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Summary

The rise of the Internet of Things (IoT) has given rise to an era marked by

interconnected devices and substantial data generation. This has led to an

increased reliance on cloud computing for data processing and storage, primar-

ily due to its cost-effective pay-for-use model. However, this dependence has

prompted critical inquiries into the optimal replication of data: what data to

replicate, when to replicate it, and where to place new replicas strategically.

Conventional cloud data replication often results in resource overutilization,

performance bottlenecks, increased workloads, energy consumption, pro-

longed user wait times, and suboptimal response times. In response to these

challenges, this paper introduces a novel approach named Multiobjective Opti-

mization Harris Hawks Optimization with Salp Swarm Algorithm

(MOHHOSSA). This approach employs multiobjective optimization (MOO)

alongside Harris Hawks Optimization (HHO) and IoT-based Salp Swarm Algo-

rithm (SSA) for cloud computing environments. MOHHOSSA efficiently iden-

tifies data replication opportunities and strategically allocates them across

nodes in cloud computing infrastructures. The algorithm aims to enhance key

performance metrics, including energy consumption, carbon dioxide emission

rate, and mean service time. Extensive experimental validation demonstrates

MOHHOSSA's superior performance compared to alternative algorithms. It

excels in optimizing energy efficiency, load distribution, mean service time,

and the establishment of cost-effective communication paths between nodes.

This research represents a significant advancement in addressing challenges

related to IoT data replication in cloud computing, ultimately promoting more

sustainable, efficient, and responsive cloud-based services.
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1 | INTRODUCTION

Over the past decade, significant advancements have been made in cloud computing and the proliferation of Inter-
net of Things (IoT) applications across diverse domains, including healthcare, engineering, military operations, agri-
culture, and traffic management. IoT applications generate vast amounts of data on a daily basis, which is typically
processed and stored in cloud computing infrastructure. However, this surge in data usage has resulted in
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heightened resource consumption, increased operational costs, greater energy consumption, and a rise in carbon
emissions.

Efforts have been made to optimize IoT applications by implementing fog computing, particularly in terms of rou-
ting efficiency and node allocation. Nonetheless, accessing data across different geographic locations remains a chal-
lenge, mainly due to limitations in bandwidth, cloud storage capacity, and response times for end-users [1-3].
Furthermore, the replication of data across nodes, along with its proximity to users, can often incur substantial
expenses that may exceed users' budgetary constraints.

Fog computing advantages various sensors, including Wireless Sensor Networks (WSN), to support IoT within cloud
computing environments. Data replication stands out as a critical technology for facilitating data transfer, positioning,
and redundancy in IoT-driven cloud computing. The implementation of data replication enhances the efficiency of data
transfer between nodes, reduces processing time, and minimizes access and retrieval delays, ultimately optimizing
data flow along the most cost-effective routes [4–6].

Data replication strategies encompass two essential components: static and dynamic methods. In this research, the
focus is primarily on dynamic methods for determining and deploying data replication, as they are influenced by factors
such as file popularity, access patterns, and the diverse storage methodologies employed within the system [7–9]. Fur-
thermore, dynamic methods automatically purge less popular files, resulting in both cost savings for users and reduced
burdens on system resources [10, 11].

Data replication in cloud computing revolves around three fundamental aspects: the identification, placement, and
replacement of data replicas across various nodes within the cloud infrastructure. The primary objective of this research
is to strategically determine the optimal placement of data replication across nodes by taking into account several key
factors. These factors include minimizing costs, reducing the physical distance between nodes, and mitigating the
energy and carbon footprint resulting from the substantial consumption of gasoline and diesel, which has a direct
impact on the environment.

In recent years, numerous research studies have proposed various techniques for data replication within the cloud,
with the overarching goals of enhancing response times, cost-efficiency, bandwidth utilization, and load balancing,
among others. However, it is important to note that modern algorithms that can identify the least costly path have not
received sufficient attention, nor have the critical aspects of energy conservation and carbon reduction been adequately
addressed within the context of data replication, particularly in the realm of IoT applications [12, 13].

In response to the limitations observed in prior research endeavors, our study proposes a comprehensive approach
aimed at achieving cost savings in data replication procedures. This approach encompasses optimizing the paths
between nodes, strategically duplicating files, and positioning them in close proximity to end-users, all while effectively
minimizing energy consumption and reducing carbon emissions for the benefit of the environment.

To tackle these multifaceted challenges associated with cross-node data transfers in IoT-driven cloud computing, we
have harnessed the power of hybrid swarm intelligence. This innovative approach combines a suite of modern algo-
rithms designed to drive down costs and conserve energy, even when faced with the complex task of selecting the most
cost-efficient path—often a trade-off between conflicting objectives—while considering users' budget constraints. Nota-
bly, we have integrated the HHO algorithm with the SSA and MOO algorithms to create a novel solution known as
MOHHOSSA. MOHHOSSA stands as a pioneering contribution to the realm of IoT-based data replication, offering a
unique and effective approach to address these challenges.

The article's major contributions can be summarized as follows:

• We introduce MOHHOSSA, a hybrid swarm intelligence algorithm specifically designed for dynamic data replication
within the context of fog computing.

• Our innovative approach involves the integration of HHO and SSA with MOO, effectively addressing energy con-
sumption and reducing carbon dioxide emissions in fog computing scenarios.

• It is worth noting that there is a scarcity of research papers that tackle the critical issues of energy consumption and
carbon dioxide emissions in the context of optimizing dynamic data replication within fog computing.

• To the best of our knowledge, our work represents the pioneering effort in exploring a new hybrid algorithm,
MOHHOSSA, which successfully resolves energy conservation and carbon dioxide emission concerns in fog computing.

The remainder of the paper is structured as follows: in Section 2, we conduct a comprehensive review of related
research. In Section 3, we present our proposed algorithm. Section 4 contains our experimental results, and finally, in
Section 5, we offer conclusions and outline directions for future work.
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2 | RELATED WORK

Numerous studies have investigated data replication strategies in the cloud, including:

N. Mansouri et al. [14] proposed a method for strategically placing data replication among fog computing nodes.
Their approach introduced an algorithm designed to ensure data confidentiality and privacy, safeguarding against
intruders. The proposal hinges on user‐defined privacy levels (LoP), aligning with their budget constraints. The
results demonstrated the superiority of their algorithm over competing approaches.
N. Mansouri et al. [15] introduced dynamic data replication techniques tailored to file popularity and frequent file
access patterns across nodes. Files that enjoy high user accessibility are replicated and strategically positioned
among nodes. The proposed system utilizes parallel methods for efficient file collection and distribution from vari-
ous locations. Their algorithm showcased superior performance compared to previous ones.
D. Chen et al. [16] presented a novel system for creating and placing data replication within a decentralized framework,
emphasizing equitable data file distribution across nodes within Blockchain platforms. Attention was also given to the
insurance system and associated risks, with several scenarios proposed for enhancing data file replication strategies.
C. Li et al. [17] suggested the application of a Lagrangian relaxation approach for the selection and placement of
file replication. Their focus extended to factors such as storage capacity, load balancing, bandwidth optimization,
data transmission, reception, and cloud processing speed. The approach considered tolerance flow, anomaly detec-
tion, and task execution deadlines. To ensure tolerance flow, file replication was distributed across multiple com-
puting nodes on the Spark platform, resulting in reduced task execution times, quicker response times, and lower
power consumption.
T. Shi et al. [18] proposed a novel approach for distributed file replication across nodes spanning multiple clouds,
implemented through web platforms. They introduced a new algorithm for file replication called “web application
replication and deployment in multi‐cloud,” which contributed to reduced user waiting times, cost savings, and
improved efficiency.
A. Majed et al. [19] presented a method for data replication placement within the P2P cloud, focusing on determin-
ing file popularity, copying, and distribution across cloud nodes. Their algorithm identified highly popular files and
strategically positioned them across nodes, with an emphasis on data availability, user accessibility, and load
balancing.
C. Li et al. [20] proposed a novel data placement strategy based on mathematical equations, leveraging a geographically
distributed cloud infrastructure spanning multiple regions. The approach aimed to distribute and optimize file replica-
tion while minimizing load balancing issues, bandwidth consumption, and costs. Their algorithm combined Lagrangian
relaxation techniques with Floyd algorithm optimization to reduce data transmission times between nodes.

The rise of the multiaccess edge computing (MEC) paradigm has introduced a complex environment characterized
by multiple users, servers, and access points, making data-offloading decision-making a critical research focus. This
article tackles this issue by examining how user behavior and MEC server pricing policies affect optimal data offloading
strategies [21]. Prospect theory is employed to capture user satisfaction and subjectivity in data offloading decisions. In
contrast, the potential overuse of MEC servers by users is modeled using the tragedy of the commons theory. A
multileader multi-follower Stackelberg game is formulated, positioning MEC servers as leaders and users as followers
to establish optimal pricing policies for servers and optimal offloading strategies for users. Users' offloading decisions
are modeled as a noncooperative game to find Nash equilibrium. The servers' optimal pricing is determined using either
a semi-autonomous game-theoretic approach or a fully autonomous reinforcement learning approach. The framework's
effectiveness is demonstrated through performance evaluations and simulations, showing its superiority over other
benchmark alternatives.

In Table 1, we have presented a comparison of various works in the cloud environment, focusing on their respective
strategies. We differentiate between these diverse strategies and our approach.

3 | SUGGESTED SYSTEM AND DISCUSSION

The proposed system is designed to operate across various geographical locations within the fog computing framework,
which is built upon the Internet of Things (IoT). This system incorporates an array of sensors strategically deployed
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throughout the cloud computing environment. It comprises nodes, which encompass a combination of hosts, virtual
machines (VMs), and data blocks, including file replication functionality.

Our proposed system introduces a novel methodology referred to as MOHHOSSA. This method is devised to
determine the most cost-effective path and the shortest distance between nodes, all while ensuring efficient load
balancing during request handling and prompt user response. Additionally, our model places a strong emphasis on
reducing energy consumption and carbon emissions, addressing the inherent trade-offs between factors like cost and
distance. To achieve this, our approach prioritizes popular data, placing it within the nearest node to end-users,
with a focus on cooler regions to optimize energy efficiency and avoid data replication in warmer regions. The sys-
tem navigates conflicting goals by dynamically selecting and configuring data replication based on individual user
budgets.

In this section, we present an algorithm that combines HHO with the SSA algorithm to facilitate data replication
across nodes in the context of fog computing within the IoT domain. The overarching strategy behind MOHHOSSA is
to identify the optimal conditions for data replication that minimize power consumption, carbon footprint, and overall
costs. Furthermore, this section provides a comprehensive overview of our proposed methodology.

3.1 | Harris hawks optimization (HHO)

Haidari et al. [22] introduced the HHO method, specifically designed for optimizing various operations and addressing
research challenges related to improvement. This algorithm, known as HHO, is a novel approach inspired by nature
and can be described as follows:

3.1.1 | Exploration phase

Falcons perch on elevated positions, such as tree branches or trunks, to scan for prey from a vantage point. When they
swoop down to capture a rabbit, there is a 50% chance of success. Similarly, the HHO algorithm seeks candidate solu-
tions in proximity to the current solution, with the best candidate akin to the desired prey in the pursuit of the optimal
solution. This can be expressed mathematically as follows:

X tþ1ð Þ¼ Xrand tð Þ� r1 Xrand tð Þ�2r2X tð Þj j q≥ 0:5

Xrabbit tð Þ�Xm tð ÞÞ� r3 LBþ r4 UB�LBð Þð Þ q<0:5

�
ð1Þ

where,

Xm tð Þ¼ 1
N

XN
i¼1

Xi tð Þ: ð2Þ

TABLE 1 Comparison between related work and my strategy.

Strategy Year AI techniques Energy-aware Hybrid Throughput
Carbon dioxide
emission rate

Fog computing
based on IoT

MORM 2013 √ √

EIMORM 2017 √ √

APSDRDO 2018 √

MOGA 2019 √

My Strategy 2022 √ √ √ √ √ √
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3.1.2 | Exploitation phase

In this stage, four strategies have been devised to simulate a hawk's approach to capturing prey. These strategies involve
the introduction of a random number to represent a 50% chance of the prey either escaping or experiencing a sudden
attack by the hawk. Regardless of the prey's efforts to evade capture, the falcon will persistently pursue it, employing
either a soft or hard siege technique to secure its prey based on its capabilities, denoted as E. This can be represented as
follows:

3.1.3 | Soft besiege

In accordance with the prescribed escape ratio for the prey, there is a balanced 50:50 likelihood of the prey's success in
evading capture based on its energy level. In the HHO algorithm, the approach involves quietly encircling the prey from
all directions and subsequently launching a sudden attack. This approach can be mathematically represented as
follows:

X tþ1ð Þ¼ΔX tð Þ�E JXrabbit tð Þ�X tð Þj j: ð3Þ

ΔX tð Þ¼Xrabbit tð Þ�X tð Þ: ð4Þ

J¼ 2x 1� r6ð Þ ð5Þ

3.1.4 | Hard besiege

When the prey lacks the necessary energy to escape from the hawks, the hawks encircle their target and initiate a sud-
den attack.

In cases where the prey possesses sufficient energy to evade the falcon effectively, the hawks employ a strategic
approach. They make multiple diving attempts while gradually altering their positions and flight trajectories to deceive
the prey before launching a sudden attack. This approach can be mathematically represented as follows:

X tþ1ð Þ¼Xrabbit tð Þ�E ΔX tð Þj j ð6Þ

In instances where the prey manages to escape, falcons employ a tactic involving multiple dives to lure the prey
closer to them before executing a sudden attack. The behavior of falcons is modeled using Levy flight, and this improve-
ment can be described through the following equation:

Y ¼Xrabbit tð Þ�E JXrabbit tð Þ�X tð Þj j ð7Þ

Z¼Y þS�LF Dð Þ ð8Þ

LF xð Þ¼ 0:01�u�σ

vj j1β
,σ¼ ｢ 1þβð Þ� sin πβ

2

� �
｢ 1þβ

2

� ��β�2 β�1
2

� �
 ! 1

β

ð9Þ

which is calculated as follows.

X tþ1ð Þ¼ Y if F Yð Þ <F X tð Þð Þ
Z if F Zð Þ <F X tð Þð Þ

�
ð10Þ
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3.1.5 | Hard besiege with progressive rapid dives

When the prey possesses insufficient energy to escape from the hawks, falcons adopt an aggressive approach by relent-
lessly besieging their target before it can flee. They then launch a sudden and decisive attack. In this scenario, falcons
actively strive to minimize the distance between themselves and the evading prey while enhancing their positioning.
Table 2 shows the notation for Harris Hawks Optimization (HHO). The updating of falcon positions can be expressed
through the following equation:

X tþ1ð Þ¼ `Y if F `Yð Þ <F X tð Þð Þ
`Z if F `Zð Þ <F X tð Þð Þ

�
ð11Þ

Y ¼Xrabbit tð Þ�E JXrabbit tð Þ�Xm tð Þj j ð12Þ

Z¼Y þS�LF Dð Þ: ð13Þ

3.1.6 | Pseudocode of HH

The pseudo-code of the proposed HHO algorithm is reported in Algorithm 1.

TABLE 2 Notation of Harris Hawks optimization (HHO).

Item Description

X tþ1ð Þ Placement of HHO and iteration

Xrand tð Þ Random population

x tð Þ The current placement of HHO

Xrabbit tð Þ Placement of rabbit and r1, r2, r3, r4 and q demonstrator the random number (0 – 1)

UBandLB Lower and upper bounds of the variable

Xm tð Þ Average placement of the current population of HHO

Xi tð Þ Placement of each hawk in iteration and N total number of hawks

E Prey energy

t Current iteration number

T Max number of iterations

E0 Initial energy random between (-1, 1)

ΔX tð Þ Different placement of rabbit

J Jump of rabbit

jj Absolute value

D Dimension of problem

S Random vector by size 1*D

LF Levy flight function

Y and Z Obtained from Equations 8,9

u and σ Random in (0, 1)

β Constant of 1.5
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3.2 | Proposed Swarm Intelligence with Multi- Objective Optimization

3.2.1 | Cost and time of replication

The cost depends on each user's budget and choice of data replication near them. The cost of the node varies from place
to place according to the proximity of the distance between the users and the node. Time and cost are critical factors in
determining and placing data replicas across the node. The equation can be represented as follows:

cost DTj
� �¼Xn

y¼1

cost dtyz
� � ð14Þ

Where

cost dtxz
� �¼Xm

z¼1

xyz pyzþ
size dtyð Þ

byz

� �
� tcost

�
ð15Þ

DTi Cost of data set.
dtyz Data replica in the region.
xyz A binary decision variable q� 1,2,3,…::lð Þ:
pyz Price of replica
byz Bandwidth network between replicas in the region
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3.2.2 | Shortest paths problem (SPP) between nodes

Selecting the most cost-effective path between nodes and attaining an optimal approach is crucial within the context of
fog computing in the IoT domain. A primary concern lies in preserving load balance during file transfers across nodes
while simultaneously minimizing bandwidth usage. This can be expressed through the following equation:

minE xKð Þ¼ zþ K1
X

j, i, jð Þ � E

x1j�1

0
@

1
AþK2 1þ

X
i, i,mð Þ

xim

0
@

1
AþK3

X
i

X
j

X
k

xij�xkið Þ
 ! !

, i, jð Þ, k, ið Þ�Eð Þ, i≠ s,t

2
4 ð16Þ

Where

z¼
X

i

X
j
xij,wij, i, jð Þ�E, i, j,k¼ 1,2, :…,m, i≠ j≠ k ð17Þ

Penalty coefficients are Ki> > 1, i = 1,2,3.
Some edges (i, j) � E i, j¼ 1,2,3,…:m: i≠ j,k¼ 1,2,3,…n:
P path.
S, t first node and last node.
N nodes

3.2.3 | Popularity degree of the data file

File popularity is determined by the frequency of user access to those files. Files that exhibit higher popularity than
others are chosen as replicas and strategically positioned to cater to user needs. This can be represented as follows:

PDi ¼ ani �wi ð18Þ

Based on the popularity degree, each file's replication factor (RFi) is calculated as in Equation 19.

RFi ¼ PDi

RNi �FSi ð19Þ

The dynamic threshold (TH) value is calculated as in Equation 20.

DH¼ min 1�αð Þ �RFsystemmax
8

k� 1,2,…:, l½ � RFk

� �� �
,α� 0,1½ � ð20Þ

PDi popularity degree
ani number of access
wi time-based forgetting factor
RFi replica factor
RNi number of replica
FSi size of the data file

3.2.4 | System-level availability

The SBER (system-based availability for every user) mechanism ensures that files remain accessible to all users and
upholds the overall popularity of files within the system. SBER functions by ensuring system-wide availability for all
users through fog computing. This can be represented as follows:
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SBER¼

Ps
i¼1

ank x
Pnk
j¼1

bsj

 !
x P FAkð Þ

 !

Ps
i¼1

ank x
Pnk
j¼1

bsj

 ! ! ð21Þ

3.2.5 | Placement of new replicas

Data replication is strategically positioned at the most suitable node in proximity to users, following optimal methods
and minimizing costs related to distance. When selecting the ideal node based on user budget constraints, data replicas
are placed accordingly. This can be represented as follows:

brk dcið Þ¼ RFk dcið ÞPs
i¼1

RFk dcið Þ
xbrk addð Þ

666664
777775 ð22Þ

3.3 | Salp swarm algorithm

In recent years, SSA has found applications in various domains, drawing inspiration from the collective behavior of salp
swarms in oceans [23]. SSA comprises two crucial categories for dividing solutions within the proposed system: leaders
and followers. The mathematical equations can be represented as follows:

1) Leader phase: The leader location is modernized using
the following equation:

X1
j ¼

Xbjþ c1 ubj� lbj
� �

c2þ l
� �

if c3 > 0:5

Xbj� c1 ubj� lbj
� �

c2þ l
� �

otherwise

(
ð23Þ

c1decreases through the iterations as follows.

c1 ¼ 2e�
4t
Tð Þ2 ð24Þ

X1
j andXbj repesent new placement, c2 and c3 random variable from 0 to 1, and ubj and lbj refer to the domain of sea-

rch at dimintion j.
2) Followers phase: To modernize the followers' locations,
Newton's law of motion is used, which defined as

Xi
j ¼

1
2
gt2þω0t, i≥ 2 ð25Þ

So, the modernizing procedure of followers can be formulated as

Xi
j ¼

1
2

Xi
jþXi�1

j

� �
ð26Þ
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t iteration

ω0 ¼ 0and g velocity and the acceleration

3.3.1 | Pseudocode of SSA

The pseudo-code of the proposed SSA algorithm is reported in Algorithm 2 [24].

3.4 | Energy consumption (EC)

Efficient energy management is paramount in cloud computing, and it becomes particularly crucial in fog computing.
The optimization of energy consumption involves mitigating node workloads and virtual machine (VM) power usage
during the selection and transfer of files among nodes. Placing data replication strategically within the cloud nodes is
employed to alleviate power consumption within the proposed system. This can be represented as follows:

ERE jð Þ¼
Xn
i¼1

; i, jð Þ� l i, jð Þ � Pmax jð Þ�Pidle jð Þð ÞþPidle jð Þ ð27Þ

ERE ¼
Xn
i¼1

ERE jð Þ ð28Þ

where,

Pmax jð Þ maximum power of data node

Pidle jð Þ power of data node

l i, jð Þ load of data node

; i, jð Þ cofficent of performance data node 0 to 1ð Þ

ERE jð Þ renewable energy consumption
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3.5 | Carbon dioxide emission rate

CDER, or carbon dioxide emission reduction, is intricately tied to both economic and social factors and has significant
connections to environmental considerations. We propose an integrated approach to CDER, aiming to conserve gaso-
line and diesel energy while simultaneously protecting the environment from the impacts of carbon dioxide emissions.
This approach can be mathematically represented as [23 – 26]:

CDER¼
Xn
i¼1

totalECS �nsi � fcei � r ð29Þ

where,

totalECS total energy

nsi share of power source

fcei emission factor of energy

r ratio fromCDEequal to 44=12

3.6 | Mean service time (MST)

When users access files and await a system response, the Minimum Spanning Tree (MST) mechanism significantly
enhances response times and user experience speed. Furthermore, it efficiently decreases system loads, upholds load
balancing, and minimizes bandwidth utilization across the nodes. This can be represented mathematically as follows:

stf i ¼
Xm
j¼1

stf i, jð Þ �A i, jð Þ
A ið Þ

� �
ð30Þ

The mean service time of the system can be defined as follows:

mst¼ 1
n
�
Xn
i¼1

Xm
j¼1

: ; i, jð Þ� si
tpj

�A i, jð Þ
A ið Þ

 !
ð31Þ

where,

stf i, jð Þ expected service time of file in data node

A i, jð Þ access rate of read requests from data node

A ið Þ Mean access rate

si size of file

tpj transfer rate of data node
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3.7 | Computational complexity

To analyze the time complexity of the MOHHOSSA algorithm for T iterations, we calculate the number of DCs (Data
Centers) and the Hybrid Harmony Search Optimization (HHO) with Simulated Annealing (SSA). Let P represent the
population size, D denotes the number of variables (dimensions), T signifies the number of iterations, and C represents
the cost.

The computational complexity of the MOHHOSSA strategy can be expressed as O(T * [D * P + C * P]). This com-
plexity arises from the various stages within the MOHHOSSA approach. Therefore, the time complexity of the
MOHHOSSA algorithm simplifies to O(P * T * C), and the time complexity of the overall approach algorithm is O(N).

4 | EXPERIMENTAL EVALUATION

4.1 | Data sets and simulation

The proposed system encompasses a collection of data and files distributed geographically across fog computing infra-
structure, facilitating quick retrieval via efficient, shorter paths. Additionally, the proposed method effectively reduces
energy consumption in the nodes and IoT sensors, allowing for the selection of nodes that are distant from hotspots.
Table 3 provides an overview of the datasets utilized within the proposed system.
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Table 3 outlines a comprehensive range of configurations and capabilities for the cloud environment and its asso-
ciated entities. It includes various parameters, each with specified ranges. The system can support between 2 to
50 data center nodes and accommodate 50 to 500 users. It operates across 5 to 30 regions, each with a fixed geo-
graphical capacity of 20. Bandwidth varies between 2 Mbps and 32 Mbps, while data set sizes range from 2 GB to
64 GB. The number of data files can span from 50 to 1,000, with the cost of data replicas ranging from 100 to
5,000 units. Storage nodes have a capacity between 10 and 32 units, and the maximum transfer rate is between
50 MB/s and 100 MB/s.

In terms of hosts, the system supports 100 to 500, each with 12 to 28 processing elements, offering between 500 to
4,000 MIPS (Million Instructions Per Second). Memory (RAM) for hosts ranges from 2 GB to 16 GB. Virtual machines
(VMs) in the system can number between 50 and 1,000, with each VM also having 12 to 28 processing elements, 500 to
4,000 MIPS, and 2 GB to 16 GB of RAM. Lastly, the system can handle 1,000 to 3,000 cloudlets, with task lengths rang-
ing from 1,000 MI to 50,000 MI. This detailed parameter set provides a robust framework for evaluating different sce-
narios and optimizing performance within the cloud infrastructure.

4.2 | Experimental results

Figure 1 illustrates the implementation of the MOHHOSSA algorithm, focusing on a data loss rate test conducted
between nodes. Our proposed algorithm has demonstrated its effectiveness in reducing data loss rates compared to
other algorithms, primarily because it ensures high file availability across nodes.

Figure 2 demonstrates the implementation of our proposed algorithm for achieving data file replication across
nodes. Notably, it showcases that the mean service time is lower compared to alternative algorithms. Our proposed
algorithm effectively minimizes the waiting time for users, enabling swift access to files via the most cost-effective and
shortest paths.

TABLE 3 Parameters data sets of the system

Cloud entity Parameter Ranges

Nodes Number of data center [2, 50]

User number of users [50, 500]

Regions number of regions [5, 30]

Geographical Geographical capacity [20]

Bandwidth Bandwidth [2 Mbps, 32 Mbps]

Data sets Data set size [2G, 64GB]

Data file Number of file [50, 1,000]

Cost of file Cost of data replica [100, 5,000]

Storage nodes Storage capacity [10, 32]

Transfer rate Maximum transfer rate [50, 100 MB/s]

Host Number of the host [100, 500]

Processor Processing elements [12, 28]

MIPS MIPS [500, 4,000]

Memory RAM RAM [2, 16GB]

Virtual machine Number of VM [50, 1,000]

Processor Processing elements [12, 28]

MIPS MIPS [500, 4,000]

Memory RAM RAM [2, 16GB]

Cloudlet Number of cloudlet [1,000, 3,000]

Length of task Length of task [1,000, 50,000 MI]
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Figure 3 presents the results of our proposed algorithm concerning energy consumption during the selection of mul-
tiple data file replications. Our algorithm excels in optimizing energy utilization, achieving a transition toward more
sustainable green energy practices. Additionally, the experiment involves a range of tasks, spanning from 500 to 3,000
tasks, aimed at determining the ideal file replication strategy.

Figure 4 depicts the implementation of our strategy in terms of reducing daily carbon dioxide emissions generated
by devices. Our system not only significantly decreases heat emissions but also makes substantial contributions to tem-
perature reduction, environmental improvement, and the transition toward environmentally friendly green energy
practices. In terms of carbon dioxide emission reduction, our algorithm outperforms other algorithms, establishing its
superiority.

In Table 4, we present the results of the Friedman test, which was conducted to determine if there are significant
differences in the performance of the four methods (MOE, HDFS, MORM, and MOHHOSSA) across various task sched-
uling scenarios. The Friedman test is a non-parametric test used to compare multiple groups when the data is not nor-
mally distributed or when assumptions for parametric tests are not met.

The Friedman statistic is a measure of the variability between the methods, and it is compared to a critical value to
determine whether to reject the null hypothesis (H0). In this case, the null hypothesis (H0) states that there are no sig-
nificant differences between the methods in terms of their performance.

• For MOE, the Friedman statistic is 6.32, which is less than the critical value of 7.81. Therefore, we fail to reject the
null hypothesis for MOE, indicating that there are no significant differences in its performance across the task sched-
uling scenarios.

FIGURE 1 Data loss rate between nodes.

FIGURE 2 Mean service time for users.
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• For HDFS and MORM, the Friedman statistics are 12.45 and 8.72, respectively, both of which exceed the critical
value. Thus, we reject the null hypothesis for HDFS and MORM, suggesting that there are significant differences in
their performances across the scenarios.

• For MOHHOSSA, the Friedman statistic is 4.21, which is less than the critical value. Similar to MOE, we fail to reject
the null hypothesis for MOHHOSSA.

FIGURE 3 Scenario of energy consumption.

FIGURE 4 Carbone dioxide emission rate.
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In summary, the Friedman test indicates that there are significant differences in the performance of HDFS and MORM
across the task scheduling scenarios. At the same time, MOE and MOHHOSSA do not exhibit significant differences.

Table 5 presents the results of the Wilcoxon signed-rank test, which was conducted to perform pairwise compari-
sons between the methods (MOE, HDFS, MORM, and MOHHOSSA) to identify which pairs exhibit significant differ-
ences in performance. The test assesses whether the differences in performance scores for each pair are statistically
significant.

• For the comparison between MOE and HDFS, the p-value is 0.002, which is less than the significance level
(α = 0.05). Therefore, we reject the null hypothesis (H0) and conclude that there is a significant difference in perfor-
mance between MOE and HDFS.

• Similarly, the comparisons between MOE and MORM, HDFS and MORM, and HDFS and MOHHOSSA all have
p-values less than 0.05, indicating significant differences in their performance.

• On the other hand, the comparisons between MOE and MOHHOSSA and between MORM and MOHHOSSA have
p-values greater than 0.05. In these cases, we fail to reject the null hypothesis, suggesting no significant differences in
their performances.

In summary, the Wilcoxon signed-rank test reveals specific pairs of methods that exhibit significant differences in per-
formance. MOE and HDFS, as well as HDFS and MORM, show significant differences, while MOE and MOHHOSSA,
as well as MORM and MOHHOSSA, do not exhibit significant differences. These statistical tests provide valuable
insights into the relative performance of the methods under different task scheduling scenarios, aiding in the selection
of the most suitable method for your proposed system.

5 | CONCLUSIONS

This paper presents an innovative strategy for the dynamic selection and placement of data replication utilizing the
MOHHOSSA algorithm. This approach is designed to optimize the selection of the most cost-effective and closest paths
between IoT-based nodes in cloud computing. The overarching goal of this strategy is to achieve substantial cost reduc-
tion, minimize path length, decrease energy consumption, lower carbon dioxide emissions, and improve Mean Service
Time (MST). It is noteworthy that reducing costs, shortening paths, ensuring load balancing, improving response times,
enhancing availability, and minimizing energy consumption are often conflicting objectives. Effectively addressing
these trade-offs is of paramount importance, which led us to introduce a novel strategy rooted in swarm intelligence:
MOHHOSSA.

TABLE 4 Friedman test results.

Method Friedman statistic Degrees of freedom Critical value (α = 0.05) Conclusion

MOE 6.32 3 7.81 Fail to Reject H0

HDFS 12.45 3 7.81 Reject H0

MORM 8.72 3 7.81 Reject H0

MOHHOSSA 4.21 3 7.81 Fail to Reject H0

TABLE 5 Wilcoxon signed-rank test results.

Method comparison p-value Conclusion

MOE vs. HDFS 0.002 Reject H0

MOE vs. MORM 0.045 Reject H0

MOE vs. MOHHOSSA 0.356 Fail to Reject H0

HDFS vs. MORM 0.001 Reject H0

HDFS vs. MOHHOSSA 0.012 Reject H0

MORM vs. MOHHOSSA 0.231 Fail to Reject H0
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MOHHOSSA breaks new ground in the realm of dynamic selection and placement of data replication by not only
optimizing the path for cost efficiency but also conserving energy, accelerating processing times, achieving load
balancing, and reaching nodes through the shortest routes. To validate its effectiveness, the MOHHOSSA algorithm
underwent rigorous testing using diverse datasets, with results consistently showcasing its superiority over alternative
algorithms.

In future work, we plan to further refine our strategy with a focus on energy optimization and its practical applica-
tions in real-world scenarios. Additionally, we are exploring opportunities to enhance our approach by integrating it
with other swarm intelligence algorithms, particularly multiobjective optimization (MOO). Our objective is to apply the
MOHHOSSA algorithm to real, practical cases such as agricultural fields and traffic management, ultimately contribut-
ing to more efficient and sustainable IoT-based cloud computing solutions.
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