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ORIGINAL ARTICLE

Application of machine learning algorithm and Carrera unified formulation in 
thermal buckling analysis of a functionally graded graphene origami enabled 
auxetic metamaterial sandwich plate with an auxetic concrete foundation

Qiang Lua, Qing Yanga, M. Atifb, and Mohammed El-Meligyc,d 

aSchool of Civil Engineering, Chongqing Vocational Institute of Engineering, Chongqing, China; bDepartment of Physics and Astronomy, 
College of Science, King Saud University, Riyadh, Saudi Arabia; cMEU Research Unit, Middle East University, Amman, Jordan; dJadara 
University Research Center, Jadara University, Irbid, Jordan 

ABSTRACT 
This study presents a comprehensive thermal buckling analysis of sandwich plates composed of 
functionally graded graphene origami-enabled auxetic metamaterial (FG-GOEAM) face sheets on 
an auxetic concrete foundation, using Carrera’s unified formulation (CUF) as the theoretical frame
work. FG-GOEAM materials are emerging as advanced composites, combining exceptional mech
anical resilience, tunable auxetic behavior, and high thermal stability, making them suitable for 
extreme environments. By employing CUF, a powerful and adaptable modeling approach, this 
work accurately captures the complex mechanical interactions within the FG-GOEAM sandwich 
structure under thermal loads, incorporating both material gradation and auxetic properties. To 
further enhance the precision and efficiency of this thermal buckling analysis, a deep neural 
network (DNN) is developed as a machine learning algorithm to predict critical temperature 
differences, based on a dataset generated through mathematics simulation. The DNN model 
demonstrates excellent predictive capability, validated by close alignment between its estimates 
and CUF results, thus reducing computational costs while maintaining high accuracy. Parametric 
studies are conducted to assess the effects of material gradation, aspect ratios, and foundation 
properties on thermal buckling performance. The results highlight the superior thermal stability of 
FG-GOEAM structures and the potential of DNNs to serve as reliable, computationally efficient 
tools for advanced structural analysis. This study provides a novel, integrated framework for high- 
fidelity thermal buckling prediction in complex auxetic composites, paving the way for broader 
applications in engineering fields requiring lightweight, thermally stable structures.
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1. Introduction

Composite structures are engineered materials made from 
two or more constituent materials with different physical or 
chemical properties, which remain distinct within the fin
ished structure [1–3]. The combination of these materials 
creates a product with enhanced performance characteristics 
compared to the individual components [4, 5]. Typically, 
composites consist of a matrix material (like a polymer, 
metal, or ceramic) reinforced with fibers or particles that 
provide added strength and stiffness [6, 7]. One of the most 
common types of composites is fiber-reinforced polymer 
(FRP), which incorporates materials like carbon fiber or 
glass fiber within a polymer matrix, widely used in aero
space, automotive, and sports equipment [8–10]. Composites 
are valued for their high strength-to-weight ratios, corrosion 
resistance, and design flexibility, making them ideal for 
applications requiring lightweight and durable materials 
[11–13]. Advanced composites, like those with carbon nano
tubes or graphene, offer even greater mechanical and ther
mal properties, expanding their use in high-performance 

engineering fields [14, 15]. The performance of composite 
structures is largely dependent on the type, orientation, and 
distribution of the reinforcement material within the matrix. 
In functionally graded composites, the material composition 
varies continuously across the structure, providing tailored 
properties that address specific mechanical, thermal, or 
acoustic needs [16, 17]. Recent developments in auxetic 
materials—materials with a negative Poisson’s ratio—have 
led to composites that expand laterally under tension, pro
viding unique mechanical advantages, such as increased 
energy absorption [18]. Sandwich structures, which use 
lightweight core materials sandwiched between stiffer face 
sheets, are a common composite design in structural appli
cations where both strength and low weight are critical [16]. 
In aerospace and civil engineering, composite structures are 
increasingly replacing traditional materials like metals due to 
their superior performance under dynamic and thermal 
loads [19]. However, the complexity of composite materials 
necessitates advanced analytical and computational methods 
to accurately predict their behavior under various conditions 
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[20]. Recent advancements in machine learning and neural 
networks have shown promise in modeling the complex 
behaviors of composites, reducing the computational effort 
required in traditional simulations [21]. As composite mate
rials continue to evolve, they are expected to play a central 
role in sustainable engineering solutions, offering light
weight, strong, and environmentally resilient alternatives for 
modern infrastructure and transportation [22, 23].

The CUF is essential for engineers as it provides a versa
tile framework to analyze complex structural behaviors 
within a single, unified approach [24]. CUF enables engi
neers to address various structural theories (e.g. classical and 
higher-order) seamlessly, which is especially valuable in 
handling multi-layered composites and advanced materials 
[25]. It allows engineers to model the intricate stress and 
deformation patterns in layered structures like sandwich 
panels, widely used in aerospace and automotive industries 
[26]. By accommodating higher-order theories, CUF offers 
greater accuracy in capturing localized effects that traditional 
models may miss, such as interlaminar stresses in compo
sites [27]. For engineers, CUF’s computational efficiency 
means they can achieve accurate results without excessive 
processing time, making it suitable for large-scale simula
tions [28]. Its adaptability to different boundary conditions 
and load types enables engineers to apply it to a variety of 
structural scenarios, from thermal buckling to dynamic load
ing [29]. Additionally, CUF facilitates the optimization of 
materials and structures, allowing engineers to design light
weight, efficient, and resilient components [30]. With the 
rise of functionally graded and auxetic materials, CUF’s abil
ity to model graded properties is crucial [30]. Overall, CUF 
empowers engineers to conduct high-fidelity structural anal
yses, leading to safer, more optimized designs [31].

Modeling plays a crucial role in engineering, providing 
numerous benefits that enhance the design, analysis, and 
implementation of projects [32, 33]. First, it allows engineers 
to visualize complex systems and components before phys
ical construction, enabling better understanding and com
munication [34, 35]. By creating models, engineers can 
explore various design alternatives quickly, assessing their 
feasibility and performance [36, 37]. This iterative process 
leads to optimized solutions, reducing time and costs [38, 
39]. Additionally, modeling helps in predicting the behavior 
of systems under different conditions, which is essential for 
risk management and safety assessment [40, 41]. Engineers 
can simulate real-world scenarios, enabling them to identify 
potential issues and make necessary adjustments [42, 43]. 
This proactive approach enhances product reliability and 
longevity [44, 45]. Furthermore, modeling supports inter
disciplinary collaboration by providing a common frame
work for different engineering specialties to work together 
[46, 47]. Engineers can use models to share insights and 
integrate their knowledge, leading to more holistic solutions 
[48, 49]. In the context of software development, modeling 
facilitates the development of algorithms and systems archi
tecture, ensuring that all components interact seamlessly [50, 
51]. Modeling also aids in documentation and compliance 
with industry standards, providing clear records of design 

decisions and processes [52, 53]. This transparency is crucial 
for regulatory approvals and quality assurance [54, 55]. 
Moreover, it enhances the learning process for engineers, 
allowing them to experiment and learn from their models 
without the risks associated with real-world testing [56, 57]. 
Finally, as industries increasingly adopt digital transform
ation, modeling becomes vital for integrating emerging tech
nologies like artificial intelligence and machine learning into 
engineering practices [58]. Ref. [59] provided a data-driven 
methodology for identifying distinct consumer profiles, ena
bling financial institutions to enhance targeted strategies 
that support economic stability and mitigate credit risk. 
Extreme value mixture modeling has emerged as a robust 
approach for estimating tail risk measures in finance, blend
ing extreme value theory (EVT) with distributional modeling 
to better capture the probability and impact of rare, high- 
magnitude financial losses, thereby enhancing risk manage
ment and stress testing practices [60].

Using CUF as the theoretical basis, this research provides 
a thorough thermal buckling analysis of sandwich plates 
made of FG-GOEAM face sheets on an auxetic concrete sub
strate. With their remarkable mechanical robustness, adjust
able auxetic activity, and great thermal stability, FG-GOEAM 
materials are becoming cutting-edge composites that can 
withstand harsh conditions. This study effectively depicts the 
intricate mechanical interactions inside the FG-GOEAM 
sandwich structure under thermal stresses by using CUF, a 
potent and versatile modeling technique that incorporates 
both material gradation and auxetic features. Based on a data
set produced by mathematics simulation, a DNN is created as 
a machine learning technique to anticipate crucial tempera
ture variations to further improve the accuracy and effective
ness of this thermal buckling study. Close congruence 
between the DNN model’s estimations and CUF findings 
confirms its exceptional predictive abilities, which lowers 
computing costs without sacrificing accuracy. To evaluate 
how foundation characteristics, aspect ratios, and material 
gradation affect thermal buckling performance, parametric 
tests are carried out. The findings demonstrate both the 
potential of DNNs to be dependable, computationally effect
ive tools for advanced structural analysis and the enhanced 
thermal stability of FG-GOEAM systems. This work opens 
the door for wider applications in engineering domains need
ing lightweight, thermally stable structures by offering a 
unique, comprehensive framework for high-fidelity thermal 
buckling prediction in complex auxetic composites.

2. Mathematical modeling

2.1. Effective material properties

A copper core and graphene origami-enabled auxetic meta
material face sheets make up the sandwich plate sitting on 
the auxetic foundation, as shown in Figure 1, along with the 
corresponding measurements.
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2.1.1. Graphene origami-enabled auxetic metamaterial 
face sheets

Figure 2 illustrates how the FG-GOEAM composite plates 
are built with differences in GOri content and GOri folding 
degree. The two patterns in Figure 2 illustrate how the GOri 
content changes layer by layer in the thickness direction. 
Greater GOri concentration is indicated by a deeper hue, 
and the weight fraction (WGr) varies in proportion. The U-
WGr pattern indicates a homogeneous, isotropic metamate
rial plate with GOri evenly distributed across each layer. 
The distribution of the X-WGr pattern is symmetrical, and 
the outer surface layers have a larger proportion of GOri. 
Furthermore, the H atom coverage (HGr) in the crease, 
which indicates the folding degree of GOri, is thought to 
progressively alter in the direction of thickness. A greater 
value denotes a greater amount of hydrogen atoms that are 
chemically connected to the GOri folds, increasing the fold
ing degree. The two different folding degree patterns of 
GOri that are examined in this work are U-HGr and X-HGr, 
as seen in Figure 2. Whereas the X-HGr pattern depicts an 
FG metamaterial plate with pristine graphene scattered on 

the surfaces and GOri scattered in the center, the U-HGr 
pattern depicts an isotropic homogenous metamaterial plate.

For the two graphene content distribution patterns, the 
volume percentages of the k-th layer, or VGrðkÞ, are con
trolled by [61]

U − WGr : VGrðkÞ ¼ VGr,
X − WGr : VGrðkÞ ¼ 2VGrj2k − NL − 1j=NL, (1) 

where NL is the total number of layers and k is between 1 
and NL: The weight fraction WGr may be converted to the 
volume fraction VGr:

VGr ¼
qCuWGr

qCuWGr þ qGrð1 − WGrÞ
,

VGr þ VCu ¼ 1,
(2) 

where qCu and qGr are the volume fraction of copper and 
the densities of pure copper and graphene, respectively. 
Both a uniform and a non-uniform distribution along the 
thickness direction produce the H coverages HGrðZÞ:

U − HGr : HGrðZÞ ¼ HGr, Face-sheet top
U − HGr : HGrðZÞ ¼ HGr, Face-sheet bottom

X − HGr : HGr Zð Þ ¼ HGrcos
Z − 0:5hc − 0:5hfb

hfb

p

 !

,

Face-sheet top

X − HGr : HGr Zð Þ ¼ HGrcos
Zþ 0:5hc þ 0:5hft

hft

p

 !

,

Face-sheet bottom

(3) 

The material characteristics of GOEAMs, including the 
Poisson’s ratio (v), Young’s modulus (E), and thermal 
expansion (a), are calculated using GP-assisted microme
chanical models [61]:

Ej ¼
1þ ngVGr

1 − gVGr
ECu � fE HGr, VGr, Tð Þ,

�j ¼ ð�GrVGr þ �CuVCuÞ � f�ðHGr, VGr, TÞ,
aj ¼ ðaGrVGr þ aCuVCuÞ � faðVGr, TÞ,

(4) 

When j equals fb and ft: The coefficient of material (g) 
and size (n) are stated as follows:

g ¼
ðEGr=ECuÞ − 1
ðEGr=ECuÞ þ n

,

n ¼ 2ðlGr=tGrÞ,
(5) 

where lGr and tGr stand for graphene’s length and thickness, 
respectively; the modification functions fE, �, aðHGr, VGr, TÞ are 
derived using the GP method, which is expressed as [62].

fE HGr, VGr, Tð Þ ¼ 1:11 − 1:22VGr − 0:134
T
T0

� �

þ 0:559VGr
T
T0

� �

−5:5HGrVGr þ 38HGrV2
Gr − 20:6H2

GrV2
Gr,

f� HGr, VGr, Tð Þ ¼ 1:01 − 1:43VGr þ 0:165
T
T0

� �

− 16:8HGrVGr

−1:1HGrVGr
T
T0

� �

þ 16H2
GrV2

Gr,

fa VGr, Tð Þ ¼ 0:794 − 16:8V2
Gr − 0:0279 T

T0

� �2

þ0:182
T
T0

� �

1þ VGrð Þ:

(6) 

Figure 1. Schematic of sandwich plate resting on auxetic foundation.
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In which T0 ¼ 300 K and T is the ambient temperature 
[62]. The following are the relevant material properties of Cu 
unless otherwise noted: At 300 K, the coefficient of thermal 
expansion (aCu) is 16:51� 10−6 K−1, the Young’s modulus 
(ECu) is 65.79 GPa, and the Poisson’s ratio (�Cu) is 0.387. At a 
temperature of 300 K, graphene’s coefficient of thermal expan
sion (aCu) is −3:98� 10−6 K−1, its elastic modulus (EGR) is 
929.57 GPa, and its Poisson’s ratio (�GR) is 0.220. The graphene 
is 3:4 Å thick and 83:76 Å long geometrically.

3. FEM analysis based on CUF

The separation of variables in mathematics is comparable to 
CUF in FEM. Accordingly, the displacement vector is a func
tion of X,Y,Z divided into the expansion function (Us) and 
the shape function (Ni). Shape functions interpolate the dis
placement components at the mid-surface of the plate and are 
believed to be connected to in-plane coordinates X and Y, 
while expansion functions interpolate the displacement compo
nents together with the plate thickness and solely depend on 
out-of-plane coordinate Z: Consequently, an element’s dis
placement field u ¼ ½uX , uY , uZ�T may be written as follows:

u ¼ UsðZÞNiðX,YÞusi: (7) 
in which usi ¼ ½uXsi , uYsi , uZsi �

T
: The subscript i ¼ 1, 2, :::, w 

denotes the element node and w represents the number of 
nodes per element, whereas the subscript s ¼ 1, 2, :::, m 
denotes the expansion function and m represents the number 
of expansion functions used per node. T is a vector of nodal 
generalized coordinates. Taylor-like functions have been used 

as expansion functions in this article in the following ways:
UsðZÞ ¼ Zs−1: (8) 

The shape functions in FEM, which are derived from the 
Lagrange polynomials, have been used in this instance in 
their customary forms. This element has nine nodes and the 
shape functions shown below:

H1 ¼
1
4
A2 − Að Þ B2 − Bð Þ, (9a) 

H2 ¼
1
2

1 − A2ð Þ B2 − Bð Þ, (9b) 

H3 ¼
1
4
A2 þ Að Þ B2 − Bð Þ, (9c) 

H4 ¼
1
2

1 − B2ð Þ A2 þ Að Þ, (9d) 

H5 ¼
1
4
A2 þ Að Þ B2 þ Bð Þ, (9e) 

H6 ¼
1
2

1 − A2ð Þ B2 þ Bð Þ, (9f) 

H7 ¼
1
4
A2 − Að Þ B2 þ Bð Þ, (9g) 

H8 ¼
1
2

1 − B2ð Þ A2 − Að Þ, (9h) 

H9 ¼ ð1 − A2Þð1 − B2Þ: (9i) 

Figure 2. Sandwich plate with gradients in (A) graphene content and (B) graphene folding degree.
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where A, and B are natural coordinates that fall inside the 
interval −1, 1½ �: The rectangular elements will be employed 
in the finite element mesh as the rectangular plates are the 
only ones taken into consideration in this work.

3.1. Governing equations

This concept states that the structure’s overall virtual work 
variation must be zero. As stated otherwise, there is no dif
ference between the external work variation dLext and the 
virtual internal work variation dLint

dLint − dLext ¼ 0: (10) 
The virtual internal work dLint is separated into two 

halves in this study, and there is no external work.
dLint ¼ dLI þ dLII þ dLIII: (11) 

The following is the first section of virtual internal work:

dLI ¼

ð

Ve

dET
l YdV: (12) 

where linear strain and stress vectors are denoted by Y 

and El, respectively. They are described as:

Y ¼ ½YXX , YYY , YZZ, YXZ , YYZ , YXY�
T, (13a) 

El ¼ ½EXX , EYY , EZZ, EXZ , EYZ , EXY�
T
: (13b) 

In Eqs. (13a) and (13b), according to Hooke’s law the 
stress vector Y can be connect with linear strain vector El 
by a matrix defined as:

YXX
YYY
YZZ
YXZ
YYZ
YXY

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼

T 11 T 12 T 13 0 0 0
T 12 T 22 T 23 0 0 0
T 13 T 23 T 33 0 0 0
0 0 0 T 66 0 0
0 0 0 0 T 55 0
0 0 0 0 0 T 44

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

eXX
eYY
eZZ
EXZ
EYZ
EXY

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

: (14) 

The coefficients T ij are known in terms of Young modu
lus and Poisson ratio of the kth layer as below:

For face-sheets have:

T 11fb ¼
Efb 1 − �fbð Þ

1þ �fbð Þ 1 − 2�fbð Þ
, T 33fb ¼ T 22fb ¼ T 11fb ,

T 12fb ¼
Efb�fb

1þ �fbð Þ 1 − 2�fbð Þ
, T 13fb ¼ T 23fb ¼ T 12fb ,

T 44fb ¼
Efb

2 1þ �fbð Þ
, T 55fb ¼ T 55fb ¼ T 44fb :

T 11ft ¼
Eft 1 − �ftð Þ

1þ �ftð Þ 1 − 2�ftð Þ
, T 33ft ¼ T 22ft ¼ T 11ft ,

T 12ft ¼
Eft�ft

1þ �ftð Þ 1 − 2�ftð Þ
, T 13ft ¼ T 23ft ¼ T 12ft ,

T 44ft ¼
Eft

2 1þ �ftð Þ
, T 66ft ¼ T 55ft ¼ T 44ft :

(15) 

For core have:

T 11c ¼
ECu 1 − �Cuð Þ

1þ �Cuð Þ 1 − 2�Cuð Þ
, T 33c ¼ T 22c ¼ T 11c,

T 12c ¼
ECu�Cu

1þ �Cuð Þ 1 − 2�Cuð Þ
, T 13c ¼ T 23c ¼ T 12c,

T 44c ¼
ECu

2 1þ �Cuð Þ
, T 66c ¼ T 55c ¼ T 44c:

(16) 

Linear strain vector is related to the displacement vector 
by an operator as below:

El ¼ Dusi , (17) 

where

D ¼

@X 0 0
0 @Y 0
0 0 @Z
@Z 0 @X
0 @Z @Y
@Y @X 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

, (18) 

The variation of Eq. (17) is as follows:

dEl ¼ Ddusj, (19) 

The first section of virtual internal work for an element 
may be summed up as follows by replacing Eq. (17) in Eq. 
(14) and the resultant equation and Eq. (19) in Eq. (12)

dLI ¼ duT
sjK

ssij
I ðT1Þusi: (20) 

where Kssij
I ðT1Þ is the element’s first stiffness fundamental 

nucleus, and the Eqs. (21a)–(21i) defines its constituent 
parts. Note that although indices s and s pertain to expan
sion functions, indexes i and j are maintained for element 
nodes in this article. T1 stands for temperature in both this 
equation and this publication.

Kssij
XX ¼

ð

T 55Us,ZUs,ZdZ
ð ð

HiHjdXdY

þ

ð

T 11UsUsdZ
ð ð

Hi,XHj,XdXdY

þ

ð

T 66UsUsdZ
ð ð

Hi,YHj,YdXdY, (21a) 

Kssij
XY ¼

ð

T 66UsUsdZ
ð ð

Hi,YHj,XdXdY

þ

ð

T 12UsUsdZ
ð ð

Hi,XHj,YdXdY, (21b) 

Kssij
XZ ¼

ð

T 13UsUs,ZdZ
ð ð

Hi,XHjdXdY

þ

ð

T 55Us,ZUsdZ
ð ð

HiHj,XdXdY, (21c) 

Kssij
YX ¼

ð

T 12UsUsdZ
ð ð

Hi,YHj,XdXdY

þ

ð

T 66UsUsdZ
ð ð

Hi,XHj,YdXdY, (21d) 

Kssij
YY ¼

ð

T 44Us,ZUs,ZdZ
ð ð

HiHjdXdY

þ

ð

T 66UsUsdZ
ð ð

Hi,XHj,XdXdY

þ

ð

T 22UsUsdZ
ð ð

Hi,YHj,YdXdY, (21e) 
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Kssij
YZ ¼

ð

T 23UsUs,ZdZ
ð ð

Hi,YHjdXdY

þ

ð

T 44Us,ZUsdZ
ð ð

HiHj,YdXdY, (21f) 

Kssij
ZX ¼

ð

T 55UsUs,ZdZ
ð ð

Hi,XHjdXdY

þ

ð

T 13Us,ZUsdZ
ð ð

HiHj,XdXdY, (21g) 

Kssij
ZY ¼

ð

T 44UsUs,ZdZ
ð ð

Hi,YHjdXdY

þ

ð

T 23Us,ZUsdZ
ð ð

HiHj,YdXdY, (21h) 

Kssij
ZZ ¼

ð

T 55UsUsdZ
ð ð

Hi,XHj,XdXdY

þ

ð

T 44UsUsdZ
ð ð

Hi,YHj,YdXdY

þ

ð

T 33Us,ZUs,ZdZ
ð ð

HiHjdXdY: (21i) 

The similar method has been used to calculate the second 
portion of the virtual internal work caused by in-plane pre- 
thermal stresses:

dLII ¼

ð

Ve

d
1
2 u2

X,X þ u2
Y,X þ u2

Z,X
� �

1
2 u2

X,Y þ u2
Y,Y þ u2

Z,Y
� �

( )T
YXT
YYT

" #0

@

1

AdV,

(22) 

Y0 ¼
YXT
YYT

" #

in Eq. (26). In the Green-Lagrange sense, the 

nonlinear strain vector 

Enl ¼

1
2
ðu2
X,X þ u2

Y,X þ u2
Z,XÞ

1
2
ðu2
X,Y þ u2

Y,Y þ u2
Z,YÞ

8
><

>:

9
>=

>;

is intended. The second component of the virtual internal 
work caused by in-plane pre-thermal stresses in an element 
may be obtained by performing a few simple mathematical 
procedures as follows:

dLII ¼ duT
sjK

ssij
II ðT1Þusi, (23) 

where the second rigidity fundamental nucleus, Kssij
II ðT1Þ, is:

Kssij
II ðT1Þ ¼

 ð

YXT UsUsdZ
ð

Ae

Hi,XHj,XdA
� �

þ

ð

YYT UsUsdZ
ð

Ae

Hi,YHj,YdA
� �!

I,

(24) 

in which I is an identity matrix of rank three. The plane 
stress condition for the FG plates may be considered to 
determine the thermal buckling loads. It suggests that the 
in-plane pre-buckling stresses YXT and YYT are calculated 

using Eq. (25) [63] and that YZT ¼ 0:

YXT ¼ YYT ¼ −
EðTðZÞ,ZÞaðTðZÞ,ZÞTðZÞ

1 − 2�ðTðZÞ,ZÞ
: (25) 

It should be mentioned that the pre-buckling thermal 
stresses put the sandwich plates in a biaxial in-plane stress 
state and that Eq. (25) assumes that the plate is rigidly held 
in extension.

Additionally, the same process has been used to calculate 
the third portion of the virtual internal work completed by 
the auxetic foundation:

dLIII ¼

ð

Ae

ðduT
sj f

k
mÞdA: (26) 

in which the foundation is

f k
m ¼

0 0 0
0 0 0
0 0 pZ

2

4

3

5
uXsi

uYsi

uZsi

2

4

3

5

applied at the coordinate − h
2 :

The mathematical formulation of a Haber-Schaim foun
dation constructed from auxetic material inside the 
Cartesian coordinate system is expressed as follows [64]:

pZ ¼ Kw þ DAFr
4

� �
: (27) 

Kw, �AF , and hAF are Winkler coefficient, Poisson’s ratio of 
the auxetic foundation, and foundation plate thickness, 
respectively. Also, DAF is equal to EAFhAF

3

12ð1−�2
AFÞ
: The second com

ponent of the virtual internal work caused by auxetic foun
dation in an element may be obtained by performing a few 
simple mathematical procedures as follows:

dLIII ¼ duT
sjK

ssij
III ðT1Þusi: (28) 

where Kssij
III ðT1Þ, which is called the third stiffness funda

mental nucleus.

4. Thermal buckling load

The three main steps in the assembly process are creating 
the node matrix, the element matrix, and finally, the global 
stiffness matrices utilizing the nucleus matrices. The overall 
stiffness matrix is as follows KðT1Þ :

KðT1Þ ¼ KIðT1Þ þ KIIðT1Þ þ KIIIðT1Þ, (29) 

Since there are no external loads in this work, the plate’s 
static equilibrium equation will be as follows:

KðT1Þ:u ¼ 0: (30) 

The sequential linear problems (SLP) approach is used to 
solve the nonlinear equation (Eq. 30) [65]. This technique 
turns Eq. (30) into a linear equation by using two initial ele
ments of the Taylor series at T0

1 :

ðKðT0
1Þ þ ðT1 − T0

1Þ � K
0

ðT0
1ÞÞ:u ¼ 0, (31) 

Then, by assuming DT ¼ T1 − T0
1 , Eq. (31) is rewritten 

as follows:

KðT0
1Þ:u ¼ −DTK

0

ðT0
1Þ:u: (32) 

DT is an eigenvalue known as critical temperature differ
ences, and Eq. (32) is an eigenvalue issue. The SLP approach 
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may be used to address the eigenvalue issue. The current 
method’s methodology for determining the critical tempera
ture is shown in Figure 3.

5. Introducing deep neural networks to estimate 
thermal buckling analysis of sandwich plate with 
a FG-GOEAM face sheet surrounded by auxetic 
concrete foundation

The estimation of thermal buckling behavior in advanced 
composite structures, such as sandwich plates with function
ally graded graphene origami-enabled auxetic metamaterial 

(FG-GOEAM) face sheets, represents a complex challenge 
due to the intricate interactions between materials, structural 
configurations, and thermal loads. Traditional analytical and 
numerical methods, while accurate, often require substantial 
computational resources and can be limited in handling 
nonlinearities and intricate material behaviors like those pre
sent in FG-GOEAM systems. Consequently, researchers have 
increasingly turned to deep neural networks (DNNs) as 
powerful tools for estimating thermal buckling in such 
advanced materials, leveraging DNNs’ capacity for capturing 
complex patterns and relationships from large datasets. 
Deep neural networks, characterized by their multiple hid
den layers and interconnected neurons, excel at recognizing 

Figure 3. The current method’s methodology for determining the critical temperature.
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patterns in high-dimensional data, making them ideal for 
complex material and structural analyses. In the context of 
thermal buckling of FG-GOEAM-based sandwich plates, 
DNNs can be trained on datasets generated from finite 
element simulations or experimental studies, learning the 
relationships between inputs, such as plate geometry (e.g. 
aspect ratio n(a/hn)), weight fractions of FG-GOEAM, ther
mal loads, and boundary conditions, and the resulting criti
cal buckling temperature differences. Once trained, a DNN 
can predict thermal buckling outcomes for new input scen
arios with high accuracy and significantly lower computa
tional costs than traditional methods. Implementing DNNs 
for thermal buckling analysis involves several key steps: data 
generation, model architecture selection, training, and valid
ation. Data generation is typically achieved through a com
bination of finite element modeling (FEM) or experimental 
measurements, ensuring the dataset spans a wide range of 
configurations, weight fractions, and thermal loading condi
tions relevant to FG-GOEAM sandwich structures. Next, a 
suitable DNN architecture is selected, often involving deep 
feedforward networks or convolutional neural networks 
(CNNs) that are well-suited for capturing spatial dependen
cies and nonlinear behaviors. The DNN model is then 
trained by adjusting its weights and biases to minimize the 
prediction error against known outputs (i.e. critical buckling 
temperature differences). During training, optimization tech
niques, such as stochastic gradient descent (SGD) and regu
larization methods (e.g. dropout) are used to enhance the 
model’s generalizability and prevent overfitting. 
Hyperparameter tuning—adjusting parameters like learning 
rate, batch size, and number of layers—ensures that the net
work reaches an optimal balance between accuracy and 
computational efficiency. Once trained, the model’s per
formance is validated against a separate test dataset, con
firming its predictive accuracy. The benefits of employing 
DNNs for thermal buckling analysis of FG-GOEAM sand
wich plates are numerous. DNNs can perform rapid predic
tions, making them advantageous for real-time applications 
and parametric studies where multiple scenarios need to be 
evaluated. Additionally, DNNs can capture nonlinear inter
actions between thermal, mechanical, and material parame
ters that might be challenging to model analytically. This 
ability is particularly useful in FG-GOEAM structures, where 
the unique auxetic properties and graphene reinforcement 
introduce complex, multi-scale behaviors under thermal 
loading. In summary, DNNs offer an efficient, accurate, and 
adaptable method for estimating thermal buckling behavior 
in FG-GOEAM-based sandwich plates. By incorporating 
these models into thermal buckling analysis, researchers can 
explore a broader design space, optimize materials and 
structures, and accelerate the development of high-perform
ance auxetic composites for applications requiring robust 
thermal stability. Figure 4 is a Python code using a deep 
neural network with Keras to estimate the thermal buckling 
temperature difference of a sandwich plate based on param
eters like aspect ratio, weight fraction, and material proper
ties. This code assumes you have a dataset with input 
features and target labels.

This code creates a simple feedforward neural network to 
predict the critical buckling temperature difference based on 
three input features. Replace X and Y with your actual data
set, and adjust parameters as needed.

6. Results and discussion

6.1. Validation

Table 1 provides a comparative analysis of the critical buck
ling temperature difference for simply supported function
ally graded graphene platelet-reinforced composite (FG- 
GPLRC) square plates with varying width-to-thickness ratios 
and different functionally graded (FG) reinforcement pat
terns, specifically U-GPLRC and X-GPLRC configurations. 
The table presents critical buckling temperature differences 
calculated by the “Present” method, alongside values from 
Refs. [66, 67], to validate the accuracy and consistency of 
the current study’s findings. The U-GPLRC and X-GPLRC 
represent two different configurations in which graphene 
platelets are distributed through the thickness of the plate. 
The critical buckling temperature difference values are pre
sented for three width-to-thickness ratios, b=h ¼ 25, b=h ¼
35, and b=h ¼ 45, which offer insights into how the plate’s 
aspect ratio affects thermal stability under different 
reinforcement patterns. For U-GPLRC plates, the critical 
temperature difference decreases as b=h increases, showing 
values of 32.527, 16.673, and 10.106 �C for b=h ratios of 25, 
35, and 45, respectively, according to the present study. The 
values obtained from the present method are closely aligned 
with those from Refs. [66, 67], with only slight variations 
that indicate consistency across methods. This suggests that 
as the plate becomes thinner relative to its width, its resist
ance to thermal buckling decreases, necessitating lower tem
perature differences for buckling to occur. For X-GPLRC 
plates, a similar trend is observed, with critical buckling 
temperature differences of 39.708, 20.395, and 12.369 �C for 
b=h ratios of 25, 35, and 45, respectively. The results from 
Refs. [66, 67] again show minor discrepancies, supporting 
the reliability of the present findings. The X-GPLRC config
uration shows slightly higher buckling resistance than U- 
GPLRC for each aspect ratio, indicating that the X-pattern 
provides enhanced thermal stability. Overall, Table 1 dem
onstrates the influence of GPL reinforcement patterns and 
aspect ratios on thermal buckling behavior in FG-GPLRC 
plates. The close agreement between the present study’s 
results and those from previous studies validates the meth
odology used and highlights the advantages of X-GPLRC 
over U-GPLRC in enhancing thermal buckling resistance.

6.2. Parametric results

Figure 5 illustrates the impact of the FG-GOEAM layer 
thickness on the total plate thickness ratio (hf =h) on the 
thermal buckling behavior of a sandwich plate structure. 
The graph displays two curves representing different config
urations of the FG-GOEAM pattern and associated parame
ters influencing thermal buckling. The vertical axis shows 
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the critical temperature difference in degrees Celsius, which 
indicates the temperature threshold at which buckling 
occurs. The horizontal axis represents the hf =h ratio, reflect
ing the relative thickness of the FG-GOEAM layer compared 
to the overall plate thickness. As hf =h ratio increases, and 
the critical temperature difference also increases for both 
configurations, implying improved thermal stability with a 
thicker FG-GOEAM layer. The blue curve corresponds to a 
setup with higher thermal resistance, demonstrating a higher 
critical temperature difference than the red curve, which 
represents a less resistant configuration. This comparison 
highlights that both the FG-GOEAM layer thickness and 
pattern configuration significantly affect the sandwich 

structure’s thermal buckling performance. An increase in 
hf =h ratio enhances the thermal buckling resistance, making 
the sandwich plate more resilient to thermal loads, which is 
essential for structural applications requiring high thermal 
stability.

Figure 6 depicts the effect of the thickness ratio of the 
FG-GOEAM layer to the total plate thickness and the aspect 
ratio on the thermal buckling performance of the sandwich 
structure. The vertical axis represents the critical tempera
ture difference in degrees Celsius, indicating the temperature 
at which thermal buckling occurs, while the horizontal axis 
shows hf =h ratio, the relative thickness of the FG-GOEAM 
layer. The graph includes four curves, each corresponding to 
a different b=a ratio (2.5, 2.6, 2.7, and 2.8). As hf =h ratio 
increases, the critical temperature difference increases across 
all aspect ratios, showing that a thicker FG-GOEAM layer 
improves the structure’s thermal buckling resistance. Among 
the curves, the configuration with b=a ¼ 2:5 exhibits the 
highest critical temperature difference, while b=a ¼ 2:8 has 
the lowest. This pattern indicates that lower aspect ratios 
result in better thermal stability under buckling loads. 
Overall, the data suggest that both hf =h ratio and reducing 
b=a enhance thermal buckling resistance, which is crucial 

Figure 4. A Python code using a deep neural network with Keras to estimate the thermal buckling temperature difference of the current work.

Table 1. Comparing the critical buckling temperature difference for FG-GPLRC 
square plates that are simply supported and have varying FG patterns and 
width-to-thickness ratios.

Type Method

b=h

25 35 45

U-GPLRC Present 32.527 16.673 10.106
Ref. [66] 32.539 16.679 10.109
Ref. [67] 32.538 16.679 10.109

X-GPLRC Present 39.708 20.395 12.369
Ref. [66] 40.261 20.660 12.528
Ref. [67] 40.261 20.659 12.527

Figure 5. The influences of FG-GOEAM layer’s thickness to plate thickness and 
FG-GOEAM’s pattern on the thermal buckling information of the presented 
sandwich structure.

Figure 6. The influences of FG-GOEAM layer’s thickness to plate thickness and 
b=a ratios on the thermal buckling information of the presented sandwich 
structure.
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for applications requiring robust thermal performance in 
layered composite structures.

Figure 7 shows the influence of the thickness ratio of the 
FG-GOEAM layer to the total plate thickness and the plate 
slenderness ratio on the thermal buckling behavior of the 
sandwich structure. The vertical axis represents the critical 
temperature difference in degrees Celsius, indicating the 
temperature at which thermal buckling occurs, while the 
horizontal axis shows hf =h ratio, the thickness ratio of the 
FG-GOEAM layer. The plot includes four curves, each rep
resenting a different slenderness ratio values of 30, 32, 34, 
and 36). Across all curves, an increase in hf =h ratio leads to 
a higher critical temperature difference, suggesting that a 
thicker FG-GOEAM layer enhances thermal buckling resist
ance. Among the curves, the configuration with a=h ¼ 30 
demonstrates the highest critical temperature difference, 
while a=h ¼ 36 shows the lowest. This trend indicates that 
plates with lower slenderness ratios (thicker plates) are more 
resistant to thermal buckling. Overall, the data reveal that 
increasing hf =h ratio and decreasing a=h improve the ther
mal buckling resistance of the sandwich structure, making it 
more resilient to thermal loads. This is beneficial for struc
tural applications that require high thermal stability in lay
ered materials.

Figure 8 illustrates the impact of the thickness ratio 
(where hf is the thickness of the FG-GOEAM layer, and h is 
the total plate thickness) and the Winkler foundation par
ameter on the thermal buckling temperature difference for 
the sandwich plate structure with FG-GOEAM face sheets. 
The figure shows that as hf =h ratio increases, the thermal 
buckling temperature difference also increases, indicating 
enhanced thermal stability. This trend is consistent across all 
values of Kw, which represents the stiffness of the surround
ing auxetic concrete foundation. Each curve corresponds to 
a different Winkler foundation parameter value, ranging 
from Kw ¼ 0:1½MN=m3� to Kw ¼ 0:4½MN=m3�: Higher Kw 
values result in increased thermal buckling temperatures, 

reflecting that a stiffer foundation enhances the thermal 
buckling resistance of the sandwich structure. Therefore, 
both an increase in the FG-GOEAM layer’s thickness rela
tive to the plate thickness and a stiffer foundation improve 
the structure’s ability to withstand thermal loading before 
buckling. This behavior highlights the role of FG-GOEAM 
layer thickness and foundation stiffness in optimizing the 
thermal stability of sandwich plates in engineering 
applications.

Figure 9 presents the effects of the FG-GOEAM layer 
thickness to plate thickness ratio and the auxetic foundation 
thickness on the thermal buckling temperature difference of 
the sandwich structure with FG-GOEAM face sheets. The 
different curves represent varying values of hAF relative to 
the total plate thickness, specifically hAF ¼ h=5, hAF ¼ h=4, 
hAF ¼ h=2, and hAF ¼ h=2: As hf =h ratio increases, DT also 

Figure 7. The influences of FG-GOEAM layer’s thickness to plate thickness and 
a=h ratios on the thermal buckling information of the presented sandwich 
structure.

Figure 8. The influences of FG-GOEAM layer’s thickness to plate thickness and 
Winkler foundation parameter on the thermal buckling information of the pre
sented sandwich structure.

Figure 9. The influences of FG-GOEAM layer’s thickness to plate thickness and 
auxetic foundation thickness on the thermal buckling information of the pre
sented sandwich structure.
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rises across all values of hAF, suggesting improved thermal 
stability with a thicker FG-GOEAM layer. Additionally, as 
the foundation thickness increases, the thermal buckling 
temperature difference also increases, indicating that a 
thicker auxetic foundation enhances the thermal buckling 
resistance of the sandwich structure. Thus, both a thicker 
FG-GOEAM layer and a thicker auxetic foundation contrib
ute to a higher buckling temperature threshold, highlighting 
the role of these parameters in enhancing the thermal stabil
ity of the structure under thermal loading. This behavior is 
particularly relevant for applications requiring high thermal 
resistance in sandwich structures with auxetic materials.

Figure 10 illustrates the effect of the FG-GOEAM layer 
thickness to plate thickness ratio and the weight fraction of 
the FG-GOEAM, denoted as WGrb ¼WGrt , on the thermal 
buckling temperature difference of the sandwich structure 
with FG-GOEAM face sheets. The different curves represent 
varying FG-GOEAM weight fractions, specifically 0:2½wt%�, 
0:4½wt%�, 0:6½wt%�, and 0:8½wt%�: As the hf =h ratio 
increases, the thermal buckling temperature also increases 
across all weight fractions, which indicates improved ther
mal stability with a thicker FG-GOEAM layer. Additionally, 
higher weight fractions of FG-GOEAM result in higher ther
mal buckling temperature values, suggesting that increasing 
the material concentration enhances the resistance of the 
sandwich structure to thermal buckling. This trend reflects 
the role of FG-GOEAM content in augmenting the thermal 
stability of the structure. Thus, both an increase in FG- 
GOEAM layer thickness and weight fraction contribute to 
enhancing the structure’s thermal buckling resistance, which 
is beneficial for applications demanding high thermal resili
ence in sandwich plates with functionally graded auxetic 
metamaterials.

Figure 11 illustrates the effect of the FG-GOEAM layer’s 
relative thickness and the hydrogen (H) atom coverage on 
the thermal buckling behavior of a sandwich plate with FG- 
GOEAM face sheets within an auxetic concrete foundation. 

The y-axis represents the critical temperature difference in 
degrees Celsius, indicating the threshold temperature differ
ence at which thermal buckling occurs. The x-axis shows 
the ratio of FG-GOEAM layer thickness to total plate thick
ness, ranging from 0.1 to 0.4. Different curves represent 
varying H atom coverage levels from 25 to 100%, where 
each increase in H coverage is associated with a distinct 
color curve. Observing these curves, it is evident that for all 
levels of H coverage, the critical temperature difference ini
tially increases with hf =h, reaching a maximum before grad
ually decreasing. This trend highlights that there is an 
optimal FG-GOEAM layer thickness that maximizes the 
thermal stability of the structure for each H coverage level. 
Additionally, higher H coverage generally results in a lower 
critical temperature difference, indicating a reduction in 
thermal buckling resistance as H atom coverage increases. 
Consequently, the figure emphasizes the sensitivity of ther
mal buckling resistance to both the thickness ratio of FG- 
GOEAM layers and the extent of H coverage, suggesting 
that both parameters play critical roles in optimizing ther
mal stability in sandwich structures with auxetic 
foundations.

Figure 12 shows the impact of the FG-GOEAM weight 
fraction and the Winkler foundation stiffness coefficient on 
the thermal buckling response of the sandwich plate struc
ture. Here, the y-axis represents the critical temperature dif
ference in degrees Celsius, which indicates the temperature 
difference at which the plate will undergo thermal buckling. 
The x-axis denotes the weight fraction of the FG-GOEAM 
material in the structure, ranging from 0 to 1. Each curve 
corresponds to a different Winkler foundation stiffness coef
ficient, ranging from Kw ¼ 0:1 to 0:4½MN=m3�: The figure 
reveals that an increase in both Kw and the FG-GOEAM 
weight fraction consistently elevates the critical temperature 
difference, indicating enhanced thermal stability. Specifically, 
for higher values of Kw, the critical temperature difference 
rises more significantly across the weight fraction range, 

Figure 10. The influences of FG-GOEAM layer’s thickness to plate thickness and 
FG-GOEAM weight fraction on the thermal buckling information of the pre
sented sandwich structure.

Figure 11. The influences of FG-GOEAM layer’s thickness to plate thickness and 
H atom coverage on the thermal buckling information of the presented sand
wich structure.
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suggesting that the structural foundation stiffness plays a 
vital role in enhancing thermal buckling resistance. This 
trend implies that the sandwich structure’s thermal stability 
can be optimized by carefully adjusting both the FG- 
GOEAM weight fraction and the stiffness of the Winkler 
foundation. Thus, the figure demonstrates the importance of 
these two parameters in improving the thermal buckling 
resistance of FG-GOEAM-based sandwich structures.

Figure 13 examines the effect of the FG-GOEAM weight 
fraction and the aspect ratio on the thermal buckling behav
ior of a sandwich plate structure. In this figure, the y-axis 
represents the critical temperature difference in degrees 
Celsius, marking the onset of thermal buckling, while the x- 
axis shows the weight fraction of FG-GOEAM material, 
ranging from 0 to 1. Each curve corresponds to a different 
aspect ratio, varying from 2.5 to 2.8. The figure demon
strates that for any fixed weight fraction, an increase in the 

aspect ratio results in a lower critical temperature difference. 
This indicates that higher aspect ratios lead to reduced ther
mal buckling resistance. Additionally, as the FG-GOEAM 
weight fraction increases, the critical temperature difference 
also rises across all aspect ratios, suggesting that higher FG- 
GOEAM content enhances the plate’s thermal stability. The 
data imply that optimizing the FG-GOEAM weight fraction 
can improve thermal resistance, particularly at lower aspect 
ratios. This trend shows the combined influence of aspect 
ratio and FG-GOEAM content, emphasizing the importance 
of these parameters in designing sandwich structures that 
can withstand higher temperature gradients without buck
ling. Thus, by adjusting both the aspect ratio and FG- 
GOEAM weight fraction, the thermal stability of FG- 
GOEAM-based sandwich structures can be effectively 
controlled.

Figure 14 illustrates the relationship between the weight 
fraction of the FG-GOEAM layer, denoted as WGrb ¼WGrt, 
and the corresponding critical temperature difference 
required for thermal buckling in a sandwich plate structure 
with FG-GOEAM face sheets. The different colored curves 
represent varying aspect ratios, ranging from 30 to 36. The 
critical temperature difference is plotted on the y-axis, while 
the FG-GOEAM weight fraction is plotted on the x-axis. 
From the figure, it is observed that as the weight fraction of 
FG-GOEAM increases, the critical temperature difference 
also increases for all aspect ratios, indicating enhanced ther
mal stability. Additionally, for each incremental increase in 
the a=h ratio, the critical temperature difference decreases, 
implying that plates with a higher a=h ratio (thinner plates) 
are more susceptible to thermal buckling under lower tem
perature differences. This trend suggests that both the 
weight fraction of FG-GOEAM and the structural aspect 
ratio play significant roles in determining the thermal buck
ling resistance of the sandwich plate. Higher FG-GOEAM 
weight fractions and lower a=h ratios improve the thermal 
buckling resistance, making the structure more robust 
against temperature-induced deformation. This finding 

Figure 12. The influences of FG-GOEAM’s weight fraction and Winkler coeffi
cient on the thermal buckling information of the presented sandwich structure.

Figure 13. The influences of FG-GOEAM’s weight fraction and b=a parameter 
on the thermal buckling information of the presented sandwich structure.

Figure 14. The influences of FG-GOEAM’s weight fraction and a=h ratio on the 
thermal buckling information of the presented sandwich structure.
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highlights the potential of FG-GOEAM reinforcement to 
enhance thermal stability in sandwich structures with aux
etic materials.

6.3. The results of the presented DNN algorithm

Figure 15 illustrates the training and testing loss conver
gence of a deep neural network (DNN) model used to esti
mate the critical buckling temperature difference in a 
functionally graded graphene origami-enabled auxetic meta
material (FG-GOEAM) sandwich plate. The x-axis repre
sents the “Loss factor,” which quantifies the difference 
between the predicted and actual values of the critical tem
perature difference, while the y-axis represents the number 
of epochs, or iterations, of training. The training data loss is 
shown in blue, and the testing data loss is depicted in red. 
As shown in the figure, the loss factor for both training and 
testing data begins with relatively high values at the start of 
training (epoch 0) and decreases sharply during the initial 
epochs, indicating rapid convergence of the model. This 
rapid decrease signifies that the model quickly learns pat
terns in the data and adjusts its parameters to minimize the 
prediction error. The decreasing trend stabilizes around a 
loss factor of �0.5 after about 100 epochs, demonstrating 
that the model achieves convergence and no longer exhibits 
significant improvement with additional training. The close 
alignment between the training and testing loss curves sug
gests that the model generalizes well to new data, indicating 
minimal overfitting. This close fit implies that the DNN 
model effectively captures the underlying relationships 
between the input features (such as aspect ratio, weight frac
tion, and material properties) and the target output (critical 
buckling temperature difference) in FG-GOEAM sandwich 
plates. Overall, this figure demonstrates the efficiency of the 
DNN model in learning from training data while maintain
ing robust predictive accuracy on unseen testing data, 

thereby validating its effectiveness for thermal buckling ana
lysis in advanced composite materials.

This section examines the effects of R2 and RMSE on the 
results shown in Tables 2 and 3. It has been noted that 
more accurate responses are produced by higher RMSE and 
R2 values. Therefore, it is recommended to use R2¼ 0.9961, 
RMSE ¼ 0.6213, and 4580 samples when selecting the find
ings. The findings of the mathematical modeling are also 
shown in Mathematics findings (MR).

Tables 2 and 3 show how the existing structure’s thermal 
buckling value varies with WGrb ¼WGrt and a=b: Further 
details on this topic will be provided in the section that 
follows.

7. Conclusion

In conclusion, this study successfully applied CUF to analyze 
the thermal buckling behavior of sandwich plates with FG- 
GOEAM face sheets, supported by an auxetic concrete foun
dation. CUF, recognized for its flexibility in higher-order 
theory development, effectively captured the complex inter
actions between the FG-GOEAM layers and the auxetic 
foundation under thermal loads. By accurately modeling the 
material gradation and auxetic properties inherent in FG- 
GOEAM, CUF offered detailed insights into the thermal 
buckling responses of these advanced composite structures, 
providing a robust theoretical foundation for future analyses 
of similar configurations. To enhance computational effi
ciency without compromising accuracy, a DNN was imple
mented as a machine learning algorithm to predict critical 
buckling temperature differences, based on datasets gener
ated from mathematics simulation. The DNN model demon
strated high predictive accuracy, validated through close 
agreement with CUF results across various parameter sets. 
By accurately learning the relationships between input 
parameters—such as material gradation, aspect ratio, and 
auxetic foundation properties—and critical buckling tem
perature, the DNN provided a rapid, reliable estimation tool 

Figure 15. Loss factor against epoch for the presented deep neural networks.

Table 2. DNN model’s thermal buckling value for varying RMSE and a=b 
values.

a=b MR

Predicted

RMSETrain ¼ 0:4931 RMSETrain ¼ 0:5212 RMSETrain ¼ 0:6213

1.5 156.613 120.947 149.176 156.811
2 131.663 107.885 120.721 131.662
2.5 88.677 60.5789 77.2502 88.7752
3 56.8134 47.1902 52.9016 57.0018
3.5 0.309 0.19748 0.29576 0.30886

Table 3. The DNN model’s performance for thermal buckling value for differ
ent R2 and WGrb:

WGrb ¼ WGrtðwt%Þ MR

Predicted

R2 ¼ 0.9131 R2 ¼ 0.9421 R2 ¼ 0.9961

0 76.9536 56.9707 72.0999 77.129
1 110.621 77.2502 94.7742 110.496
2 120.541 90.6389 112.762 120.527
3 175.851 126.728 149.889 175.975
4 211.021 161.418 200.488 211.178
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that significantly reduced computational demands. The para
metric studies revealed that FG-GOEAM sandwich plates 
exhibit superior thermal stability, influenced by both the 
aspect ratio and the auxetic foundation properties. 
Specifically, increasing the graphene origami content and 
optimizing the auxetic foundation enhanced the resistance 
of the sandwich plate to thermal buckling, underscoring the 
potential of FG-GOEAM materials in high-temperature 
applications. Additionally, the auxetic concrete foundation 
played a crucial role in stabilizing the structure, amplifying 
the thermal buckling resistance through its negative 
Poisson’s ratio, which enhanced load distribution under 
thermal stress. This research contributed a novel, integrated 
approach that combines CUF-based high-fidelity modeling 
with DNN-driven machine learning for efficient, accurate 
thermal buckling analysis. The successful validation of the 
DNN model not only demonstrated the applicability of 
machine learning in advanced structural analysis but also 
highlighted its potential for reducing computational time in 
large-scale simulations. Overall, this study established a 
comprehensive framework for analyzing thermal buckling in 
FG-GOEAM structures, bridging advanced theoretical mod
eling and machine learning. These findings lay the ground
work for future research and applications of FG-GOEAM 
and auxetic materials in engineering fields that demand 
lightweight, thermally stable structures, such as aerospace, 
civil engineering, and materials science.
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