missing data, lowering outliers, and
boosting model generalisation.
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When it comes to detecting malware, there are three main approaches that security experts
generally use-Signature-based, Anomaly-based, and Specification-based detection. Also, within those
broad categories, they can further refine the techniques into static, dynamic, and hybrid methods [6,7].

In this research work, we provide a revolutionary real-time malware detection method that
combines state-of-the-art Machine Learning techniques with an inventive interpolation-based feature
dimensionality reduction strategy. The main contributions of this paper are threefold:

1. We introduce a novel interpolation-based technique that reduces the dimensionality of the
feature space while preserving the most informative features. This approach enables the
detection of complex patterns and relationships in the data, improving malware detection
accuracy.

2. We carefully designed our proposed technique to operate in real-time, enabling the detection
of malware in a timely and efficient manner. This is particularly important in today’s fast-
paced digital landscape, where rapid detection and response are critical to preventing malware
outbreaks.

3. We conducted an empirical study to evaluate the effectiveness of ML-based models and
identify challenges for future research. Our solution demonstrates how Machine Learning
and interpolation-based feature dimensionality reduction work together to detect real-time
malware with excellent accuracy and low overhead costs.

The rest of the paper is organised as follows. Section 2 provides a literature review of existing
malware classification techniques. An overview of the proposed Interpolation-based Feature Dimen-
sionality Reduction Technique (IFDRT) combined with optimised ML-based classifiers is provided
in Section 3. Section 4 exhibits the results of experiments evaluating the framework’s suitability for
malware classification, and in the end, Section 5 concludes the paper.

2 Literature Review

Wang et al. [8] created PAYL, a tool that determines the anticipated payload for each service in a
system. They generated a byte frequency distribution and a centroid model for each host’s services.
The detector compares incoming payloads to the centroid model and calculates the Mahalanobis
distance. The approach was tested on 1999 MIT Lincoln Labs data and detected 57 out of 201 attempts,
resulting in low detection rate of around 60%. Taylor et al. [9] presented a low-cost approach to
network intrusion detection using anomaly-based detection. The authors propose a system called
Nate (Network Analysis of Anomalous Traffic Events), which uses statistical analysis and Machine
Learning techniques to identify anomalous network traffic. One major drawback of Nate’s is limited
scalability since its performance may suffer as the volume of network traffic rises, making it less useful
in high-traffic networks.

Boldtetal. [10]employed computer forensic approaches to detect Privacy-Invasive Software (PIS),
such as adware and spyware, which are commonly detected in file-sharing software. The authors
propose a framework for detecting and analysing spyware using digital forensic techniques, including
file system analysis, network traffic analysis, and memory analysis. They discovered that Ad-Aware
generates both false positives and false negatives. Sekar et al. [11] proposed a Finite State Automata
(FSA) for anomaly detectionto model the behavior of programs and detect anomalies. The approach
is based on the idea that normal program behaviour can be modeled using a finite state automaton,
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and deviations from this model can be used to detect anomalies. The approach may generate a high
number of false positive alerts, which can lead to alert fatigue and decreased effectiveness.

Hofmeyr et al. [12] developed a method for detecting malicious system call sequences. They
constructed profiles representing regular system service activity and used the Hamming distance to
assess similarity. A threshold was established to detect unusual processes. The approach was successful
in detecting intrusions that attempted to exploit UNIX applications. The approach is limited to
detecting anomalies in system call sequences and may be ineffective in detecting other attack types.
Li et al. [13] presented a novel approach to identifying file types using n-gram analysis. They create
models based on the system’s expected file types, assuming that benign files have predictable byte
compositions. Any file that deviates considerably from the model is flagged as suspicious and evaluated
by a system to determine its maliciousness. This approach requires significant computational resources
to analyse the frequency of n-grams in large files.

Forrest et al.’s [14] Anomaly-based approach seeks to identify changes to protected data, however,
it cannot detect the removal of items from the collection. The authors suggest an effective approxima-
tion of “Other”, however, this incurs processing expenses. The authors offer user-defined matching,
such as comparing ten-character strings. Tests on the TIMID virus demonstrated that as the number
of detectors increased, so did the detection rate. The approach is often unsuitable for real-world
detection tools. Ko et al. [15] created a specification-based technique for identifying malicious behavior
in distributed systems. They developed a Distributed Program Execution Monitor (DPEM) that parses
audit trails in real time. The system uses formal specifications of program behavior to monitor and
detect deviations from expected behavior. The approach may not be scalable to large and complex
distributed systems, where the number of programs and specifications can be very large. Xiong [16]
presented a novel approach to email virus detection and control called Attachment Chain Tracing
(ACT). The approach involves tracing the attachment chain of an email to identify and block malicious
attachments. The approach is limited to detecting email viruses and may not be effective against other
types of malware.

Debbabi et al. [17] presented a novel approach to securing Commercial-Off-The-Shelf (COTS)
software components. The authors propose a self-certification mechanism that allows COTS vendors
to certify the security properties of their components. The approach relies on the honesty and integrity
of COTS vendors, which may not always be the case. Moreover, it assumes that security properties
can be formally specified, which may not be possible for complex systems. Filiol [18] proposed a novel
scheme to malware pattern scanning that is secure against black-box analysis. Black-box analysis refers
to the process of reverse-engineering a malware detection system to identify its patterns and evade
detection. The author’s scheme uses a combination of techniques to make malware pattern scanning
more secure, including polymorphic patterns, obfuscated patterns, pattern fragmentation, and pattern
encryption. Unfortunately, the scheme may introduce significant complexity, making it difficult to
implement and maintain.

Many other researchers applied ML-based techniques in Malware classification and categorisa-
tion. Another approach is to convert malware binaries to grayscale or RGB pictures and categorise
them. Baptista et al. [19] created a deep learning-based method for identifying malware by transform-
ing binary files into RGB images. In [20—23], the authors used a Convolutional Neural Network (CNN)
to identify malware by converting data to greyscale and colour pictures. Image-based malware analysis
approaches may also be used to detect Android malware. Anyway, most image-based malware analysis
methods may not be ideal for devices with low resources requiring real-time security.
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Nasser et al. [24] introduced DL-AMDet, a deep learning-based architecture for detecting
malware in Android applications. The DL-AMDet architecture consists of two main detection models.
Static Analysis: uses CNN-BiLSTM to detect malware based on static features like API calls and
system calls, while Dynamic Analysis: utilises deep autoencoders as an anomaly detection model
based on dynamic features. In this combination, very high detection rates can be achieved, but it
still suffers from the time-consuming nature of dynamic feature extraction and the complexity of
real-time analysis. Hao et al. [25] created a CNN-based feature extraction and channel-attention
module to reduce information loss during feature picture synthesis for malware samples. Deep learning
architectures, such as deep belief networks and transformer-based classifiers, were utilised to classify
PE malware [26]. Anyway, most image-based malware analysis approaches may not be ideal for low-
resource systems requiring real-time security.

Despite numerous research efforts on malware analysis, few consider the memory overhead and
computational complexity of classification models. Few modern techniques aim to make detection and
classification tasks lightweight, resulting in models suitable for mobile and embedded devices. Some
techniques, such as [27], stress the lightness of feature vector size and execution durations. Currently,
no malware analysis research has demonstrated how lightweight detection and classification models
are in terms of memory usage, model training and prediction time overhead. This paper attempts to
bridge this gap by presenting lightweight models for resource-constrained devices areappropriate for
real-time IOT device operations.

3 Materials and Methods

In this research, we employed Machine Learning to classify malware from the BODMAS [2§]
dataset available at https://whyisyoung.github.io/BODMAS/ (accessed on 1 June 2024). The models
we applied are Extra Trees Classifier (ETC), k-Nearest Neighbor (k-NN), Bagging Classifier (BC),
Random Forest (RF), XGBoost (XGB), AdaBoost (ABC) and Light Gradient Boosting Machine
(LGBM). Before that, we consider performing some necessary preprocessing and dimensionality
reduction on the dataset features, followed by creating, training, and improving the final ML-models.
We outline our suggested method’s phases in greater detail in the following subsections.

3.1 BODMAS Dataset

The BODMAS Malware Dataset is used to undertake extensive assessments of the effectiveness
and efficiency of the suggested ML-Based Malware Classification Techniques. The BODMAS dataset
comprises 57,293 malware samples and 77,142 benign samples gathered between August 2019 and
September 2020, with properly curated family information (581 families). Each sample is represented
by a 2381 feature vector, which includes the label (benign or malware) and, if malicious, the malware
family. It is intended to improve ML-based malware analysis and temporal analysis of Portable
Executable (PE) malware. Fig. | shows the Malware Counts by Family Distribution.

3.2 Dimensionality Reduction

Dimensionality reduction is a Machine Learning approach that reduces the number of features
(variables) in a dataset while retaining the most significant information. Consider a dataset with
hundreds or even thousands of characteristics for each data point. This high dimensionality might
pose challenges, such as Curse of dimensionality, Increased computational cost, and Overfitting.
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Figure 1: Malware counts by family

3.2.1 Importance of Dimensionality Reduction

Dimensionality reduction addresses the issues mentioned above by translating the data into a
lower-dimensional space while preserving the most relevant changes. This has various benefits:

e Improved model performance: By selecting just important features, we may direct the model’s
attention to the most informative data sections, resulting in better prediction performance.

e Reduced overfitting: High-dimensional datasets can result in overfitting, in which the model
learns noise or irrelevant patterns from the input. Dimensionality reduction reduces dataset
complexity, mitigates overfitting, and improves the generalisation performance of ML-models.

o Efficient computation: Additional computer resources and time are required to train ML-based
models with high-dimensional datasets. Reduced dataset dimensionality lowers the computing
cost of training and inference, allowing for quicker model creation and deployment.

e Enhanced data visualisation: Lower-dimensional data is easier to display, resulting in a better
grasp of feature correlations.

In Machine Learning literature, there are many feature extraction techniques, including Principal
Component Analysis (PCA), Factor Analysis (FA), Truncated Singular Value Decomposition (tSVD),
and many more techniques. In this work, we propose a new novel dimensionality reduction technique
to enhance the Machine Learning process; we call it the Interpolation-based Feature Dimensionality
Reduction Technique, abbreviated (IFDRT). The proposed technique IFDRT is based on the idea of
Interpolation borrowed from the Image Processing field. Interpolation is a mathematical technique
for estimating values based on existing data points. It entails creating new data points within a
finite collection of known data points. Interpolation is widely used in various disciplines, including
mathematics, computer science, engineering, and data analysis, for tasks such as data smoothing, curve
fitting, and function approximation. Here’s a breakdown of interpolation concepts:

e Known data points: These are the current values for our function or data. In our case, these are
the feature values.
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Unknown data points: These are the points where we want to estimate the value of the function,
1.e., the reduced features.

Interpolation method: This is the mathematical method or procedure used to estimate the value
of an unknown point based on the known points around it. Distinct interpolation methods have
distinct advantages and disadvantages.

There are several sorts of interpolation methods, each having pros and disadvantages. Some
standard methods include:

Linear interpolation: Linear interpolation connects two neighbouring data points with a straight
line and estimates values at intermediate places along the line. It is simple and computationally
efficient, but it may not reflect the underlying trends in the data.

Polynomial interpolation: Polynomial interpolation involves fitting a polynomial curve to the
data points and using that curve to estimate values at intermediate locations. It gives a more
flexible and precise representation of the data, although it may be prone to overfitting.

Spline interpolation: Spline interpolation splits the dataset into segments and assigns polyno-
mial curves (often cubic) to each. It performs a smooth and continuous data interpolation,
preventing sudden shifts in the interpolated curve.

In this work, a novel feature dimensionality reduction technique is proposed. The feature vector
is locally fitted with a suitable mathematical model that best represents the dataset dynamics; then this
model is utilised to build a function using interpolation. Then, the interpolated function will be used
to find corresponding values of new feature points that will be considered as the new reduced feature
points later on. More details about IFDRT will be outlined in subsequent section.

3.3 Types of Dimensionality Reduction

3.3.1 Interpolation-Based Feature Dimensionality Reduction Technique (IFDRT)

The proposed IFDRT is based on the idea of local modelling of feature data points, i.e., the same
feature vector is projected into another hyperplane by finding a suitable mapping function f( ) which
can be best fit with the features vector &;. Then, Interpolation is used to create the fitted projection
function that will be used to predict new reduced hyperplane items v;, where j << 1.

The steps of performing IFDRT are as follows:

1.

For each dataset sample &;, perform Min-Max normalisation of features to a specific range,
which can be helpful for data visualisation or interpreting model coefficients and reduces the
variance of features.

Sort the features &; of each data sample in an ascending order manner.

. Suggest a fitting function f (&;) that best matches the data sample distribution. The fitting

function can be any function, e.g., linear, quadratic, cubic, polynomial, etc. Refer to Table 1
for some examples of fitting function f( ).

. Apply linear, polynomial, or spline interpolation on (&;, f (§;)). This will help in producing a

fitted function f (§,).

. Generate equally spaced data points Y;-where j represents the number of components that

constitute the reduced feature dimension-in the same range of the data samples generated in
Step (1).

. Apply £ (7;), producing a set of newly generated reduced features set v;.
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Table 1: List of fitting functions

Function type Example of f (§;)

Linear f (&) = (¢,&;) + c,, where ¢,, ¢, are constants

Quadratic f (&) = (¢§7/ ¢|) + ¢,, where ¢, ¢, are constants

Exponential f (&;) = (§,°'/c,), where ¢,, ¢, are constants

Logarithmic f (&) = log(&:“'/c,), where ¢, ¢, are constants

Polynomial f(&) =& + cufit + & + &7 + ¢! + ¢, where ¢, ¢,

C,, C3, C4, and ¢s are constants

Once IFDRT steps generate a new set of vj, it shall undergo the ML-modeling steps using any
Machine Learning algorithm as depicted in Fig. 2. When an objective target criterion is achieved, such
as an F1 score greater than 0.98, the IFDRT process is terminated. If the target is not achieved, we
can change fitting function f( ) until we find a suitable one and the target criterion is achieved.

The key advantages of IFDRT include:

1. Efficient Dimensionality Reduction: By leveraging interpolation techniques, IFDRT can
effectively reduce the dimensionality of high-dimensional data while preserving the underlying
structure and relationships.

2. Interpretability: The selected features in IFDRT can provide insights into the most important
characteristics of the data, making the dimensionality reduction process more interpretable.

3. Robustness: IFDRT is generally robust to noise and outliers in the data, as the interpolation
step can smooth out these effects.

The steps of IFDRT are depicted in Fig. 2.
A list of alternative fitting functions is shown in Table 1.

Keep in mind that any function can be considered. This empowers the proposed method and
benefits in dealing with many statistical attributes specifically related to the underlying dataset. In
BODMAS dataset, we the applied Quadratic function to map f (§;) to v; with Y; n_components.

After applting IFDRT (two components) on BODMAS dataset, we can see in Fig. 3, the Malware
instances are concentrated in a narrow channel after being reduced using IFDRT. Thus, it can be
easily identified and learned using high accuracy ML-models. This implies a good behavior of ML-
models can be achieved. This will be indicated in next sections during model training and testing
experimentation.

3.3.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [29] is a dimensionality reduction approach for converting
high-dimensional data to a lower-dimensional representation. It finds patterns and correlations in
data by projecting them onto a new collection of orthogonal characteristics known as principal
components. By keeping only the top k components, PCA decreases data dimensionality, improves
data presentation, and improves Machine Learning model performance by minimising noise and the
curse of dimensionality.
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Figure 3: Dimensionality reduction using IFDRT (two components) on BODMAS dataset

Fig. 4 shows that the two classes, benign and malware, cannot be easily separable when projected
to a two-dimensional space using PCA. Another observation could be that the benign class is more
spread out than the malware class. Thus, another dimensionality reduction should be tested. It may
require more than two components to interpret the relationships between variables easily.
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Figure 4: Dimensionality reduction using PCA (two components) on BODMAS dataset

3.3.3 Factor Analysis (FA)

Principal Factor Analysis (FA) [30] is a statistical method for decreasing the dimensionality of a
dataset by identifying latent variables (factors) that explain the observable variables. Unlike PCA, FA
assumes some error in the measured variables and seeks to capture the common variation shared by
the variables but not caused by measurement error. The most significant disadvantage of employing
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FA is that selecting the number of variables is not always straightforward. There are various ways to
calculate the number of components, however they might be subjective or arbitrary. Furthermore, FA
presupposes that the connection between variables and factors is linear, which may not always be true
in real-world data. Finally, interpreting the factors might be problematic, especially when complicated
variable loadings are across numerous components.

After applying FA on BODMAS dataset with two FA’s, the results are depicted in Fig. 5. We can
see that the two FA components have not accurately captured the variation driven by dataset feature
variables. It’s easily noticeable that both Benign and Malware classes are sparsed, and no distinct
clusters are found. Thus, we conclude that the FA technique may not be the best suitable approach for
BODMAS dataset.

FA
. label
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::‘ : B ': L . ¢ Malware
e® » = . .

Componentl

&l

. £ r
oS S e S Wy

~1.0 -0.5 0.0 0.5 1.0 15
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Figure 5: Dimensionality reduction using FA (two components) on BODMAS dataset

3.3.4 Truncated Singular Value Decomposition (tSVD)

Truncated Singular Value Decomposition (tSVD) [31] is a matrix factorisation technique used
to reduce a dataset’s dimensionality. SVD decomposes a matrix into three matrices: U, S, and V. U
represents the left singular vectors, S represents the singular values, and V represents the suitable
singular vectors. Truncated SVD is a version of SVD in which the smallest singular values are dropped,
resulting in a matrix with reduced dimensionality. The biggest downside of shortened SVD is that it
may lose some information by removing the lowest single values. This can cause a decrease of accuracy
in some types of data. Furthermore, shortened SVD is computationally costly and may not be practical
for big datasets. Finally, interpreting the resultant shortened SVD matrix might be problematic since
each variable’s contribution to the reduced-dimensional representation is unclear.

After applying tSVD on BODMAS dataset with two components, the results are shown in Fig. 6.
It shows that the Malware points may be non-linearly split and segregated among the Benign samples.
However, a more non-linear method is required to complete the classification task while retaining
stronger class segregation. It may necessitate more components to interpret the non-linearity between
variables better.
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Figure 6: Dimensionality reduction using tSVD (two components) on BODMAS dataset

3.4 Machine Learning

Machine Learning is a branch of artificial intelligence that focuses on creating algorithms and
models that allow computers to learn and make predictions or judgments without being explicitly
programmed [32,33]. Large datasets are analysed and interpreted using statistical techniques and
computer-based models. Machine Learning has gained popularity and has been used in various fields,
including computer vision, natural language processing, and data mining. One of the fundamental
concepts in Machine Learning is using training data to create models capable of generalising and
making accurate predictions on previously unknown data. This approach includes optimising model
parameters using techniques like gradient descent or stochastic gradient descent. The unique issue and
data characteristics determine the learning method and model architecture used. Several researchers
have helped progress Machine Learning. For example, Domingos’ [34] delves into the practical
elements of Machine Learning, such as the value of feature engineering and the bias-variance tradeoff.
Another work by He et al. [35] introduced residual networks and shows its efficacy in picture
classification tasks.

Machine Learning techniques, such as neural networks, decision trees, and support vector
machines, identify complex patterns and correlations from massive datasets, providing insights and
predictions that standard statistical approaches may fail to detect. Those methods have found signifi-
cant use in various fields, including healthcare and finance, as well as natural language processing and
computer vision. Additionally, Machine Learning is essential to malware detection because it offers
quick and easy ways to recognise and categorise harmful software. Due to the significant advances
in Machine Learning, it is now simpler to create lightweight algorithms that can identify malware
and take immediate action to protect systems and data. Machine Learning empowers malware
detection systems to analyse and classify malware samples effectively, adapt to evolving threats, and
provide timely protection against cyber-attacks. By leveraging Machine Learning techniques, security
practitioners can enhance their cybersecurity posture and safeguard digital assets against various
malware threats.
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In this work, we applied a variety of feature directionality reduction techniques-illustrated above-
on BODMAS to examine the efficacy and efficiency of Machine Learning in creating new, potent
frameworks for malware detection. We then trained the system using well-known Machine Learning
algorithms, such as Extra Trees Classifier (ETC) [36], k-Nearest Neighbor (k-NN) [37], Bagging
Classifier (BC) [38], Random Forest (RF) [39], XGBoost (XGB) [40], AdaBoost (ABC) [41] and Light
Gradient Boosting Machine (LGBM) [42]. Afterwards, we provide a thorough explanation of how to
use the aforementioned algorithms.

4 Results and Discussions

This section details our in-depth investigation of the BODMAS dataset using seven ML-based
models and multiple dimensionality reduction strategies (PCA, FA, tSVD and IFDRT) as described
in the above section. As mentioned earlier in this study, our goal is to devise a lightweight Machine
Learning algorithms that work well with various machines, including PCs, servers, embedded systems,
mobile phones, and Internet of Things devices. The system configuration used in this study includes an
Intel® Core™ 10210U CPU @ 1.60 GHz processor with L1, L2, and L3 caches of 256 KiB, 1.0 MB,
and 6.0 MB, respectively. The machine has 16 gigabytes of RAM to support the ML-based models
computational demands during training and inference.

As the case with any ML-based modeling process, the training, optimising, and testing phases are
the key stages of the classification procedure. The BODMAS dataset includes the reduced features
and their accompanying labels, is divided into two portions: 80% for training and 20% for testing. The
Learning algorithms were fed both safe and dangerous dataset rows to train it. Learning algorithms
were used to train automated classifiers. With each batch of data annotated, the classifiers (ETC,
k-NN, BC, RF, XGB, ABC and LGBM) increased their performance. During the testing phase, a
classifier was given a set of new samples, some of which were dangerous and some of which weren’t. The
classifier assessed whether the testing data samples were clean or malicious. In the following sections,
we introduce the obtained results after testifying the mentioned algorithms on BODMAS dataset.

4.1 Hyperparameters of Selected ML-Based Algorithms

Hyperparameter tuning is a vital element in developing ML-based models. It involves systemat-
ically exploring alternative hyperparameter combinations to enhance the model’s performance. The
major ML-based models settings fine-tuned during the intensive experimentation are summarised in
Table 2 as follows:

Table 2: Hyperparameter settings

Model name Hyperparameter settings

ETC n_estimators = 250

k-NN n_neighbors =2

BC n_estimators = 250, bootstrap = True, bootstrap_features = True
RF n_estimators = 5

XGB learning_rate = 0.1, n_estimators = 500, max_depth =9

(Continued)
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Table 2 (continued)

Model name Hyperparameter settings

min_child_weight = 1, gamma = 0, subsample = 0.8,
colsample_bytree = 0.8, nthread = 4, scale_pos_weight = 1, objective = ‘binary:

logistic’
ABC n_estimators = 500, algorithm = “SAMME.R”, learning_rate = 1
LGBM {*boosting’: ‘gbdt’, ‘objective’: ‘multiclass’,

‘num_leaves’: 1000, ‘num_class’: 2, ‘n_estimators’ :1000}

4.2 Results of Selected ML-Based Algorithms

We report the performance outcomes of applying the various dimensionality reduction methods
(PCA, FA, tSVD and IFDRT) that are discussed in Section 3.3 to the Machine Learning algorithm’s
learning process on the BODMAS dataset. As previously indicated, we concentrate on lowering the
model complexity by employing various feature reduction strategies to achieve a low-cost framework
that is prepared to operate on adaptable devices. In conjunction with the dimensionality reduction
approaches investigated, the different learning algorithms (ETC, k-NN, BC, RF, XGB, ABC and
LGBM) will be evaluated for their efficacy and efficiency in categorising the BODMAS dataset
samples in real-time scenarios. To ensure a fair comparison between (PCA, FA, tSVD, and IFDRT),
the number of components is set to equal 2, 5 and 10. That’s why we seek the minimum number of
features yielding the maximum score.

4.2.1 PCA

Here, we present the findings from the several experiments conducted on the featured machine
algorithms, using the PCA dimensionality reduction technique that was previously discussed and
demonstrated in this work. The achieved results are given in Table 3.

The presented results in Table 3 illustrate the performance of various Machine Learning algo-
rithms (ETC, k-NN, BC, RF, XGB, ABC, and LGBM) on the BODMAS dataset using Principal
Component Analysis (PCA) for dimensionality reduction with different numbers of components (2, 5,
and 10). The results show the metrics of testing accuracy, precision, recall, F1 score, training and testing
time per sample, and memory consumption per sample during the training and testing phases. Notably,
as the number of components increased from 2 to 10, the models’ performance metrics generally
improved. For example, with ten components, the Extra Trees Classifier (ETC) achieved a testing
accuracy of 0.99, and similar high performance was observed for other algorithms like k-NN, BC,
and RF, which all achieved near-perfect scores. The LGBM model also performed exceptionally well,
achieving an F1 score of 0.985 with ten components. These results indicate that the results from the
archives, when using only two components, are insufficient for use in actual production environments.
So, in the following parts, we will look into the other dimensionality reduction techniques in more
details.
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Table 3: Performance results achieved by PCA (n_components =2, 5 and 10) on ETC, k-NN, BC, RF,
XGB, ABC and LGBM models

n-components 2

S.  Machine Testing Testing Testing recall Testing F1 ~ Training time Testing time Training Testing
learning accuracy  precision score (s)/Sample  (s)/Sample  memory con- memory con-
algorithm sumed/Sample sumed/Sample

(KiB) (KiB)

1 ETC 0.9167 0.90 0.90 0.90 8E-05 1E-05 0.003 0.002

2 k-NN 0.90 0.926 0.838 0.88 1E-06 2E-05 0.028 0.002

3 BC 0.906 0.89 0.887 0.889 6E-04 1E-05 0.004 0.002

4 RF 0.906 0.886 0.894 0.89 7E-06 2E-07 0.001 0.002

5 XGB 0.85 0.814 0.838 0.826 2E-04 9E-07 0.002 0.002

6 ABC 0.83 0.778 0.84 0.808 2E-04 7E-06 0.004 0.002

7 LGBM 0.90 0.877 0.89 0.88 SE-05 1E-06 0.006 0.004
n-components 5

1 ETC 0.98 0.979 0.977 0.978 1E-04 1E-05 0.003 0.001

2 k-NN 0.976 0.979 0.966 0.972 3E-06 3E-05 0.048 0.002

3 BC 0.975 0.975 0.965 0.97 2E-03 8E-06 0.004 0.003

4 RF 0.97 0.965 0.967 0.966 1E-05 SE-07 0.001 0.002

5 XGB 0.974 0.967 0.973 0.97 3E-04 2E-06 0.002 0.003

6 ABC 0.89 0.858 0.89 0.876 SE-04 9E-06 0.004 0.002

7 LGBM 0.978 0.97 0.976 0.974 SE-05 1E-06 0.006 0.003
n-components 10

1 ETC 0.99 0.989 0.987 0.988 1E-04 7TE-06 0.003 0.002

2 k-NN 0.987 0.986 0.983 0.985 3E-06 3E-05 0.083 0.003

3 BC 0.988 0.986 0.984 0.985 3E-03 7E-06 0.003 0.002

4 RF 0.98 0.978 0.98 0.98 2E-05 2E-07 0.002 0.002

5 XGB 0.987 0.98 0.988 0.9858 SE-04 2E-06 0.001 0.002

6 ABC 0.936 0.914 0.938 0.926 8E-04 8E-06 0.003 0.003

7 LGBM 0.987 0.98 0.987 0.985 8E-05 2E-06 0.007 0.004

422 FA

Here, we present the findings from the several experiments conducted on the featured machine
algorithms, using the FA dimensionality reduction technique was previously discussed and demon-
strated in this work. The achieved results are given in Table 4. The number of components for which
the experiments were carried out was 2, 5 and 10. The assessments were averaged after being run twenty
times.

The results in Table 4 showcase the performance of various Machine Learning algorithms on the
BODMAS dataset using Factor Analysis (FA) for dimensionality reduction with the same different
numbers of components (2, 5, and 10). As observed, the models generally improved their performance
metrics with an increasing number of components. For instance, with ten components, the Extra Trees
Classifier (ETC) achieved a testing accuracy of 0.988 and an F1 score of 0.986, demonstrating robust
performance. Similarly, k-NN, BC, and RF also exhibited high accuracy and F1 scores near 0.98.
LGBM consistently performed well across different component numbers, achieving an F1 score of
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0.984 with ten components. These findings suggest that the results from the archives, when using only
two or five components are insufficient for use in actual production environments. So, in the following
parts, we will look into the other dimensionality reduction techniques in more details.

Table 4: Performance results achieved by FA (n_components = 2, 5 and 10) on ETC, k-NN, BC, RF,
XGB, ABC and LGBM models

n-components 2

S.  Machine Testing Testing Testing recall Testing F1 ~ Training time Testing time Training Testing
learning accuracy  precision score (s)/Sample (s) /Sample memory con- memory con-
algorithm sumed/Sample sumed/Sample

(KiB) (KiB)

1 ETC 0.911 0.90 0.89 0.90 8E-05 1E-05 0.002 0.003

2 k-NN 0.89 0.92 0.82 0.868 1E-06 2E-05 0.016 0.002

3 BC 0.904 0.90 0.87 0.89 6E-04 1E-05 0.003 0.002

4 RF 0.902 0.89 0.88 0.885 8E-06 2E-07 0.001 0.003

5 XGB 0.83 0.811 0.777 0.79 2E-04 9E-07 0.001 0.001

6 ABC 0.80 0.81 0.688 0.75 2E-04 9E-06 0.004 0.003

7 LGBM 0.896 0.885 0.868 0.876 9E-05 3E-06 0.005 0.004
n-components 5

1 ETC 0.977 0.977 0.969 0.97 1E-04 1E-05 0.002 0.002

2 k-NN 0.97 0.97 0.959 0.967 3E-06 3E-05 0.016 0.002

3 BC 0.97 0.976 0.96 0.968 2E-03 1E-05 0.003 0.002

4 RF 0.968 0.96 0.96 0.96 1E-05 3E-07 0.001 0.002

5 XGB 0.97 0.96 0.967 0.965 3E-04 1E-06 0.001 0.003

6 ABC 0.866 0.846 0.837 0.84 6E-04 9E-06 0.003 0.002

7 LGBM 0.974 0.967 0.97 0.969 6E-05 2E-06 0.005 0.004
n-components 10

1 ETC 0.988 0.988 0.985 0.986 1E-04 9E-06 0.003 0.002

2 k-NN 0.985 0.985 0.98 0.983 SE-06 4E-05 0.019 0.003

3 BC 0.985 0.984 0.98 0.983 3E-03 1E-05 0.003 0.003

4 RF 0.98 0.977 0.98 0.979 2E-05 3E-07 0.001 0.003

5 XGB 0.985 0.981 0.985 0.983 5E-04 2E-06 0.001 0.002

6 ABC 0.93 0.916 0.92 0.919 1E-03 1E-05 0.003 0.002

7 LGBM 0.986 0.98 0.984 0.984 5E-05 1E-06 0.005 0.004

4.2.3 tSVD

Here, we present the findings from the experiments conducted on the featured machine algorithms
using the famous and powerful tSVD dimensionality reduction technique that was previously dis-
cussed and demonstrated in this work. The assessments were averaged after being run twenty times,
as indicated in Table 5.

The results in Table 5 underscore the effectiveness of tSVD in enhancing the performance metrics
of the models when compared to the PCA and FA scenarios. Notably, in the tSVD example, the LGBM
model exhibited the highest accuracy, reaching 89% with an F1 score of 0.88. However, it’s worth
noting that the LGBM model’s performance plateaued with 2, 5 and 10 components, suggesting that
further dimensionality reduction with tSVD is the worst performing compared with PCA and FA;
thus it cannot be used for real implementation on the intended dataset.
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Table 5: Performance results achieved by tSVD (n_components = 2, 5 and 10) on ETC, k-NN, BC,
REF, XGB, ABC and LGBM models

n-components 2

S. Machine Testing Testing Testing recall Testing F1 ~ Training time Testing time Training Testing
learning accuracy precision score (s)/Sample  (s)/Sample = memory con- memory con-
algorithm sumed/Sample sumed/Sample

(KiB) (KiB)

1 ETC 0.915 0.898 0.90 0.90 8E-05 1E-05 0.003 0.002

2 k-NN 0.90 0.9269 0.8379 0.88 1E-06 2E-05 0.027 0.002

3 BC 0.905 0.89 0.885 0.888 7E-04 9E-06 0.003 0.002

4 RF 0.907 0.887 0.894 0.891 7E-06 2E-07 0.001 0.003

5 XGB 0.85 0.814 0.838 0.826 2E-04 9E-07 0.002 0.003

6 ABC 0.829 0.78 0.835 0.806 2E-04 6E-06 0.004 0.002

7 LGBM 0.90 0.88 0.89 0.886 SE-05 1E-06 0.006 0.003
n-components 5

1 ETC 0.916 0.899 0.90 0.902 1E-04 1E-05 0.002 0.002

2 k-NN 0.90 0.926 0.84 0.88 2E-06 3E-05 0.027 0.003

3 BC 0.906 0.89 0.89 0.89 8E-04 1E-05 0.003 0.002

4 RF 0.907 0.889 0.89 0.89 8E-06 3E-07 0.001 0.001

5 XGB 0.85 0.82 0.84 0.83 2E-04 1E-06 0.001 0.002

6 ABC 0.83 0.78 0.84 0.81 3E-04 8E-06 0.003 0.002

7 LGBM 0.90 0.88 0.89 0.88 3E-05 8E-07 0.005 0.003
n-components 10

1 ETC 0.916 0.899 0.90 0.90 1E-04 1E-05 0.003 0.001

2 k-NN 0.90 0.926 0.838 0.88 3E-06 3E-05 0.028 0.002

3 BC 0.905 0.89 0.89 0.89 8E-04 1E-05 0.003 0.003

4 RF 0.905 0.89 0.89 0.889 8E-06 4E-07 0.001 0.002

5 XGB 0.85 0.814 0.839 0.826 2E-04 1E-06 0.002 0.003

6 ABC 0.83 0.779 0.837 0.80 3E-04 8E-06 0.004 0.002

7 LGBM 0.90 0.878 0.89 0.88 5E-05 7E-07 0.006 0.003

4.2.4 IFDRT

In the last set of experiments, three values of components—2, 5, and 10—were examined utilising
the innovative IFDRT dimensionality reduction technique. In particular, the three factors that were
assessed: classification accuracy, memory consumption and computation time for feature reduction,
model training and prediction processes. The assessments were averaged after being run twenty times,
as indicated in Table 6.

Table 6 highlights the performance of various ML-models with the IFDRT dimensionality
reduction technique. Specifically, models like, ETC, BC and XGB exhibited noteworthy results across
different numbers of components. For instance, with two components, etc., achieved an accuracy of
98.4% and an F1 score of 98.2%, indicating robust performance even with reduced feature dimen-
sionality. BC maintained high accuracy across all component numbers, achieving 98.5% accuracy
with two components and maintaining 98.5% with 5 and 10 components, showcasing stability in its
performance. XGB also demonstrated consistent accuracy and F1 scores across varying component
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numbers, with an accuracy of 97.7% and an F1 score of 97.2% with two components. These results
suggest that the IFDRT technique effectively preserves the discriminative information necessary for
accurate classification, enabling these models to perform well even with reduced feature sets.

Table 6: Performance results achieved by IFDRT (n_components = 2, 5, and 10) on ETC, k-NN, BC,

RF, XGB, ABC and LGBM models

n-components 2

S.  Machine Testing Testing Testing recall Testing F1 ~ Training time Testing time Training Testing
learning accuracy precision score (s)/Sample  (s)/Sample = memory con- memory con-
algorithm sumed/Sample sumed/Sample

(KiB) (KiB)

1 ETC 0.984 0.985 0.978 0.982 9E-05 1E-05 0.003 0.002

2 k-NN 0.972 0.976 0.957 0.967 1E-06 2E-05 0.029 0.002

3 BC 0.985 0.987 0.977 0.982 4E-04 6E-06 0.003 0.002

4 RF 0.98 0.977 0.977 0.977 5E-06 3E-07 0.001 0.001

5 XGB 0.977 0.979 0.965 0.972 1E-04 1E-06 0.002 0.002

6 ABC 0.885 0.883 0.84 0.861 2E-04 7E-06 0.003 0.003

7 LGBM 0.966 0.957 0.964 0.961 6E-05 2E-06 0.006 0.004
n-components 5

1 ETC 0.982 0.982 0.977 0.979 1E-04 1E-05 0.003 0.002

2 k-NN 0.968 0.973 0.95 0.961 2E-06 2E-05 0.049 0.002

3 BC 0.986 0.988 0.98 0.984 8E-04 6E-06 0.003 0.003

4 RF 0.982 0.979 0.977 0.978 7E-06 2E-07 0.002 0.001

5 XGB 0.984 0.985 0.977 0.981 2E-04 1E-06 0.002 0.002

6 ABC 0.895 0.89 0.86 0.875 3E-04 7E-06 0.004 0.003

7 LGBM 0.982 0.977 0.979 0.978 7E-05 2E-06 0.006 0.004
n-components 10

1 ETC 0.979 0.975 0.975 0.975 1E-04 9E-06 0.003 0.002

2 k-NN 0.967 0.973 0.949 0.96 3E-06 3E-05 0.083 0.002

3 BC 0.985 0.985 0.979 0.982 2E-03 9E-06 0.003 0.002

4 RF 0.98 0.977 0.977 0.977 1E-05 2E-07 0.001 0.002

5 XGB 0.984 0.985 0.978 0.981 3E-04 2E-06 0.002 0.002

6 ABC 0.893 0.888 0.857 0.873 7TE-04 7E-06 0.004 0.003

7 LGBM 0.982 0.979 0.978 0.979 7E-05 2E-06 0.006 0.004

When it came to Training and Prediction Times, RF was superior. We observed an increase in
Training and Prediction Time concerning the LGBM in the last group. Undoubtedly, the XGB has
successfully balanced Accuracy and Training and Prediction Times—two crucial requirements in the
real-world business settings of use cases. As a result, we conclude that the BC or XGB model, when
combined with IFDRT, can be considered for actual business scenarios in Malware Classification
systems with the best detection accuracy and real-time processing capabilities at the lowest possible
requirements.

Another experiment is performed to assess the performance of IFDRT on the best-performing
ML-model which is BC, against the other anticipated dimensionality reduction techniques. Fig. 7
shows that IFDRT outperformed other well-known feature dimensionality reduction approaches
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when employing two and five components, which is precisely what we expected from IFDRT. Another
point to note is that IFDRT clearly beats the other techniques when n_component is set to two. An
incease of 8% had been recorded in favor of IFDRT. This is an significant discovery that we should
emphasize in this experiment. We conclude that IFDRT beats all other approaches for both two and
five components. Another finding found that tSVD was the least effective approach on the BODMAS
dataset. The greatest testing accuracy attained was 0.905, independent of the n_component value.

1.00
BN BC-IFDRT
SN BC-PCA
BN BC-FA
BN BC-tSVD

Figure 7: Testing accuracy of BC ML-model over IFDRT, PCA, FA, and tSVD for multiple
n_components (2, 5 and 10)

Fig. 8 depicts the confusion matrix of all models for testing phases when using only two
components. We can notice the superiority of both ETC, and BC with the lowest numbers in the black
squares. This proves the balanced performance of those two models among the other models in terms
of false positives and negatives.
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Figure 8: (Continued)
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Figure 8: Confusion matrix for ML-Models (n_components = 2). (a) ETC, Confusion matrix; (b)
k-NN Confusion matrix; (c) BC Confusion matrix; (d) RF Confusion matrix; (¢) XGB Confusion
matrix; (f) ABC Confusion matrix; (g) LGBM Confusion matrix

4.3 IFDRT n_Components Effect Investigation

As the number of components incorporated into the training, optimising, and prediction phases
of ML-based models affects the computational complexity, we tested the complexity and efficiency of
the proposed IFDRT method in terms of Memory and CPU time consumption. Therefore, we set the
n_components to 2, 5 and 10 values. In Fig. 9, we notice an increase in memory consumption with the
increase of n_components with a maximum of 0.040 KiB per sample when n_components is equal to
10. However, the maximum consumed time of computation is achieved when n_components is equal
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to 2, 5 and 10 with no more than a fraction of 2E-03 second per sample, which is both subtle and
feasible to apply in real-world applications.

Time and Memory consumption for multiple n_components

0.040 1 EEE Total allocated memory (KiB)
- Total consumed time (s)

0.035
0.030
0.025 A
0.020 A
0.015 -

0.010 A
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Figure 9: IFDRT CPU time and memory consumption

4.4 Comparison Analysis

To illustrate the usefulness of the proposed ML-models for malware detection, we compared our
results to those from earlier research that utilised the BODMAS dataset [25,26]. Table 7 compares
many performance metrics, including accuracy, precision, recall, and F1 score. The comparison is done
objectively, considering previous experiments may have used different parameters, such as validation
procedures and training/testing sample sizes. This study demonstrates that the best ML-based models
devised for the BODMAS dataset exceed previous studies, yielding superior results.

Table 7: Performance comparisons over existing studies

Work Algorithm Accuracy Precision Recall F1 score
Hao et al. [25] CNN 0.99 0.98 0.98 0.94
Lu et al. [26] Transformer 0.97 - - 0.97
This work IFDRT (n_components 0.986 0.988 0.98 0.984

= 35)on BC

Table 7 shows that our proposed IFDRT on BC outperforms all previous algorithms based on
CNN and Transformer. It’s worth noting that we only used five reduced features instead of all 2381
feature vectors. It is a substantial improvement, requiring significantly less computing to predict and
analyse malware during real-time applications while achieving greater accuracy. Considering F1 score
metric, we can see a noticeable improvement over [25,26]. In summary, the IFDRT method devised in
this work outperforms or matches the CNN and Transformer algorithms in terms of precision and F1
score while maintaining competitive accuracy and recall. This highlights the effectiveness of IFDRT in
achieving balanced performance across multiple metrics. Keep in mind that CNN and Tranformers are
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both time-consuming algorithms based on Deep Learning, which is constructed using time-consuming
procedures.

To the best of our knowledge, among dimensionality reduction approaches, our IFDRT is being
employed for the first time to transform numeric features with the highest accuracy with a minimum
number of features. Our findings are excellent and have the potential to provide a comprehensive
system that can be used in a variety of contexts to identify and respond to sophisticated malware
at the individual, corporate, and governmental levels while minimising computational costs through
the use of high-performing classifiers during training.

5 Conclusions

In conclusion, this research study has presented a unique lightweight approach to malware
classification that combines ML-models with a novel interpolation-based feature dimensionality
reduction strategy. Through rigorous experimentation and evaluation, our proposed technique has
proven promising results in accurately identifying malware samples while effectively lowering the
dimensionality of the feature space and detection time.

Our research tackles the fundamental difficulty of dealing with high-dimensional data in malware
classification tasks, where typical Machine Learning methods may suffer due to dimensionality’s curse.
Using interpolation-based dimensionality reduction, we substantially decrease feature space while
retaining the discriminative information required for effective classification.

The experimental results on BODMAS benchmark malware datasets show that our proposed
method outperforms existing approaches regarding classification accuracy, precision, recall, and
F1 score. The achieved accuracy of 0.986 and F1 score of 0.984 is attributable to the superiority of
the proposed IFDRT, which employs just five components out of 2381 features from the BODMAS
dataset. Furthermore, our method’s computational efficiency makes it appropriate for real-world
applications requiring speedy malware identification and classification while operating on devices with
limited resources.

Overall, this study advances the area of malware classification by presenting a unique technique
that blends ML-models and interpolation-based dimensionality reduction. The findings described in
this research have important significance for cybersecurity practitioners since they provide a potent
weapon for battling the ever-changing world of malware threats.

6 Future Work

While the suggested IFDRT approach has shown promising results in real-time malware detection,
there are numerous areas where future studies might improve its performance and applicability.
Expanding the application using Deep Learning techniques might be considered to improve model
performance. IFDRT current implementation focuses on identifying known malware patterns. Future
studies might look into how IFDRT can be used to detect anomalies in real time, allowing the
identification of unknown or zero-day malware variants. With the expansion of IoT devices, there
is an increasing demand for effective malware detection systems that can run on resource-constrained
devices. Future research might look at the viability of putting IFDRT and Deep learning on real
operations on edge computing platforms and IoT devices, providing real-time malware detection in
these contexts.
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